-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp018.erl
30 lines (24 loc) · 1.06 KB
/
p018.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
%% Solution for Project Euler prolem 018
-module(p018).
-export([solve/0]).
tri() -> [[75],
[95, 64],
[17, 47, 82],
[18, 35, 87, 10],
[20, 04, 82, 47, 65],
[19, 01, 23, 75, 03, 34],
[88, 02, 77, 73, 07, 63, 67],
[99, 65, 04, 28, 06, 16, 70, 92],
[41, 41, 26, 56, 83, 40, 80, 70, 33],
[41, 48, 72, 33, 47, 32, 37, 16, 94, 29],
[53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14],
[70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57],
[91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48],
[63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31],
[04, 62, 98, 27, 23, 09, 70, 98, 73, 93, 38, 53, 60, 04, 23]].
lsum(L1, L2) -> lists:zipwith(fun(A, B) -> A + B end, L1, L2).
rowmax(L) -> [lists:max(lists:sublist(L, Start, 2)) ||
Start <- lists:seq(1, length(L) - 1)].
maxpathsum(T) -> hd(lists:foldl(fun(A, B) -> lsum(A, rowmax(B)) end,
lists:duplicate(length(T) + 1,0), lists:reverse(T))).
solve() -> maxpathsum(tri()).