-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridtools.py
279 lines (217 loc) · 9.22 KB
/
gridtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
class Logger:
def __init__(self, header, initial_value=None):
self.header = header
self.states = []
if initial_value is not None:
self.states.append(initial_value)
def log(self, new_state):
self.states.append(new_state)
def collect(self):
return np.asarray(self.states)
def save(self, filename):
np.savetxt(filename, np.stack(self.states), delimiter=',', header=self.header, comments='')
def isentropic_vortex_ic(xx_spacing, yy_spacing, gamma, eps):
r_grid = np.sqrt((xx_spacing)**2 + (yy_spacing)**2)
def v_init(r):
return 5.0 / (2*np.pi) * np.exp(0.5 * (1.0 - r*r))
def p_init(r):
dT = - (gamma - 1.0) * 25.0 / (8*gamma*np.pi**2) * np.exp(1.0 - r*r)
T = 1 + dT
dens = T ** (1/(gamma - 1.0))
return dens**gamma
vel_phi = np.vectorize(v_init)(r_grid)
p = np.vectorize(p_init)(r_grid)
u_phi = -vel_phi * yy_spacing + 1.0
v_phi = vel_phi * xx_spacing + 1.0
return u_phi, v_phi, p, p**(1.0/gamma)
def incompressible_vortex_ic(xx_spacing, yy_spacing, gamma, eps):
r_grid = np.sqrt((xx_spacing)**2 + (yy_spacing)**2)
p_0 = 1.0 / (gamma * eps * eps) - 0.5
def v_init(r):
if r < 0.2:
return 5.0*r
elif r < 0.4:
return 2.0 - 5.0*r
else:
return 0.0
def p_init(r):
if r < 0.2:
return p_0 + 12.5*r*r
elif r < 0.4:
return p_0 + 4.0*np.log(5.0*r) + 4.0 - 20.0*r + 12.5*r*r
else:
return p_0 + 4.0*np.log(2.0) - 2.0
vel_phi = np.vectorize(v_init)(r_grid)
p = np.vectorize(p_init)(r_grid)
print(np.any(r_grid == 0.0))
print(r_grid.max())
float_eps = 1e-20
r2_grid = r_grid**2
# Avoid division by zero around origin
u_phi = -vel_phi * yy_spacing * r_grid / (r2_grid + float_eps)
v_phi = vel_phi * xx_spacing * r_grid / (r2_grid + float_eps)
rho = np.ones_like(u_phi)
return u_phi, v_phi, p, rho
def total_cell_energy(p, velocity, rho, gamma):
vel_norm = np.linalg.norm(velocity, axis=-1)
return p / (gamma - 1.0) + 0.5 * np.multiply(rho, vel_norm**2)
def compact_vorticity(topleft, topright, bottomleft, bottomright):
x_dir = 0.5 * (bottomright[..., 1] + bottomleft[..., 1] - topright[..., 1] - topleft[..., 1])
y_dir = 0.5 * (bottomright[..., 2] + topright[..., 2] - bottomleft[..., 2] - topleft[..., 2])
return y_dir - x_dir
def mach_number(q, gamma):
rho = q[..., 0]
u, v, _, _, p = primitive_vars(q, gamma)
nom = rho * (u**2 + v**2)
denom = gamma * p
return rho * np.sqrt(nom / denom)
def primitive_vars(q, gamma):
u = q[..., 1]/q[..., 0]
v = q[..., 2]/q[..., 0]
e = q[..., 3]
vel_norm = np.linalg.norm(np.stack([u,v], axis=-1), axis=-1)
# Internal Energy
e_kin = 0.5 * q[..., 0] * vel_norm**2
e_internal = e - e_kin
p = (gamma - 1.0) * e_internal
return u, v, e, e_kin, p
# Vector-valued flux in x-direction
def F(q, gamma):
u, _, e, _, p = primitive_vars(q, gamma)
return np.stack([q[..., 1], p+u*q[..., 1], u*q[..., 2], u*(e + p)], axis=-1)
# Vector-valued flux in y-direction
def G(q, gamma):
_, v, e, _, p = primitive_vars(q, gamma)
return np.stack([q[..., 2], v*q[..., 1], p+v*q[..., 2], v*(e + p)], axis=-1)
class Grid:
def __init__(self, x_range, y_range, gamma, eps, cells_per_dim, halo_size):
# Set up gridpoint coordinates
x_spacing = np.linspace(*x_range, cells_per_dim)
y_spacing = np.linspace(*y_range, cells_per_dim)
# Create centered coordinate system
xx_spacing, yy_spacing = np.meshgrid(x_spacing, y_spacing)
if (x_range[0] <= 0.0 and x_range[1] >= 0):
x_offset = (x_range[1] - x_range[0]) / 2.0
x_offset += x_range[0]
xx_spacing -= x_offset
if (y_range[0] <= 0.0 and y_range[1] >= 0):
y_offset = (y_range[1] - y_range[0]) / 2.0
y_offset += y_range[0]
yy_spacing -= y_offset
# Index helpers for shifted grids
self.ds = 2*halo_size
self.hs = halo_size
self.center_idx = np.s_[self.hs:-self.hs]
self.plus_idx = np.s_[self.ds:]
self.minus_idx = np.s_[:-self.ds]
self.dim_tot = cells_per_dim + 2*self.hs
self.gamma = gamma
# Logging
self.logger = Logger(header='t,zeta,rho,u,v,e,e_kin,p')
# Enforce initial conditions
u_init, v_init, p_init, rho_init = incompressible_vortex_ic(xx_spacing,
yy_spacing,
gamma,
eps)
velocity = np.stack([u_init, v_init], axis=-1)
e_init = total_cell_energy(p_init, velocity, rho_init, gamma)
self.q = np.empty((self.dim_tot, self.dim_tot, 4))
self.p = np.empty((self.dim_tot, self.dim_tot))
self.p[self.center_idx, self.center_idx] = p_init
# System state
self.q[self.center_idx,
self.center_idx] = np.stack([rho_init,
rho_init*u_init,
rho_init*v_init,
e_init], axis=-1)
