forked from openscad/MCAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
3d_triangle.scad
327 lines (325 loc) · 13 KB
/
3d_triangle.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Enhancement of OpenSCAD Primitives Solid with Trinagles
// Copyright (C) 2011 Rene BAUMANN, Switzerland
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; If not, see <http://www.gnu.org/licenses/>
// or write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// ================================================================
//
// File providing functions and modules to draw 3D - triangles
// created in the X-Y plane with hight h, using various triangle
// specification methods.
// Standard traingle geometrical definition is used. Vertices are named A,B,C,
// side a is opposite vertex A a.s.o. the angle at vertex A is named alpha,
// B(beta), C(gamma).
//
// This SW is a contribution to the Free Software Community doing a marvelous
// job of giving anyone access to knowledge and tools to educate himselfe.
//
// Author: Rene Baumann
// Date: 11.09.2011
// Edition: 0.3 11.09.2011 For review by Marius
// Edition: 0.4 11.11.2011 Ref to GPL2.1 added
//
// --------------------------------------------------------------------------------------
//
// ===========================================
//
// FUNCTION: 3dtri_sides2coord
// DESCRIPTION:
// Enter triangle sides a,b,c and to get the A,B,C - corner
// co-ordinates. The trinagle's c-side lies on the x-axis
// and A-corner in the co-ordinates center [0,0,0]. Geometry rules
// required that a + b is greater then c. The traingle's vertices are
// computed such that it is located in the X-Y plane, side c is on the
// positive x-axis.
// PARAMETER:
// a : real length of side a
// b : real length of side b
// c : real length of side c
// RETURNS:
// vertices : [Acord,Bcord,Ccord] Array of vertices coordinates
//
// COMMENT:
// vertices = 3dtri_sides2coord (3,4,5);
// vertices[0] : Acord vertex A cordinates the like [x,y,z]
// -------------------------------------------------------------------------------------
//
function 3dtri_sides2coord (a,b,c) = [
[0,0,0],
[c,0,0],
[(pow(c,2)+pow(a,2)-pow(b,2))/(2*c),sqrt ( pow(a,2) -
pow((pow(c,2)+pow(a,2)-pow(b,2))/(2*c),2)),0]];
//
//
// ===========================================
//
// FUNCTION: 3dtri_centerOfGravityCoord
// DESCRIPTION:
// Enter triangle A,B,C - corner coordinates to get the
// triangles Center of Gravity coordinates. It is assumed
// the triangle is parallel to the X-Y plane. The function
// returns always zero for the z-coordinate
// PARAMETER:
// Acord : [x,y,z] Coordinates of vertex A
// Bcord : [x,y,z] Coordinates of vertex B
// Ccord : [x,y,z] Coordinates of vertex C
// RETURNS:
// CG : [x,y,0] Center of gravity coordinate in X-Y-plane
//
// COMMENT:
// vertices = 3dtri_sides2coord (3,4,5);
// cg = 3dtri_centerOfGravityCoord(vertices[0],vertices[1],vertices[2]);
// -------------------------------------------------------------------------------------
//
function 3dtri_centerOfGravityCoord (Acord,Bcord,Ccord) = [
(Acord[0]+Bcord[0]+Ccord[0])/3,(Acord[1]+Bcord[1]+Ccord[1])/3,0];
//
//
// ===========================================
//
// FUNCTION: 3dtri_centerOfcircumcircle
// DESCRIPTION:
// Enter triangle A,B,C - corner coordinates to get the
// circum circle coordinates. It is assumed
// the triangle is parallel to the X-Y plane. The function
// returns always zero for the z-coordinate
// PARAMETER:
// Acord : [x,y,z] Coordinates of vertex A
// Bcord : [x,y,z] Coordinates of vertex B
// Ccord : [x,y,z] Coordinates of vertex C
// RETURNS:
// cc : [x,y,0] Circumcircle center
//
// COMMENT:
// vertices = 3dtri_sides2coord (3,4,5);
// cc = 3dtri_centerOfcircumcircle (vertices[0],vertices[1],vertices[2]);
// -------------------------------------------------------------------------------------
//
function 3dtri_centerOfcircumcircle (Acord,Bcord,Ccord) =
[0.5*Bcord[0],
0.5*((pow(Ccord[1],2)+pow(Ccord[0],2)-Bcord[0]*Ccord[0])/Ccord[1]),
0];
//
//
//
// ===========================================
//
// FUNCTION: 3dtri_radiusOfcircumcircle
// DESCRIPTION:
// Provides the triangle's radius from circumcircle to the vertices.
