-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgenp.f
788 lines (786 loc) · 36.5 KB
/
vgenp.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
c***********************************************************************
SUBROUTINE VGENP(ISTATE,RDIST,VDIST,dVdR,d2VdR2,IDAT)
c***********************************************************************
c** This subroutine will generate function values and derivatives
c of Morse/Long-Range potentials as required for semiclassical
c calculation (with quantum corrections) of virial coefficients and
c their analytical derivatives in direct hamiltonian fitting
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c+++ COPYRIGHT 2009-2016 by R.J. Le Roy, Aleksander Cholewinski and ++
c Philip T. Myatt
c Dept. of Chemistry, Univ. of Waterloo, Waterloo, Ontario, Canada +
c This software may not be sold or any other commercial use made +
c of it without the express written permission of the authors. +
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c ----- Version of 17 March 2016 -----
c (after PTW addition of G-TT and specialized HFD potentials)
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c** On entry:
c ISTATE is the electronic state being considered in this CALL.
c RDIST: at the 8 input RDIST(i) distances, calculate potl & derivs
c * return potential function at those points as VDIST, and the
c first and second radial derivartives as dVdR & d2VdR
c??? * skip partial derivative calculation if IDAT.le.0
c * If RDIST.le.0 calculate partial derivatives at distances
c given by array RD(i,ISTATE) & return them in array DVtot
c** On entry via common blocks:
c APSE(s).le.0 to use {p,q}-type exponent polynomial of order Nbeta(s)
c if APSE(s) > 0 \beta(r) is Pashov spline defined by Nbeta(s) points
c* Nbeta(s) is order of the beta(r) exponent polynomial or # spline points
c MMLR(j,s) are long-range inverse-powers for an MLR or DELR potential
c pPOT(s) the basic value of power p for the beta(r) exponent function
c qPOT(s) the power p for the power series expansion variable in beta(r)
c pAD(s) & qAD(s) the values of power p for adiabatic u(r) BOB functions
c nNA(s) & qNA(s) the values of power p for centrifugal q(r) BOB functions
c Qqw(s) the power defining the radial variable y_{Pqw}(r) in the
c Lambda-doubling radial strength function f_{\Lambda}(r)
c DE is the Dissociation Energy for each state.
c RE is the Equilibrium Distance for each state.
c BETA is the array of potential (exponent) expansion parameters
c NDATPT is the number of meshpoints used for the array.
c-----------------------------------------------------------------------
c** On exit via common blocks:
c R is the distance array
c VPOT is the potential that is generated.
c BETAFX is used to contain the beta(r) function.
c** Internal partial derivative arrays ...
c DUADRe & DUBDRe are p.derivs of adiabatic fx. w.r.t. Re
c DVDQA & DVDQB are p.derivs of non-adiabatic fx. wrt q_A(i) & q_B(i)
c DTADRe & DTBDRe are p.derivs of non-adiabatic fx. w.r.t. Re
c dVdL & dLDDRe are p.derivatives of f_\lambda(r) w.r.t. beta_i & Re
c DBDB & DBDRe are p.derives of beta(r) w.r.t. \beta_i & Re, respectively
c
c** Temp:
c BTEMP is used to represent the sum used for dV/dRe.
c is used in GPEF for De calculations.
c BINF is used to represent the beta(\infty) value.
c YP is used to represent (R^p-Re^p)/(R^p+Re^p) or R-Re.
c XTEMP is used to represent (uLR/uLR_e)* exp{-BINF*RTEMP}
c PBTEMP is used to calculate dV/dBi.
c PETEMP is used to calculate dV/dBi.
c AZERO is used for the trial exponential calculations.
c AONE is used for the trial exponential calculations.
c ATWO is used for the trial exponential calculations.
c AZTEMP is used in the MMO trial exponential calculations.
c is used in the GPEF = (a+b)/k
c AOTEMP is used in the GPEF = [a(k+1)-b(k-1)]/k
c ATTEMP is used in the GPEF = [a^2(k+1)-b^2(k-1)]/k
c ARTEMP is used in the GPEF = [a^3(k+1)-b^3(k-1)]/k
c FSW is used to represent the MLJ switching function.
c=======================================================================
INCLUDE 'arrsizes.h'
INCLUDE 'BLKISOT.h'
INCLUDE 'BLKDATA.h'
INCLUDE 'BLKPOT.h'
INCLUDE 'BLKDVDP.h'
INCLUDE 'BLKBOB.h'
INCLUDE 'BLKBOBRF.h'
INCLUDE 'BLKCOUNT.h'
c-----------------------------------------------------------------------
c** Define local variables ...