# Enforce b.c.
self.enforce_periodic_bc()
# Getters and Setters
def get_q(self):
return self.q
def get_rho(self):
return self.q[..., 0]
def get_rho_u(self):
return self.q[..., 1]
def get_rho_v(self):
return self.q[..., 2]
def get_e(self):
return self.q[..., 3]
def get_p(self):
return self.p
# Grid without halo cells
def get_rho_inner(self):
return self.q[self.center_idx, self.center_idx, 0]
def get_rho_u_inner(self):
return self.q[self.center_idx, self.center_idx, 1]
def get_rho_v_inner(self):
return self.q[self.center_idx, self.center_idx, 2]
def get_e_inner(self):
return self.q[self.center_idx, self.center_idx, 3]
def get_p_inner(self):
return self.p[self.center_idx, self.center_idx]
# Return view, potentially also boundary in one directionj
def get_q_inner(self, shift=None):
if shift == 'top':
return self.q[self.minus_idx, self.center_idx, :]
elif shift == 'topright':
return self.q[self.minus_idx, self.plus_idx, :]
elif shift == 'topleft':
return self.q[self.minus_idx, self.minus_idx, :]
elif shift == 'right':
return self.q[self.center_idx, self.plus_idx, :]
elif shift == 'bottomright':
return self.q[self.plus_idx, self.plus_idx, :]
elif shift == 'bottom':
return self.q[self.plus_idx, self.center_idx, :]
elif shift == 'bottomleft':
return self.q[self.plus_idx, self.minus_idx, :]
elif shift == 'left':
return self.q[self.center_idx, self.minus_idx, :]
elif shift is None or 'center':
return self.q[self.center_idx, self.center_idx, :]
else:
raise ValueError('Shift type not known.')
def set_q_inner(self, q_new):
self.q[self.center_idx, self.center_idx, :] = q_new
def get_F(self, shift):
return F(self.get_q_inner(shift), self.gamma)
def get_G(self, shift):
return G(self.get_q_inner(shift), self.gamma)
def enforce_periodic_bc(self):
# Update Pressure
_, _, _, _, p = primitive_vars(self.get_q_inner(), self.gamma)
if np.array_equal(p, self.p[self.center_idx, self.center_idx]):
print('Should be equal in the first step!!!!')
self.p[self.center_idx, self.center_idx] = p
# x-dim
self.q[:, :self.hs, :] = self.q[:, -self.ds:-self.hs, :]
self.q[:, -self.hs:, :] = self.q[:, self.hs:self.ds, :]
self.p[:, :self.hs] = self.p[:, -self.ds:-self.hs]
self.p[:,-self.hs:] = self.p[:, self.hs:self.ds]
# y-dim
self.q[:self.hs, :] = self.q[-self.ds:-self.hs, :,:]
self.q[-self.hs, :] = self.q[self.hs:self.ds, :, :]
self.p[:self.hs, :] = self.p[-self.ds:-self.hs, :]
self.p[-self.hs:,:] = self.p[self.hs:self.ds, :]
# Corner cells
self.q[:self.hs, :self.hs, :] = self.q[-self.ds:-self.hs,
-self.ds:-self.hs, :]
self.q[-self.hs:, -self.hs:, :] = self.q[self.hs:self.ds,
self.hs:self.ds, :]
self.q[:self.hs, -self.hs:, :] = self.q[-self.ds:-self.hs,
self.hs:self.ds, :]
self.q[-self.hs:, :self.hs, :] = self.q[self.hs:self.ds,
-self.ds:-self.hs, :]
def avg_grid_vals(self):
u, v, e, e_kin, p = primitive_vars(self.get_q_inner(), self.gamma)
rho = self.get_rho_inner()
state = np.stack([rho, u, v, e, e_kin, p], axis=-1)
avg_state = np.mean(state.reshape(-1, 6), axis=0)
return avg_state
def log_mean_state(self, time, **kwargs):
state = np.insert(self.avg_grid_vals(), 0, time)
for val in kwargs.values():
state = np.insert(state, 1, val)
self.logger.log(state)