-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
576 lines (472 loc) · 23.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import os
from flask import Flask, render_template, jsonify, request
import pandas as pd
import json
import pickle
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
# Custom JSON encoder to handle NaN values
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj) if not np.isnan(obj) else None
if isinstance(obj, np.ndarray):
return obj.tolist()
return super(NpEncoder, self).default(obj)
app.json_encoder = NpEncoder
# Fix data path for both local and Heroku environments
if 'DYNO' in os.environ:
# We're on Heroku - need to locate data in root directory
data_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'data')
data_path = os.path.join(data_dir, 'economic_indicators.csv')
model_path = os.path.join(data_dir, 'economic_model.pkl')
else:
# Local development
data_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'data')
data_path = os.path.join(data_dir, 'economic_indicators.csv')
model_path = os.path.join(data_dir, 'economic_model.pkl')
print(f"Looking for data at: {data_path}")
print(f"Looking for model at: {model_path}")
def classify_economy(row):
if row['gdp_growth_rate'] >= 3.0 and row['inflation_rate'] < 5.0:
return 'booming'
elif row['gdp_growth_rate'] <= 0:
return 'shrinking'
else:
return 'stable'
def create_sample_data():
"""Generate comprehensive sample economic data"""
print("Creating comprehensive sample dataset")
countries = ['US', 'CN', 'JP', 'DE', 'UK', 'FR', 'IT', 'CA', 'KR', 'AU',
'IN', 'BR', 'RU', 'MX', 'ID', 'TR', 'SA', 'CH', 'NL', 'ES']
# Base economic characteristics by country
base_gdp = {
'US': 2.1, 'CN': 6.5, 'JP': 1.2, 'DE': 1.8, 'UK': 1.5,
'FR': 1.3, 'IT': 0.8, 'CA': 2.0, 'KR': 3.2, 'AU': 2.5,
'IN': 5.5, 'BR': 1.9, 'RU': 1.4, 'MX': 0.1, 'ID': 4.8,
'TR': 2.8, 'SA': 0.7, 'CH': 1.1, 'NL': 1.6, 'ES': 1.0
}
base_inflation = {
'US': 1.5, 'CN': 2.5, 'JP': 0.5, 'DE': 1.2, 'UK': 1.8,
'FR': 1.1, 'IT': 0.9, 'CA': 1.7, 'KR': 1.5, 'AU': 1.9,
'IN': 3.5, 'BR': 3.8, 'RU': 4.2, 'MX': 3.0, 'ID': 2.8,
'TR': 7.5, 'SA': 1.2, 'CH': 0.3, 'NL': 1.4, 'ES': 0.8
}
# Economic era modifiers
eras = {
# Pre-financial crisis
(2000, 2007): {'gdp': 1.2, 'inf': 0.8},
# Financial crisis
(2008, 2010): {'gdp': 0.4, 'inf': 1.2},
# Post-crisis recovery
(2011, 2019): {'gdp': 1.0, 'inf': 0.9},
# Covid pandemic
(2020, 2021): {'gdp': 0.3, 'inf': 1.3},
# Post-covid
(2022, 2023): {'gdp': 0.9, 'inf': 1.8}
}
all_data = []
for year in range(2000, 2024):
# Find applicable economic era
era_mod = next((mod for (start, end), mod in eras.items() if start <= year <= end), {'gdp': 1.0, 'inf': 1.0})
for country in countries:
gdp_growth = base_gdp[country] * era_mod['gdp'] * (0.7 + np.random.random() * 0.6)
inflation = base_inflation[country] * era_mod['inf'] * (0.8 + np.random.random() * 0.4)
all_data.append({
'country': country,
'year': year,
'gdp_growth_rate': gdp_growth,
'inflation_rate': inflation
})
df = pd.DataFrame(all_data)
df['economic_status'] = df.apply(classify_economy, axis=1)
print(f"Created sample dataset with {len(df)} rows for {len(countries)} countries")
return df
def add_features(df):
"""Add engineered features to the dataframe"""
# Safety check to prevent division by zero
df['growth_inflation_ratio'] = df['gdp_growth_rate'] / df['inflation_rate'].replace(0, 0.001)
df['economic_health'] = df['gdp_growth_rate'] - df['inflation_rate']
# Add trend features
countries = df['country'].unique()
years = sorted(df['year'].unique())
# Initialize new columns
df['gdp_3yr_trend'] = 0.0
df['inf_3yr_trend'] = 0.0
df['growth_stability'] = 0.0
for country in countries:
country_data = df[df['country'] == country].sort_values('year')
# Calculate 3-year trends and stability
for i, year in enumerate(years):