INTEGER I,J,I1,ISTATE,IPV,IPVSTART,ISTART,ISTOP,LAMB2,m,npow,
1 IDAT, NBAND, IISTP,MMLR1D(NCMMax)
REAL*8 BTEMP,BINF,RVAL(8),RTEMP,RM2,XTEMP,PBTEMP,PETEMP,RET,
1 FSW,Xtemp2,Btemp2,BMtemp,BMtemp2,RMF,PBtemp2,C3VAL,C3bar,C6bar,
2 C6adj,C9adj,YP,YQ,YPA,YPB,YQA,YQB,YPE,YPM,YPMA,YPMB,YPP,YQP,YQPA,
3 YQPB,REp,Req,RDp,RDq,DYPDRE,DYQDRE,VAL,DVAL,HReP,HReQ,SL,SLB,
4 AREFpp,AREFqq, RE3,RE6,RE8,T0,T0P,T1,ULRe,Scalc,dLULRedCm(9),
5 dLULRedRe,dLULRedDe,dULRdDe,dULRdCm(9),RD3,RD6,RD8,DVDD,RDIST(8),
6 VDIST(8),BFCT,JFCT,JFCTLD,RETSig,RETPi,RETp,RETm,A0,A1,A2,T2,
7 REpADA,REpADB,REqADA,REqADB,D2VAL,dYPdR,A3,X,VATT,dVATT,D2VATT,
8 dYPEdR,dYQdR,d2YPdR,d2YQdR,d2YPEdR,RINV,dDULRdR,d2DULRdR,dULRdR,
9 d2ULRdR,DXTEMP,D2XTEMP,dVdR(8),d2VdR2(8),dLULRdR,YPPP,dBdR,d2BdR,
x DX,T1P,T1PP, dULRdRCm(9),dXdP(HPARMX),dXpdP(HPARMX),dLULRdCm(9),
y DYPEDRE,dVALdRe,dYBdRe,dBpdRe,DYPpDRE,DYPEpdRE,DYQpDRE,dYBpdRe,
z xBETA(NbetaMX),rKL(NbetaMX,NbetaMX),BR,r,bohr,rhoINT,f2,f2p,f2pp
c***********************************************************************
c** Common block for partial derivatives of potential at the one distance RDIST
c and HPP derivatives for uncertainties
REAL*8 dVdPk(HPARMX),dDe(0:NbetaMX),dDedRe
COMMON /dVdPkBLK/dVdPk,dDe,dDedRe
c=======================================================================
c** Temporary variables for MLR and DELR potentials
INTEGER MMLRP,IDATLAST
REAL*8 ULR,dAAdRe,dBBdRe,dVdBtemp,CmVALL,tDm,tDmp,tDmpp,
1 Dm(NCMMAX),Dmp(NCMMAX),Dmpp(NCMMAX)
ccc DATA IDATLAST/999999999/
ccc SAVE IDATLAST,REP,AREF,AREFp,AREFq
c***********************************************************************
c** Initializing variables on first entry for each cycle.
