-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLP_GHI.py
209 lines (158 loc) · 5.76 KB
/
MLP_GHI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# %%
from __future__ import print_function
import os
import sys
import pandas as pd
import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import datetime as datetime
# %%
#set current working directory
os.chdir('/Users/hanany/Downloads/Practical-Time-Series-Analysis-master')
#Read the dataset into a pandas.DataFrame
df = pd.read_csv('/Users/hanany/Desktop/lstm-GHI/data/dataGHIDNI_1ans_10m.txt',sep=',', engine='python')
# %%
print('Shape of the dataframe:', df.shape)
# %%
print(df.head())
print(df.info())
# %%
df['DateTime']=pd.to_datetime(df['DateTime'])
print(df.head())
print(df.info())
# %%
# %%
# %%
plt.figure(figsize=(5.5, 5.5))
g = sns.boxplot(df['GHI'])
g.set_title('Box plot of GHI')
# %%
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
df['scaled_GHI'] = scaler.fit_transform(np.array(df['GHI']).reshape(-1, 1))
# %%
# split into train and test sets
train_size = int(len(df.GHI) * 0.67)
df_train, df_val = df[:train_size], df[train_size+1:]
print('Shape of train:', df_train.shape)
print('Shape of test:', df_val.shape)
# %%
df_train.head()
# %%
df_val.head()
# %%
df_val.reset_index(drop=True, inplace=True)
# %%
"""
The train and validation time series of standardized PRES are also plotted.
"""
plt.figure(figsize=(5.5, 5.5))
g = plt.plot(df_train['scaled_GHI'], color='b')
#g.set_title('Time series of scaled Air Pressure in train set')
#g.set_xlabel('Index')
#g.set_ylabel('Scaled Air Pressure readings')
#plt.savefig('plots/ch5/B07887_05_03.png', format='png', dpi=300)
plt.figure(figsize=(5.5, 5.5))
g = plt.plot(df_val['scaled_GHI'], color='r')
#g.set_title('Time series of scaled Air Pressure in validation set')
#g.set_xlabel('Index')
#g.set_ylabel('Scaled Air Pressure readings')
#plt.savefig('plots/ch5/B07887_05_04.png', format='png', dpi=300)
# %%
def makeXy(ts, nb_timesteps):
"""
Input:
ts: original time series
nb_timesteps: number of time steps in the regressors
Output:
X: 2-D array of regressors
y: 1-D array of target
"""
X = []
y = []
for i in range(nb_timesteps, ts.shape[0]):
X.append(list(ts.loc[i-nb_timesteps:i-1]))
y.append(ts.loc[i])
X, y = np.array(X), np.array(y)
return X, y
# %%
dimInput=10
X_train, y_train = makeXy(df_train['scaled_GHI'], dimInput)
print('Shape of train arrays:', X_train.shape, y_train.shape)
# %%
X_val, y_val = makeXy(df_val['scaled_GHI'], dimInput)
print('Shape of validation arrays:', X_val.shape, y_val.shape)
# %%
from keras.layers import Dense, Input, Dropout
from keras.optimizers import SGD
from keras.models import Model
from keras.models import load_model
from keras.callbacks import ModelCheckpoint
# %%
#Define input layer which has shape (None, 7) and of type float32. None indicates the number of instances
input_layer = Input(shape=(dimInput,), dtype='float32')
# %%
#Dense layers are defined with linear activation
dense1 = Dense(64, activation='relu')(input_layer)
dense2 = Dense(32, activation='relu')(dense1)
dense3 = Dense(32, activation='relu')(dense2)
dense4 = Dense(32, activation='relu')(dense3)
# %%
dropout_layer = Dropout(0.2)(dense4)
# %%
#Finally, the output layer gives prediction for the next day's air pressure.
output_layer = Dense(1, activation='relu')(dropout_layer)
# %%
ts_model = Model(inputs=input_layer, outputs=output_layer)
ts_model.compile(loss='mean_squared_error', optimizer='adam')
ts_model.summary()
# %%
save_weights_at = os.path.join('/Users/hanany/Downloads/Practical-Time-Series-Analysis-master', 'GHI_MLP_weights.{epoch:02d}-{val_loss:.4f}.hdf5')
print(save_weights_at)
# %%
save_best = ModelCheckpoint(save_weights_at, monitor='val_loss', verbose=0,
save_best_only=True, save_weights_only=False, mode='min',
period=1)
# %%
ts_model.fit(x=X_train, y=y_train, batch_size=500, epochs=200,
verbose=1, callbacks=[save_best], validation_data=(X_val, y_val),
shuffle=True)
# %%
best_model = load_model(os.path.join('/Users/hanany/Downloads/Practical-Time-Series-Analysis-master',
'GHI_MLP_weights.20-0.0015.hdf5'))
preds = best_model.predict(X_val)
pred_PRES = scaler.inverse_transform(preds)
pred_PRES = np.squeeze(pred_PRES)
# %%
# %%
#Let's plot the first 50 actual and predicted values of air pressure.
tailPlot=150
plt.figure(figsize=(5.5, 5.5))
plt.plot(range(tailPlot), df_val['GHI'].loc[dimInput:tailPlot+dimInput-1], linestyle='-', marker='*', color='b')
plt.plot(range(tailPlot), pred_PRES[:tailPlot], linestyle='-', marker='.', color='r')
plt.legend(['Actual','Predicted'], loc=2)
plt.title('Actual vs Predicted Air Pressure')
plt.ylabel('GHI')
# %%
from sklearn.metrics import r2_score,mean_squared_error
r2 = r2_score(df_val['GHI'].loc[dimInput:], pred_PRES)
print('R-squared for the validation set:', round(r2,4))
# calculate root mean squared error
testScore = np.sqrt(mean_squared_error(df_val['GHI'].loc[dimInput:], pred_PRES))/np.mean(df_val['GHI'].loc[dimInput:])
print('Test Score: %.2f nRMSE' % (testScore))
#trainScore = np.sqrt(mean_squared_error(df_train['GHI'].loc[:dimInput], pred_PRES))/np.mean(df_val['GHI'].loc[dimInput:])
print('Test Score: %.2f RMSE' % (np.sqrt(mean_squared_error(df_val['GHI'].loc[dimInput:], pred_PRES))))
#testScore = np.sqrt(mean_squared_error(testYI[0], testPredictI[:,0]))
#print('Test Score: %.2f RMSE' % (testScore))
#print(len(df_val['GHI'].loc[dimInput:]),len(pred_PRES))
# %%
#import plotly
#import plotly.graph_objs as go
#from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
#init_notebook_mode(connected=True)
#iplot([{"x": time, "y": df_val['GHI'].loc[dimInput:]},{"x": time, "y": pred_PRES}])
#iplot([{"x": time, "y": ssn}])
# %%
# %%