if i >= 2: # Need at least 3 years of data
past_3yrs = country_data[country_data['year'].isin(years[i-2:i+1])]
if len(past_3yrs) == 3:
# GDP 3-year trend (positive = improving, negative = deteriorating)
gdp_vals = past_3yrs['gdp_growth_rate'].values
gdp_trend = gdp_vals[2] - gdp_vals[0] # Latest minus oldest
# Inflation 3-year trend
inf_vals = past_3yrs['inflation_rate'].values
inf_trend = inf_vals[2] - inf_vals[0]
# Growth stability (lower = more stable)
stability = gdp_vals.std()
# Update the values
idx = df[(df['country'] == country) & (df['year'] == year)].index
if not idx.empty:
df.loc[idx, 'gdp_3yr_trend'] = gdp_trend
df.loc[idx, 'inf_3yr_trend'] = inf_trend
df.loc[idx, 'growth_stability'] = stability
return df
def check_model_features():
"""Check if the model's features match our expected feature set"""
try:
expected_features = ['gdp_growth_rate', 'inflation_rate', 'growth_inflation_ratio',
'economic_health', 'gdp_3yr_trend', 'inf_3yr_trend', 'growth_stability']
# For older scikit-learn versions
if not hasattr(model, 'feature_names_in_'):
print("Using an older scikit-learn version without feature_names_in_ attribute.")
# We'll still check that the model was trained with the right number of features
return True
model_features = list(model.feature_names_in_)
print(f"Model features: {model_features}")
# Check if we need to retrain the model
if len(model_features) != len(expected_features):
print(f"Feature count mismatch! Model has {len(model_features)} features, but we expect {len(expected_features)}")
return False
return True
except Exception as e:
print(f"Error checking model features: {e}")
return False
# Load or create data
try:
data = pd.read_csv(data_path)
print(f"Successfully loaded data with {len(data)} rows")
if 'economic_status' not in data.columns:
print("Adding economic_status classification to data")
data['economic_status'] = data.apply(classify_economy, axis=1)
if os.path.exists(model_path):
with open(model_path, 'rb') as f:
model = pickle.load(f)
print("Successfully loaded model")
else:
print("Model not found, training a new one...")
# Feature engineering
data = add_features(data)
# Get feature columns in a predictable order
feature_columns = ['gdp_growth_rate', 'inflation_rate', 'growth_inflation_ratio',
'economic_health', 'gdp_3yr_trend', 'inf_3yr_trend', 'growth_stability']
# Create the model ensuring we use the same feature order
X = data[feature_columns] # Use this instead of listing them inline
y = data['economic_status']
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X, y)
check_model_features() # This will print debug info about the model features
print("Model training complete")
except FileNotFoundError as e:
print(f"Error: {e}")
data = create_sample_data()
# Feature engineering for sample data
data = add_features(data)
# Get feature columns in a predictable order
feature_columns = ['gdp_growth_rate', 'inflation_rate', 'growth_inflation_ratio',
'economic_health', 'gdp_3yr_trend', 'inf_3yr_trend', 'growth_stability']
# Create and train model on the sample data
X = data[feature_columns] # Use this instead of listing them inline
y = data['economic_status']
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X, y)
check_model_features() # This will print debug info about the model features
print("Model trained on sample data")
# Create the scaler for standardizing inputs
scaler = StandardScaler()
scaler.fit(data[['gdp_growth_rate', 'inflation_rate']])
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/countries')
def get_countries():
countries = data['country'].unique().tolist()
return jsonify(countries)
@app.route('/api/data')
def get_data():
# Create pivot tables but then transpose them for better JavaScript access
pivot_gdp = data.pivot(index='country', columns='year', values='gdp_growth_rate')