ccc IF(IDAT.LE.IDATLAST) THEN
ccc IDATLAST= IDAT
ccc put much of the initialization stuff here to be done once per cycle
DATA bohr/0.52917721092d0/ !! 2010 physical constants d:mohr12
REp= RE(ISTATE)**pPOT(ISTATE)
REq= RE(ISTATE)**qPOT(ISTATE)
AREFpp= RREFp(ISTATE)**pPOT(ISTATE)
AREFqq= RREFq(ISTATE)**qPOT(ISTATE)
IF(RREFq(ISTATE).LE.0) AREFqq= REq
IF(RREFp(ISTATE).LE.0) AREFpp= AREFqq
c** Normally data point starts from 1
ISTART= 1
ISTOP= 8
c** When calculating only one potential point
VDIST= 0.0d0
PBTEMP= 0.0d0
PETEMP= 0.0d0
DO I= ISTART,ISTOP
BETAFX(I,ISTATE)= 0.0d0
UAR(I,ISTATE)= 0.d0
UBR(I,ISTATE)= 0.d0
TAR(I,ISTATE)= 0.d0
TBR(I,ISTATE)= 0.d0
UAR(I,ISTATE)= 0.d0
WRAD(I,ISTATE)= 0.d0
ENDDO
IF((PSEL(ISTATE).GE.2).AND.(rhoAB(ISTATE).GT.0.d0)) THEN
c ... save uLR powers in a 1D array for calls to SUBROUTINE dampF
DO m= 1, NCMM(ISTATE)
MMLR1D(m)= MMLR(m,ISTATE)
ENDDO
ENDIF
c** Initialize parameter counter for this state ...
IPVSTART= POTPARI(ISTATE) - 1
c=======================================================================
c First ... for the case of an MLR potential ...
c-----------------------------------------------------------------------
IF(PSEL(ISTATE).EQ.2) THEN
c** First - define values & derivatives of uLR at Re for MLR potential
ULRe= 0.d0
T1= 0.d0
IF(rhoAB(ISTATE).GT.0.d0) THEN
CALL dampF(RE(ISTATE),rhoAB(ISTATE),NCMM(ISTATE),NCMMAX,
1 MMLR1D,IVSR(ISTATE),IDSTT(ISTATE),Dm,Dmp,Dmpp)
ENDIF
DO m= 1,NCMM(ISTATE)
dLULRedCm(m)= 1.d0/RE(ISTATE)**MMLR(m,ISTATE)
IF(rhoAB(ISTATE).GT.0.d0) dLULRedCm(m)= Dm(m)*dLULRedCm(m)
T0= CmVAL(m,ISTATE)*dLULRedCm(m)
ULRe= ULRe + T0
T1= T1 + MMLR(m,ISTATE)*T0
ENDDO
dLULRedRe= -T1/(ULRe*RE(ISTATE))
DO m= 1,NCMM(ISTATE)
dLULRedCm(m)= dLULRedCm(m)/ULRe
IF(rhoAB(ISTATE).GT.0) THEN
dLULRedRe= dLULRedRe + dLULRedCm(m)*Dmp(m)/Dm(m)
ENDIF
ENDDO
BINF= DLOG(2.0d0*DE(ISTATE)/ULRe)
betaINF(ISTATE)= BINF
DO I= ISTART,ISTOP
RVAL(I)= RDIST(I)
RINV= 1.d0/RVAL(I)
RDp= RVAL(I)**pPOT(ISTATE)
RDq= RVAL(I)**qPOT(ISTATE)
YPE= (RDp-REP)/(RDp+REP)
YP= (RDp-AREFpp)/(RDp+AREFpp)
YQ= (RDq-AREFqq)/(RDq+AREFqq)
YPM= 1.d0 - YP
DYPDRE= -0.5d0*pPOT(ISTATE)*(1.d0 - YP**2)/RE(ISTATE)
DYQDRE= -0.5d0*qPOT(ISTATE)*(1.d0 - YQ**2)/RE(ISTATE)
DYPEDRE= -0.5d0*pPOT(ISTATE)*(1.d0 - YPE**2)/RE(ISTATE)
DYPDR= -DYPDRE*RE(ISTATE)*RINV
DYPEDR= 0.5d0*pPOT(ISTATE)*RINV*(1.d0 - YPE**2)
