-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhand_tracking.py
62 lines (37 loc) · 1.44 KB
/
hand_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import cv2
import mediapipe as mp
import time
class HandDetector():
def __init__(self, mode=False, maxHands=2, detectionConf=0.5, trackConf=0.5):
self.mode = mode
self.maxHands = maxHands
self.detectionConf = detectionConf
self.trackConf = trackConf
#Initialize mediapipe for hand tracking with default parameters
self.mpHands = mp.solutions.hands
self.mpDraw = mp.solutions.drawing_utils
self.hands = self.mpHands.Hands()
def imageCapture():
cap = cv2.VideoCapture('http://192.168.10.3:4747/video')
success, image = self.cap.read()
if self.success:
return self.image
def findHands(self, image, draw=True):
self.imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
def main():
#for FPS calculation
previous_time = 0
current_time = 0
current_time = time.time()
fps = 1/(current_time - previous_time)
previous_time = current_time
cv2.putText(image, str(int(fps)), (5, 80), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2)
cv2.imshow("Hand tracked image", image)
cv2.waitKey(1)
while True:
track = hands.process(imageRGB)
# print(track.multi_hand_landmarks)
if track.multi_hand_landmarks:
for landmarks in track.multi_hand_landmarks:
mpDraw.draw_landmarks(image, landmarks, mpHands.HAND_CONNECTIONS)