-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIK_Funcs.py
164 lines (132 loc) · 5.56 KB
/
IK_Funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import serial
import time
a_SFR = 0
b_SFR = 7.378
c_SFR = 616.0
coefficents_SFR = np.array([a_SFR, b_SFR, c_SFR])
a_FFR = 0
b_FFR = 7.682
c_FFR = 578.142
coefficents_FFR = np.array([a_FFR, b_FFR, c_FFR])
a_TFR = 0
b_TFR = 7.314
c_TFR = 619.028
coefficents_TFR = np.array([a_TFR, b_TFR, c_TFR])
#------------------------
a_SFL = 0
b_SFL = 7.649
c_SFL = 638.486
coefficents_SFL = np.array([a_SFL, b_SFL, c_SFL])
a_FFL = 0
b_FFL = 7.603
c_FFL = 625.428
coefficents_FFL = np.array([a_FFL, b_FFL, c_FFL])
a_TFL = 0.001
b_TFL = 7.234
c_TFL = 550.0
coefficents_TFL = np.array([a_TFL, b_TFL, c_TFL])
#------------------------
a_SBR = 0
b_SBR = 7.514
c_SBR = 626.428
coefficents_SBR = np.array([a_SBR, b_SBR, c_SBR])
a_FBR = 0.001
b_FBR = 7.364
c_FBR = 548.742
coefficents_FBR = np.array([a_FBR, b_FBR, c_FBR])
a_TBR = 0.001
b_TBR = 7.137
c_TBR = 559.2
coefficents_TBR = np.array([a_TBR, b_TBR, c_TBR])
#------------------------
a_SBL = 0.001
b_SBL = 7.673
c_SBL = 648.857
coefficents_SBL = np.array([a_SBL, b_SBL, c_SBL])
a_FBL = 0
b_FBL = 7.704
c_FBL = 628.142
coefficents_FBL = np.array([a_FBL, b_FBL, c_FBL])
a_TBL = -0.001
b_TBL = 7.765
c_TBL = 634.285
coefficents_TBL = np.array([a_TBL, b_TBL, c_TBL])
# in cm
coxa = 3.1 # from shoulder servo to the 2 other servos in the shoulder
femur = 9.5 # from top sevo to knee
tibia = 9.8 # from knee to foot
real_femur = 9.1 # lenght of 3D printed femur
dist_focuspoint_servo_femurtibia = 2.8 # distance from focus point/pivot of the 2 servos in the shoulder
def deg2PWM(desire_deg_angle, coefficents):
a, b, c = coefficents
pulse = round((a * desire_deg_angle**2) + (b * desire_deg_angle) + c, 0)
return pulse
def deg2PWM_set_angles(angles, coefficents_S, coefficents_F, coefficents_T):
angles_PWM = []
for angle in angles:
angles_PWM
angles_PWM.append([deg2PWM(angle[0], coefficents_S), deg2PWM(angle[1], coefficents_F), deg2PWM(angle[2], coefficents_T)])
return angles_PWM
# function that take 3 angls in rad and transform them into deg
def rad2deg(rads):
return [rads[0]*180/np.pi, rads[1]*180/np.pi, rads[2]*180/np.pi]
def deg2rad(deg):
return deg*np.pi/180
def FR_legIK(x,y,z):
D = np.sqrt((z**2 + y**2) - coxa**2)
G = np.sqrt(D**2 + x**2)
knee_angle = np.arccos((G**2 - femur**2 - tibia**2)/(-2*femur*tibia))
shoulder_angle = np.arctan2(x,D) + np.arcsin((tibia * np.sin(knee_angle)) / G)
adjustment = np.arccos((real_femur**2 + femur**2 - dist_focuspoint_servo_femurtibia**2) / (2 * real_femur * femur))
#print(f"knee_angle: {knee_angle*180/np.pi}")
#print(f"shoulder_angle: {shoulder_angle*180/np.pi}")
#print(f"coxa: {(np.arctan2(y,z) + np.arctan2(D,coxa))*180/np.pi}")
#print(f"adjustment: {adjustment*180/np.pi}")