// It is assumed the triangle is parallel to the X-Y plane. The function
// returns always zero for the z-coordinate
// PARAMETER:
// Vcord : [x,y,z] Coordinates of a vertex A or B,C
// CCcord : [x,y,z] Coordinates of circumcircle
// r : Radius at vertices if round corner triangle used,
// else enter "0"
// RETURNS:
// cr : Circumcircle radius
//
// COMMENT: Calculate circumcircle radius of trinagle with round vertices having
// radius R = 2
// vertices = 3dtri_sides2coord (3,4,5);
// cc = 3dtri_centerOfcircumcircle (vertices[0],vertices[1],vertices[2]);
// cr = 3dtri_radiusOfcircumcircle (vertices[0],cc,2);
// -------------------------------------------------------------------------------------
//
function 3dtri_radiusOfcircumcircle (Vcord,CCcord,R) =
sqrt(pow(CCcord[0]-Vcord[0],2)+pow(CCcord[1]-Vcord[1],2))+ R;
//
//
//
// ===========================================
//
// FUNCTION: 3dtri_radiusOfIn_circle
// DESCRIPTION:
// Enter triangle A,B,C - corner coordinates to get the
// in-circle radius. It is assumed the triangle is parallel to the
// X-Y plane. The function always returns zero for the z-coordinate.
// Formula used for inner circle radius: r = 2A /(a+b+c)
// PARAMETER:
// Acord : [x,y,z] Coordinates of vertex A
// Bcord : [x,y,z] Coordinates of vertex B
// Ccord : [x,y,z] Coordinates of vertex C
//
// RETURNS:
// ir : real radius of in-circle
//
// COMMENT:
// vertices = 3dtri_sides2coord (3,4,5);
// ir = 3dtri_radiusOfIn_circle (vertices[0],vertices[1],vertices[2]);
// -------------------------------------------------------------------------------------
//
function 3dtri_radiusOfIn_circle (Acord,Bcord,Ccord) =
Bcord[0]*Ccord[1]/(Bcord[0]+sqrt(pow(Ccord[0]-Bcord[0],2)+pow(Ccord[1],2))+
sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)));
//
//
//
// ===========================================
//
// FUNCTION: 3dtri_centerOfIn_circle
// DESCRIPTION:
// Enter triangle A,B,C - corner coordinates to get the
// in-circle coordinates. It is assumed
// the triangle is parallel to the X-Y plane. The function
// returns always zero for the z-coordinate
// PARAMETER:
// Acord : [x,y,z] Coordinates of vertex A
// Bcord : [x,y,z] Coordinates of vertex B
// Ccord : [x,y,z] Coordinates of vertex C
// r : real radius of in-circle
// RETURNS:
// ic : [x,y,0] In-circle center co-ordinates
//
// COMMENT:
// vertices = 3dtri_sides2coord (3,4,5);
// ir = 3dtri_radiusOfIn_circle (vertices[0],vertices[1],vertices[2]);
// ic = 3dtri_centerOfIn_circle (vertices[0],vertices[1],vertices[2],ir);
// -------------------------------------------------------------------------------------
//
function 3dtri_centerOfIn_circle (Acord,Bcord,Ccord,r) =
[(Bcord[0]+sqrt(pow(Ccord[0]-Bcord[0],2)+pow(Ccord[1],2))+
sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)))/2-sqrt(pow(Ccord[0]-Bcord[0],2)+pow(Ccord[1],2)),r,0];
//
//
// ============================================
//
// MODULE: 3dtri_draw
// DESCRIPTION:
// Draw a standard solid triangle with A,B,C - vertices specified by its
// co-ordinates and height "h", as given by the input parameters.
// PARAMETER:
// Acord : [x,y,z] Coordinates of vertex A
// Bcord : [x,y,z] Coordinates of vertex B
// Ccord : [x,y,z] Coordinates of vertex C
// h : real Hight of the triangle
// RETURNS:
// none
//
// COMMENT:
// You might use the result from function 3dtri_sides2coord
// to call module 3dtri_draw ( vertices[0],vertices[1],vertices[2], h)
// -------------------------------------------------------------------------------------
//
module 3dtri_draw ( Acord, Bcord, Ccord, h) {
polyhedron (points=[Acord,Bcord,Ccord,
Acord+[0,0,h],Bcord+[0,0,h],Ccord+[0,0,h]],
triangles=[ [0,1,2],[0,2,3],[3,2,5],
[3,5,4],[1,5,2],[4,5,1],
[4,1,0],[0,3,4]]);
};
//
//
// ==============================================
//
// MODULE: 3dtri_rnd_draw
// DESCRIPTION:
// Draw a round corner triangle with A,B,C - vertices specified by its
// co-ordinates, height h and round vertices having radius "r".
// As specified by the input parameters.
// Please note, the tringles side lenght gets extended by "2 * r",
// and the vertices coordinates define the centers of the
// circles with radius "r".