pivot_inflation = data.pivot(index='country', columns='year', values='inflation_rate')
pivot_status = data.pivot(index='country', columns='year', values='economic_status')
result = {
'countries': data['country'].unique().tolist(),
'years': sorted(data['year'].unique().tolist()),
'gdp_growth': pivot_gdp.replace({np.nan: None}).to_dict('index'),
'inflation': pivot_inflation.replace({np.nan: None}).to_dict('index'),
'economic_status': pivot_status.replace({np.nan: None}).to_dict('index')
}
return jsonify(result)
@app.route('/api/stats')
def get_stats():
country_stats = data.groupby('country')['economic_status'].value_counts().unstack().fillna(0)
country_stats['total'] = country_stats.sum(axis=1)
for status in ['booming', 'stable', 'shrinking']:
if status not in country_stats.columns:
country_stats[status] = 0
country_stats['booming_pct'] = (country_stats['booming'] / country_stats['total'] * 100).round(1)
country_stats['shrinking_pct'] = (country_stats['shrinking'] / country_stats['total'] * 100).round(1)
stats_dict = country_stats.replace({np.nan: None}).to_dict()
return jsonify(stats_dict)
@app.route('/api/predict', methods=['POST'])
def predict():
try:
# Get values from request
req_data = request.get_json()
if req_data is None:
return jsonify({'error': 'No JSON data received'}), 400
print(f"Received prediction request: {req_data}")
# Check for required fields
if 'gdp_growth' not in req_data or 'inflation' not in req_data:
return jsonify({'error': 'Missing required fields: gdp_growth and/or inflation'}), 400
try:
gdp_growth = float(req_data.get('gdp_growth', 0))
inflation = float(req_data.get('inflation', 0))
except (TypeError, ValueError) as e:
return jsonify({'error': f'Invalid numeric values: {str(e)}'}), 400
# Print debug information
print(f"Input values: GDP growth = {gdp_growth}, Inflation = {inflation}")
# Create prediction input with all required features
gdp_growth_rate = gdp_growth
inflation_rate = inflation
# Avoid division by zero
if inflation_rate == 0:
growth_inflation_ratio = gdp_growth_rate / 0.001
else:
growth_inflation_ratio = gdp_growth_rate / inflation_rate
economic_health = gdp_growth_rate - inflation_rate
# For new data points, we don't have trend/stability data
# so use median values from our dataset
gdp_3yr_trend = data['gdp_3yr_trend'].median() if 'gdp_3yr_trend' in data.columns else 0.0
inf_3yr_trend = data['inf_3yr_trend'].median() if 'inf_3yr_trend' in data.columns else 0.0
growth_stability = data['growth_stability'].median() if 'growth_stability' in data.columns else 1.0
print(f"Calculated additional features: ratio={growth_inflation_ratio}, health={economic_health}")
print(f"Using trends/stability: gdp trend={gdp_3yr_trend}, inf trend={inf_3yr_trend}, stability={growth_stability}")
# Create input array with all 7 features
input_data = np.array([[
gdp_growth_rate,
inflation_rate,
growth_inflation_ratio,
economic_health,
gdp_3yr_trend,
inf_3yr_trend,
growth_stability
]])
# Make prediction
prediction = model.predict(input_data)[0]
print(f"Prediction: {prediction}")
# Calculate prediction probabilities
probabilities = model.predict_proba(input_data)[0]
class_indices = {c: i for i, c in enumerate(model.classes_)}
class_probabilities = {
'booming': round(float(probabilities[class_indices.get('booming', 0)]) * 100, 1) if 'booming' in class_indices else 0,
'stable': round(float(probabilities[class_indices.get('stable', 0)]) * 100, 1) if 'stable' in class_indices else 0,
'shrinking': round(float(probabilities[class_indices.get('shrinking', 0)]) * 100, 1) if 'shrinking' in class_indices else 0
}
# Find similar economies
distances = []
for _, row in data.iterrows():
dist = np.sqrt((row['gdp_growth_rate'] - gdp_growth)**2 + (row['inflation_rate'] - inflation)**2)
distances.append({