DYQDR= -DYQDRE*RE(ISTATE)*RINV
D2YPDR= -DYPDR*RINV*(1.d0 + pPOT(ISTATE)*YP)
D2YPEDR= -DYPEDR*RINV*(1.d0 + pPOT(ISTATE)*YPE)
D2YQDR= -DYQDR*RINV*(1.d0 + qPOT(ISTATE)*YQ)
DYPpDRE= -pPOT(ISTATE)*YP*RINV*DYPDRE
DYPEpDRE= -pPOT(ISTATE)*YPE*RINV*DYPEDRE
DYQpDRE= -qPOT(ISTATE)*YQ*RINV*DYQDRE
D2VAL= 0.d0
YPP= 1.d0
DVAL= 0.d0
DBDB(0,I,ISTATE)= 1.0d0
VAL= BETA(0,ISTATE) + YQ*BETA(1,ISTATE)
DVAL= BETA(1,ISTATE)
npow= Nbeta(ISTATE)
c-------------------------------------------------------------------
DO J= 2,npow
c... now calculate power series part of the Morse-like exponent,along
c with its radial derivatives
D2VAL= D2VAL + BETA(J,ISTATE)* DBLE(J)
1 *DBLE(J - 1) *YPP
YPP= YPP*YQ
DVAL= DVAL + BETA(J,ISTATE)* DBLE(J)* YPP
YPPP= YPP* YQ
VAL= VAL + BETA(J,ISTATE)*YPPP
DBDB(J,I,ISTATE)= YPM*YPPP
ENDDO
YPP= YPPP
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
c*** DBDB & DBDRe= dBeta/dRe used in uncertainty calculation in fununc.f
DBDRe(I,ISTATE)= -YP*dLULRedRe
dVALdRe= DBDRe(I,ISTATE) + (BINF - VAL)*DYPDRE
1 + (1.d0 - YP)*DVAL*DYQDRE
IF(RREFq(ISTATE).LE.0.d0) DBDRe(I,ISTATE)= dVALdRe
c-----------------------------------------------------------------------
c... now the power series and its radial derivatives are used in the
c construction of the derivatives with respect to the parameters
dBpdRe= DYPpDRE*(BINF - VAL) - DYPDR*dLULRedRe
1 + (-DYPDR*DYQDRE + (1.d0 - YP)*DYQpDRE - DYPDRE*DYQDR)*DVAL
2 + (1.d0 - YP)*DYQDR*DYQDRE*D2VAL
D2VAL= (BINF - VAL)*D2YPDR - 2.d0*DYPDR*DYQDR*DVAL
1 + (1.d0- YP)*(D2YQDR*DVAL + DYQDR**2*D2VAL)
DVAL= (BINF - VAL)*DYPDR + (1.d0- YP)*DYQDR*DVAL
VAL= YP*BINF + (1.d0- YP)*VAL
dBdR= dYPEdR*VAL + YPE*DVAL
d2BdR= d2YPEdR*VAL + 2.d0*dYPEdR*DVAL + YPE*D2VAL
dYBdRe= DYPEDRE*VAL + YPE*dVALdRe
dYBpdRe= VAL*DYPEpDRE + DYPEDRE*DVAL + DYPEDR*dVALdRe
1 + YPE*dBpdRe
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BETAFX(I,ISTATE)= VAL
XTEMP= DEXP(-VAL*YPE)
c** Now begin by generating uLR(r)
ULR= 0.d0
c-------------------------------------------------------------------
dULRdR= 0.d0
d2ULRdR= 0.d0
dULRdRCm= 0.d0
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IF(rhoAB(ISTATE).GT.0.d0) THEN
CALL dampF(RVAL(I),rhoAB(ISTATE),NCMM(ISTATE),NCMMAX,
1 MMLR1D,IVSR(ISTATE),IDSTT(ISTATE),Dm,Dmp,Dmpp)
ENDIF
DO m= 1,NCMM(ISTATE)
IF(rhoAB(ISTATE).LE.0.d0) THEN