coxa_angle = deg2rad(180) - (np.arctan2(y,z) + np.arctan2(D,coxa))
femur_angle = deg2rad(90) - (shoulder_angle + adjustment)
tibia_angle = np.pi - knee_angle + femur_angle + adjustment
return rad2deg([coxa_angle, femur_angle, tibia_angle])
def BR_legIK(x,y,z):
D = np.sqrt((z**2 + y**2) - coxa**2)
G = np.sqrt(D**2 + x**2)
knee_angle = np.arccos((G**2 - femur**2 - tibia**2)/(-2*femur*tibia))
shoulder_angle = np.arctan2(x,D) + np.arcsin((tibia * np.sin(knee_angle)) / G)
adjustment = np.arccos((real_femur**2 + femur**2 - dist_focuspoint_servo_femurtibia**2) / (2 * real_femur * femur))
coxa_angle = deg2rad(180) - (np.arctan2(y,z) + np.arctan2(D,coxa))
femur_angle = deg2rad(90) - (shoulder_angle + adjustment)
tibia_angle = np.pi - knee_angle + femur_angle + adjustment
return rad2deg([coxa_angle, femur_angle, tibia_angle])
def FL_legIK(x,y,z):
D = np.sqrt((z**2 + y**2) - coxa**2)
G = np.sqrt(D**2 + x**2)
knee_angle = np.arccos((G**2 - femur**2 - tibia**2)/(-2*femur*tibia))
shoulder_angle = np.arctan2(x,D) + np.arcsin((tibia * np.sin(knee_angle)) / G)
adjustment = np.arccos((real_femur**2 + femur**2 - dist_focuspoint_servo_femurtibia**2) / (2 * real_femur * femur))
#print(f"knee_angle: {knee_angle*180/np.pi}")
#print(f"shoulder_angle: {shoulder_angle*180/np.pi}")
#print(f"coxa: {(np.arctan2(y,z) + np.arctan2(D,coxa))*180/np.pi}")
#print(f"adjustment: {adjustment*180/np.pi}")
coxa_angle = (deg2rad(180) - (np.arctan2(y,z) + np.arctan2(D,coxa))) - (2 * ((deg2rad(180) - (np.arctan2(y,z) + np.arctan2(D,coxa)))-deg2rad(90)))
#coxa_angle = (np.arctan2(y,z) + np.arctan2(D,coxa))
femur_angle = deg2rad(90) - (shoulder_angle + adjustment)
tibia_angle = np.pi - knee_angle + femur_angle + adjustment
femur_angle = deg2rad(180) - femur_angle
tibia_angle = deg2rad(180) - tibia_angle
return rad2deg([coxa_angle, femur_angle, tibia_angle])
def BL_legIK(x,y,z):
D = np.sqrt((z**2 + y**2) - coxa**2)
G = np.sqrt(D**2 + x**2)
knee_angle = np.arccos((G**2 - femur**2 - tibia**2)/(-2*femur*tibia))
shoulder_angle = np.arctan2(x,D) + np.arcsin((tibia * np.sin(knee_angle)) / G)
adjustment = np.arccos((real_femur**2 + femur**2 - dist_focuspoint_servo_femurtibia**2) / (2 * real_femur * femur))
#print(f"knee_angle: {knee_angle*180/np.pi}")
#print(f"shoulder_angle: {shoulder_angle*180/np.pi}")
#print(f"coxa: {(np.arctan2(y,z) + np.arctan2(D,coxa))*180/np.pi}")
#print(f"adjustment: {adjustment*180/np.pi}")
#coxa_angle = (np.arctan2(y,z) + np.arctan2(D,coxa))
coxa_angle = ((deg2rad(180) - (np.arctan2(y,z) + np.arctan2(D,coxa))) - (2 * ((deg2rad(180) - (np.arctan2(y,z) + np.arctan2(D,coxa)))-deg2rad(90))))
femur_angle = deg2rad(90) - (shoulder_angle + adjustment)
tibia_angle = deg2rad(180) - (np.pi - knee_angle + femur_angle + adjustment)
femur_angle = deg2rad(180) - femur_angle
return rad2deg([coxa_angle, femur_angle, tibia_angle])