'country': row['country'],
'year': int(row['year']),
'distance': float(dist),
'gdp': float(row['gdp_growth_rate']),
'inflation': float(row['inflation_rate']),
'status': row['economic_status']
})
similar_economies = sorted(distances, key=lambda x: x['distance'])[:5]
result = {
'prediction': prediction,
'probabilities': class_probabilities,
'similar_economies': similar_economies
}
print(f"Sending prediction response: {result}")
return jsonify(result)
except Exception as e:
import traceback
print(f"Error in prediction: {str(e)}")
print(traceback.format_exc())
return jsonify({'error': str(e)}), 400
@app.route('/api/predict-country/<country>', methods=['GET'])
def predict_country(country):
try:
if country not in data['country'].unique():
return jsonify({'error': f'Country {country} not found in dataset'}), 404
# Get the most recent data for this country
country_data = data[data['country'] == country].sort_values('year', ascending=False)
if len(country_data) == 0:
return jsonify({'error': f'No data available for {country}'}), 404
latest_data = country_data.iloc[0]
# Get the next year
next_year = int(latest_data['year']) + 1
# Extract raw features for prediction
gdp_growth_rate = float(latest_data['gdp_growth_rate'])
inflation_rate = float(latest_data['inflation_rate'])
# Calculate derived features (don't try to access them directly)
# Avoid division by zero
if inflation_rate == 0:
growth_inflation_ratio = gdp_growth_rate / 0.001
else:
growth_inflation_ratio = gdp_growth_rate / inflation_rate
economic_health = gdp_growth_rate - inflation_rate
# Get trend features - we need to check if these columns exist in the DataFrame
gdp_3yr_trend = 0.0
inf_3yr_trend = 0.0
growth_stability = 1.0
# Try to get these from the latest_data if they exist
if 'gdp_3yr_trend' in latest_data:
gdp_3yr_trend = float(latest_data['gdp_3yr_trend'])
elif 'gdp_3yr_trend' in data.columns:
gdp_3yr_trend = data['gdp_3yr_trend'].median()
if 'inf_3yr_trend' in latest_data:
inf_3yr_trend = float(latest_data['inf_3yr_trend'])
elif 'inf_3yr_trend' in data.columns:
inf_3yr_trend = data['inf_3yr_trend'].median()
if 'growth_stability' in latest_data:
growth_stability = float(latest_data['growth_stability'])
elif 'growth_stability' in data.columns:
growth_stability = data['growth_stability'].median()
# Create input array
input_features = np.array([
[
gdp_growth_rate,
inflation_rate,
growth_inflation_ratio,
economic_health,
gdp_3yr_trend,
inf_3yr_trend,
growth_stability
]
])
# Predict economic status
prediction = model.predict(input_features)[0]
# Calculate prediction probabilities
probabilities = model.predict_proba(input_features)[0]
class_indices = {c: i for i, c in enumerate(model.classes_)}
class_probabilities = {
'booming': round(float(probabilities[class_indices.get('booming', 0)]) * 100, 1) if 'booming' in class_indices else 0,
'stable': round(float(probabilities[class_indices.get('stable', 0)]) * 100, 1) if 'stable' in class_indices else 0,
'shrinking': round(float(probabilities[class_indices.get('shrinking', 0)]) * 100, 1) if 'shrinking' in class_indices else 0
}
return jsonify({
'country': country,
'prediction_year': next_year,
'current_year': int(latest_data['year']),
'current_gdp_growth': gdp_growth_rate,
'current_inflation': inflation_rate,
'current_status': latest_data['economic_status'],
'predicted_status': prediction,
'probabilities': class_probabilities
})
except Exception as e:
import traceback
print(f"Error in country prediction: {str(e)}")
print(traceback.format_exc())
return jsonify({'error': str(e)}), 400
@app.route('/api/predict-future/<country>', methods=['GET'])
def predict_future(country):
try:
years_ahead = int(request.args.get('years', 5)) # Default: predict 5 years ahead
if years_ahead < 1 or years_ahead > 10:
return jsonify({'error': 'Years parameter must be between 1 and 10'}), 400
if country not in data['country'].unique():
return jsonify({'error': f'Country {country} not found in dataset'}), 404
# Get the most recent data for this country
country_data = data[data['country'] == country].sort_values('year', ascending=False)
if len(country_data) == 0:
return jsonify({'error': f'No data available for {country}'}), 404
latest_data = country_data.iloc[0]
current_year = int(latest_data['year'])
# Calculate average GDP growth and inflation over the last 5 years
recent_data = data[(data['country'] == country) & (data['year'] >= current_year - 5)]
avg_gdp_growth = recent_data['gdp_growth_rate'].mean()
avg_inflation = recent_data['inflation_rate'].mean()
# Calculate growth and inflation volatility
gdp_volatility = recent_data['gdp_growth_rate'].std() * 0.5
inf_volatility = recent_data['inflation_rate'].std() * 0.5
# Initialize with current values
current_gdp = float(latest_data['gdp_growth_rate'])
current_inflation = float(latest_data['inflation_rate'])
# Generate predictions for multiple years
predictions = []
for i in range(1, years_ahead + 1):
# Apply some trend reversion to the mean
next_gdp = current_gdp * 0.7 + avg_gdp_growth * 0.3 + np.random.normal(0, gdp_volatility)
next_inflation = current_inflation * 0.7 + avg_inflation * 0.3 + np.random.normal(0, inf_volatility)
# Create feature vector for this prediction year
growth_inflation_ratio = next_gdp / next_inflation if next_inflation != 0 else next_gdp / 0.001
economic_health = next_gdp - next_inflation
# For trend features, use values from data
gdp_3yr_trend = data['gdp_3yr_trend'].median() if 'gdp_3yr_trend' in data.columns else 0.0
inf_3yr_trend = data['inf_3yr_trend'].median() if 'inf_3yr_trend' in data.columns else 0.0
growth_stability = data['growth_stability'].median() if 'growth_stability' in data.columns else 1.0
# Create input array with all features
input_features = np.array([
[
next_gdp,
next_inflation,
growth_inflation_ratio,
economic_health,
gdp_3yr_trend,
inf_3yr_trend,
growth_stability
]
])
# Predict economic status
status = model.predict(input_features)[0]
# Calculate confidence
confidence = 100 - (i * 10) # Confidence decreases with time
confidence = max(confidence, 50) # Minimum 50% confidence
# Add to predictions list
predictions.append({
'year': current_year + i,
'gdp_growth': round(float(next_gdp), 2),
'inflation': round(float(next_inflation), 2),
'status': status,
'confidence': confidence
})
# Update current values for next iteration (carry forward)
current_gdp = next_gdp
current_inflation = next_inflation
return jsonify({
'country': country,
'current_year': current_year,
'predictions': predictions
})
except Exception as e:
import traceback
print(f"Error in future prediction: {str(e)}")
print(traceback.format_exc())
return jsonify({'error': str(e)}), 400
@app.route('/technical-docs')
def technical_docs():
return render_template('technical_docs.html')
# Add this diagnostic function to your main.py file
@app.route('/api/model-info', methods=['GET'])
def model_info():
"""API endpoint to debug model feature information"""
try:
# Load the model
with open('data/economic_model.pkl', 'rb') as f:
model = pickle.load(f)
feature_info = {
"expected_features": list(model.feature_names_in_) if hasattr(model, 'feature_names_in_') else "Unknown",
"feature_count": len(model.feature_names_in_) if hasattr(model, 'feature_names_in_') else "Unknown",
"model_type": str(type(model)),
"n_features_in_": model.n_features_in_ if hasattr(model, 'n_features_in_') else "Unknown"
}
return jsonify(feature_info)
except Exception as e:
return jsonify({"error": str(e)})
if __name__ == '__main__':
# Use environment port if available (Heroku sets this)
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port, debug=False)