c-----------------------------------------------------------------------
dULRdCm(m)= 1.d0*RINV**MMLR(m,ISTATE)
dULRdRCm(m)= -dULRdCm(m)*RINV*DBLE(MMLR(m,ISTATE))
dDULRdR= 0.d0
d2DULRdR= 0.d0
ELSE
dULRdCm(m)= Dm(m)*RINV**MMLR(m,ISTATE)
dULRdRCm(m)= -dULRdCm(m)*RINV*DBLE(MMLR(m,ISTATE))
2 + Dmp(m)*RINV**MMLR(m,ISTATE)
dDULRdR= Dmp(m)*RINV**MMLR(m,ISTATE)
d2DULRdR= Dmpp(m)*RINV**MMLR(m,ISTATE)
ENDIF
ULR= ULR + CmVAL(m,ISTATE)*dULRdCm(m)
dULRdR= dULRdR + CmVAL(m,ISTATE)*(dDULRdR
1 - dULRdCm(m)*RINV*DBLE(MMLR(m,ISTATE)))
d2ULRdR= d2ULRdR + CmVAL(m,ISTATE)*(d2DULRdR
1 - 2.d0*dDULRdR*RINV*DBLE(MMLR(m,ISTATE)) + dULRdCm(m)*RINV**2
2 *DBLE(MMLR(m,ISTATE))*DBLE((MMLR(m,ISTATE) + 1)))
ENDDO
dLULRdR= dULRdR/ULR
DO m= 1,NCMM(ISTATE)
dLULRdCm(m)= dULRdCm(m)/ULR
ENDDO
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
XTEMP= XTEMP*ULR/ULRe
c... note ... reference energy for each state is asymptote ...
DVDD= XTEMP*(XTEMP - 2.D0)
c--- VPOT(I,ISTATE)= DE(ISTATE)*DVDD + VLIM(ISTATE)
c--- VDIST(I)= VPOT(I,ISTATE)
VDIST(I)= DE(ISTATE)*DVDD + VLIM(ISTATE)
c BETADIST= VAL
IF(IDAT.LE.0) GO TO 999
c- ENDDO
YPP= 2.d0*DE(ISTATE)*(1.0d0-XTEMP)*XTEMP
IPV= IPVSTART+2
c... derivatives w.r.t R
DXTEMP= XTEMP*(dLULRdR - dBdR)
D2XTEMP= XTEMP*(dBdR**2 - d2BdR + (d2ULRdR
1 - 2*dBdR*dULRdR)/ULR)
dVdR(I)= 2.d0*DE(ISTATE)*DXTEMP*(XTEMP - 1.d0)
d2VdR2(I)= 2.d0*DE(ISTATE)*(DXTEMP**2 + D2XTEMP
1 *(XTEMP - 1.d0))
c *** This is just to write the derivatives for testing
c IF(RDIST.LT.0) WRITE (40,640) (RVAL,VVAL,dVdR,d2VdR2,
c 1 YVAL)
c 640 FORMAT(G12.5, G18.10, G18.10, G18.10, G14.7)
c ... derivative w.r.t. Cm's
DO m= 1, NCMM(ISTATE)
IPV= IPV+ 1
dXdP(IPV)= XTEMP*(dLULRdCm(m) + (YPE*YP - 1.d0)
1 *dLULRedCm(m))
dXpdP(IPV)= DEXP(-VAL*YPE)/ULRe*(dULRdRCm(m)
1 - dBdR*dULRdCm(m)) + (DXTEMP*(YPE*YP - 1.d0)
2 + XTEMP*(dYPEdR*YP + YPE*dYPdR))*dLULRedCm(m)
dVpdP(IPV,I)= 2.d0*DE(ISTATE)*(dXdP(IPV)*DXTEMP
1 + (XTEMP - 1.d0)*dXpdP(IPV))
DVtot(IPV,I)= -YPP*(dLULRedCm(m)*(YP*YPE- 1.d0)
1 + dULRdCm(m)/ULR)
ENDDO
c... derivative w.r.t. Re
dXdP(IPVSTART+2)= -XTEMP*(dYBdRe + dLULRedRe)
dXpdP(IPVSTART+2)= -DXTEMP*(dYBdRe + dLULRedRe)
1 - XTEMP*dYBpdRe
dVpdP(IPVSTART+2,I)= 2.d0*DE(ISTATE)*(dXdP(IPVSTART+2)
1 *DXTEMP + (XTEMP - 1.d0)*dXpdP(IPVSTART+2))
DVtot(IPVSTART+2,I)= YPP*(dYBdRe + dLULRedRe)
c... derivative w.r.t. De
dXdP(IPVSTART+1)= -XTEMP*YPE*YP