// PARAMETER:
// Acord : [x,y,z] Coordinates of vertex A
// Bcord : [x,y,z] Coordinates of vertex B
// Ccord : [x,y,z] Coordinates of vertex C
// h : real Hight of the triangle
// r : real Radius from vertices coordinates
// RETURNS:
// none
//
// COMMENT:
// You might use the result from function 3dtri_sides2coord
// to call module 3dtri_rnd_draw ( vertices[0],vertices[1],vertices[2], h, r)
// -------------------------------------------------------------------------------------
//
module 3dtri_rnd_draw ( Acord, Bcord, Ccord, h, r) {
Avect=Ccord-Bcord; // vector pointing from vertex B to vertex C
p0=Acord + [0,-r,0];
p1=Bcord + [0,-r,0];
p2=Bcord + [r*Avect[1]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)),
-r*Avect[0]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)) ,0];
p3=Ccord + [r*Avect[1]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)),
-r*Avect[0]/sqrt(pow(Avect[0],2)+pow(Avect[1],2)) ,0];
p4=Ccord +[- r*Ccord[1]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)),
r*Ccord[0]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)) ,0];
p5=Acord + [- r*Ccord[1]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)),
r*Ccord[0]/sqrt(pow(Ccord[0],2)+pow(Ccord[1],2)) ,0];
bottom_triangles = [[0,1,2],[0,2,3],[0,3,4],[0,4,5]];
c_side_triangles = [[7,1,0],[0,6,7]];
a_side_triangles = [[2,8,3],[8,9,3]];
b_side_triangles = [[4,10,5],[10,11,5]];
A_edge_triangles = [[0,5,11],[0,11,6]];
B_edge_triangles = [[1,7,2],[2,7,8]];
C_edge_triangles = [[3,9,4],[9,10,4]];
top_triangles = [[11,7,6],[11,8,7],[11,10,8],[8,10,9]];
union () {
polyhedron (points=[p0,p1,p2,p3,p4,p5,
p0+[0,0,h],p1+[0,0,h],p2+[0,0,h],p3+[0,0,h],p4+[0,0,h],p5+[0,0,h]],
triangles=[ bottom_triangles[0],bottom_triangles[1],bottom_triangles[2],bottom_triangles[3],
A_edge_triangles[0],A_edge_triangles[1],
c_side_triangles[0],c_side_triangles[1],
B_edge_triangles[0],B_edge_triangles[1],
a_side_triangles[0],a_side_triangles[1],
C_edge_triangles[0],C_edge_triangles[1],
b_side_triangles[0],b_side_triangles[1],
top_triangles[0],top_triangles[1],top_triangles[2],top_triangles[3]]);
translate(Acord) cylinder(r1=r,r2=r,h=h,center=false);
translate(Bcord) cylinder(r1=r,r2=r,h=h,center=false);
translate(Ccord) cylinder(r1=r,r2=r,h=h,center=false);
};
}
//
// ==============================================
//
// Demo Application - copy into new file and uncomment or uncomment here but
// without uncommenting the use <...> statement, then press F6 - Key
//
// use <MCAD/3d_triangle.scad>;
//$fn=50;
// h =4;
// r=2;
// echo ("Draws a right angle triangle with its circumcircle and in-circle");
// echo ("The calculated co-ordinates and radius are show in this console window");
// echo ("Geometry rules for a right angle triangle say, that the circumcircle is the");
// echo ("Thales Circle which center must be in the middle of the triangle's c - side");
// echo ("===========================================");
// vertices = 3dtri_sides2coord (30,40,50);
// echo("A = ",vertices[0]," B = ",vertices[1]," C = ",vertices[2]);
// cg = 3dtri_centerOfGravityCoord (vertices[0],vertices[1],vertices[2]);
// echo (" Center of gravity = ",cg);
// cc = 3dtri_centerOfcircumcircle (vertices[0],vertices[1],vertices[2]);
// echo (" Center of circumcircle = ",cc);
// cr = 3dtri_radiusOfcircumcircle (vertices[0],cc,r);
// echo(" Radius of circumcircle ",cr);
// ir = 3dtri_radiusOfIn_circle (vertices[0],vertices[1],vertices[2]);
// echo (" Radius of in-circle = ",ir);
// ic = 3dtri_centerOfIn_circle (vertices[0],vertices[1],vertices[2],ir);
// echo (" Center of in-circle = ",ic);
// translate(cc+[0,0,5*h/2]) difference () {
// cylinder (h=5*h,r1=cr+4,r2=cr+4,center=true);
// cylinder (h=6*h,r1=cr,r2=cr,center=true);}
// difference () {
// union () {
// difference () {
// 3dtri_rnd_draw (vertices[0], vertices[1], vertices[2],5*h,r);
// scale([0.8,0.8,1]) translate([6,2,4*h]) 3dtri_rnd_draw (vertices[0], vertices[1], vertices[2],5*h,r);
// }
// translate (ic+[0,0,5*h]) cylinder(h=10*h,r1=ir+r,r2=ir+r,center=true);
// }
// translate (ic+[0,0,5*h]) cylinder(h=12*h,r1=0.5*ir,r2=0.5*ir,center=true);
// }