dXpdP(IPVSTART+1)= -(XTEMP*(YPE*DYPDR + DYPEDR*YP)
1 + YPE*YP*DXTEMP)
DVDD= DVDD + YPP*YP*YPE/DE(ISTATE)
YPP= YPP*YPE*(1.d0 - YP)
dVpdP(IPVSTART+1,I)= 2.d0*(dXdP(IPVSTART+1)*DXTEMP
1 + (XTEMP - 1.d0)*dXpdP(IPVSTART+1))
2 + 2.d0*(XTEMP - 1.d0)*DXTEMP
DVtot(IPVSTART+1,I)= DVDD
c... finally ... derivatives w.r.t. exponent expansion coefficients
DO J= 0,npow
IPV= IPV+1
dXdP(IPV)= XTEMP*YPE*(1.d0 - YP)*YQ**J
dXpdP(IPV)= (XTEMP*((1.d0 - YP)*DYPEDR - DYPDR*YQ)
1 + YPE*(1.d0 - YP)*DXTEMP)*YQ**J + XTEMP*J*(YPE
2 *(1.d0 - YP))*YQ**(J - 1)
dVpdP(IPV,I)= 2.d0*DE(ISTATE)*(dXdP(IPV)*DXTEMP
1 + (XTEMP - 1.d0)*dXpdP(IPV))
DVtot(IPV,I)= YPP
YPP= YPP*YQ
ENDDO
ENDDO
ENDIF
c-----------Finished calculations for MLR potential
C======================================================================
c For the Tang Toennies potential
c----------------------------------------------------------------------
IF(PSEL(ISTATE).EQ.6) THEN
rhoINT= rhoAB(ISTATE)/3.13d0 !! remove btt(IVSR(ISTATE)/2)
DO I= 1,8
VATT= 0.d0
dVATT= 0.d0
d2VATT= 0.d0
r= RDIST(I)
IF(rhoAB(ISTATE).GT.0.d0) THEN
CALL dampF(r,rhoINT,NCMM(ISTATE),NCMMAX,
1 MMLR1D,IVSR(ISTATE),IDSTT(ISTATE),Dm,Dmp,Dmpp)
DO m= 1,NCMM(ISTATE)
T0= CMval(m,ISTATE)/r**MMLR1D(m)
VATT= VATT + T0*Dm(m)
dVATT= dVATT + T0*(Dmp(m) - Dm(m)*MMLR1D(m)/r)
d2VATT= d2VATT + T0*(Dmpp(m) - MMLR1D(m)*(2.d0*
1 Dmp(m)- Dm(m)*(MMLR1D(m)+1)/r)/r)
ENDDO
ELSE
DO m= 1,NCMM(ISTATE)
T0= CMval(m,ISTATE)/r**MMLR1D(m)
VATT= VATT + T0
dVATT= dVATT + T0*MMLR1D(m)/r
d2VATT= d2VATT + T0*MMLR1D(m)*(MMLR1D(m)+1)/r**2
ENDDO
ENDIF
T0= r*(BETA(1,ISTATE) + r*BETA(2,ISTATE))
1 + (BETA(3,ISTATE) + BETA(4,ISTATE)/r)/r
T1= BETA(1,ISTATE) + 2.d0*r*BETA(2,ISTATE)
1 - (BETA(3,ISTATE) + 2.d0*BETA(4,ISTATE)/r)/r**2
T2= 2*BETA(2,ISTATE) + (2.d0*BETA(3,ISTATE)
1 + 6.d0*BETA(4,ISTATE)/r)/r**3
A0= BETA(5,ISTATE) + r*(BETA(6,ISTATE)
1 + r*(BETA(8,ISTATE) + r*BETA(9,ISTATE)))
2 + BETA(7,ISTATE)/r
A1= BETA(6,ISTATE) + r*(2.d0*BETA(8,ISTATE)
1 + 3.d0*r*BETA(9,ISTATE)) - BETA(7,ISTATE)/r**2
A2= 2.d0*BETA(8,ISTATE)+ 6.d0*r*BETA(9,ISTATE)
1 + 2.d0*BETA(7,ISTATE)/r**3
DX= A0*EXP(-T0)
VDIST(I)= DX - VATT
dVdr(I)= DX*(A1/A0 - T1) - dVATT
d2VdR2(I)= DX*((A2- 2.d0*T1*A1)/A0+ T1**2- T2) - d2VATT
ENDDO
ENDIF
c=======================================================================
c ....... for the case of an Aziz'ian HFD-ABC potential ...
c-----------------------------------------------------------------------
IF((PSEL(ISTATE).EQ.7).AND.(Nbeta(ISTATE).EQ.5)) THEN
A1= BETA(1,ISTATE)
A2= BETA(2,ISTATE)
A3= BETA(3,ISTATE)
DO I= 1,8
r= RDIST(I)
X= RDIST(I)/RE(ISTATE)
VATT= 0.d0
dVATT= 0.d0
d2VATT= 0.d0
T1= 1.d0
T1P= 0.d0
T1PP= 0.d0
IF(r.LT.A2) THEN
T1= EXP(-A1*(A2/r - 1.d0)**A3)
T1P= (A1*A2*A3/(r**2))*((A2/r)-1.d0)**(A3-1.d0)
T1PP= T1P*T1P - (A1*A2*A3/r**3)*(A2*(A3-1.d0)/r)
1 *((A2/r)-1.d0)**(A3-2.d0) - 2.d0*((A2/r)-1.d0)**(A3-1.d0)
T1P= T1*T1P
T1PP= T1*T1PP
ENDIF
DO M= 1,NCMM(ISTATE)
T0= (CmVAL(m,ISTATE)/r**MMLR(m,ISTATE))
VATT= VATT+ T0*T1
dVATT= dVATT+ (T1P-MMLR(m,ISTATE)*T1/r)*T0
d2VATT= d2VATT + (T1PP-2.d0*(T1P*MMLR(m,ISTATE)/r) +
1 T1*((MMLR(m,ISTATE)**2)+MMLR(m,ISTATE))/(r**2))*T0
ENDDO
DX= AA(ISTATE)*(X**BETA(5,ISTATE))*EXP(-r*(BB(ISTATE)
1 + r*BETA(4,ISTATE)))
VDIST(I)= DX - VATT
T0= BETA(5,ISTATE)/r - BB(ISTATE)- 2.d0*r*BETA(4,ISTATE)
dVdR(I)= DX*T0 - DVATT
d2VdR2(I)= DX*(T0**2 - BETA(5,ISTATE)/r**2
1 - 2.d0*BETA(4,ISTATE)) - d2VATT
ENDDO
ENDIF
c=======================================================================
c... Finally ...For the case of an Aziz'ian HFD-ID potential ...
C-----------------------------------------------------------------------
IF((PSEL(ISTATE).EQ.7).AND.(Nbeta(ISTATE).EQ.2)) THEN
A1= BETA(1,ISTATE)
A2= BETA(2,ISTATE)
DO I= ISTART,ISTOP
r= RDIST(I)
CALL dampF(r,rhoAB(ISTATE),NCMM(ISTATE),NCMMAX,MMLR1D,
1 IVSR(ISTATE),IDSTT(ISTATE),DM,DMP,DMPP)
X= r/RE(ISTATE)
BR= RHOab(ISTATE)*r
VATT= 0.d0
dVATT= 0.d0
D2VATT= 0.d0
f2= (BR/bohr)**1.68d0 *EXP(-0.78d0*BR/bohr)
f2p= 1.68d0/r - 0.78d0*RHOab(ISTATE)/bohr
f2pp= - f2*(f2p**2 - 1.68d0/(r**2))
f2p= -f2*f2p
f2= 1.d0 - f2
VATT= 0.d0
dVATT= 0.d0
d2VATT= 0.d0
DO m= 1,NCMM(ISTATE)
T0= CmVAL(m,ISTATE)/r**MMLR1D(m)
VATT= VATT+ T0*DM(m)
dVATT= dVATT+ T0*(f2p*DM(m)+ f2*(DMP(m) -
1 DM(m)*(MMLR1D(m)/r)))
d2VATT= d2VATT + T0*(f2pp*DM(m)+ f2*DMPP(m) +
1 2.d0*f2p*DMP(m) - 2.d0*(f2p*DM(m) + f2*DMP(m)*(MMLR1D(m)/r))
2 + f2*DM(m)*MMLR1D(m)*(MMLR1D(m)+ 1.d0)/r**2)
ENDDO
DX= AA(ISTATE)*(X**A2)*EXP(-r*(BB(ISTATE) + r*A1))
VDIST(I)= DX - f2*VATT
T0= A2/r - BB(ISTATE) - 2.d0*r*A1
dVdR(I)= DX*T0 - dVATT
d2VdR2(I)= DX*(T0**2 - A2/r**2 - 2.d0*A1) - d2VATT
ENDDO
ENDIF
IF((NUA(ISTATE).GE.0).OR.(NUB(ISTATE).GT.0)) THEN
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c** Treat any 'adiabatic' BOB radial potential functions here ...
c u_A(r) = yp*uA_\infty + [1 - yp]\sum_{i=0,NUA} {uA_i yq^i}
c where the u_\infty values stored/fitted as UA(NUA(ISTATE))
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
REp= RE(ISTATE)**pAD(ISTATE)
REq= RE(ISTATE)**qAD(ISTATE)
HReP= 0.5d0*pAD(ISTATE)/RE(ISTATE)
HReQ= 0.5d0*qAD(ISTATE)/RE(ISTATE)
REpADA= RE(ISTATE)**pAD(ISTATE)
REqADA= RE(ISTATE)**qAD(ISTATE)
REpADB= RE(ISTATE)**pAD(ISTATE)
REqADB= RE(ISTATE)**qAD(ISTATE)
IF((BOBCN(ISTATE).GE.1).AND.(pAD(ISTATE).EQ.0)) THEN
HReP= 2.d0*HReP
HReQ= 2.d0*HReQ
ENDIF
c ... reset parameter counter ...
IPVSTART= IPV
DO I= ISTART,ISTOP
RVAL(I)= RD(I,ISTATE)
IF(RDIST(I).GT.0.d0) RVAL(I)= RDIST(I)
RDp= RVAL(I)**pAD(ISTATE)
RDq= RVAL(I)**qAD(ISTATE)
YPA= (RDp - REpADA)/(RDp + REpADA)
YQA= (RDq - REqADA)/(RDq + REqADA)
YPB= (RDp - REpADB)/(RDp + REpADB)
YQB= (RDq - REqADB)/(RDq + REqADB)
YPMA= 1.d0 - YPA
YPMB= 1.d0 - YPB
IF(BOBCN(ISTATE).GE.1) THEN
c** If BOBCN > 0 & p= 1, assume use of Ogilvie-Tipping vble.
IF(pAD(ISTATE).EQ.1) THEN
YPA= 2.d0*YPA
YPB= 2.d0*YPB
ENDIF
ENDIF
IF(NUA(ISTATE).GE.0) THEN
c ... Now ... derivatives of UA w.r.t. expansion coefficients
VAL= UA(0,ISTATE)
DVAL= 0.d0
IPV= IPVSTART + 1
DVtot(IPV,I)= YPMA
YQPA= 1.d0
IF(NUA(ISTATE).GE.2) THEN
DO J= 1,NUA(ISTATE)-1
DVAL= DVAL+ DBLE(J)*YQPA*UA(J,ISTATE)
YQPA= YQPA*YQA
VAL= VAL+ UA(J,ISTATE)*YQPA
IPV= IPV+ 1
DVtot(IPV,I)= YPMA*YQPA
ENDDO
ENDIF
IPV= IPV + 1
DVtot(IPV,I)= YPA
UAR(I,ISTATE)= VAL*YPMA + YPA*UA(NUA(ISTATE),ISTATE)
DUADRe(I,ISTATE)= 0.d0
c ... and derivative of UA w.r.t. Re ...
DUADRe(I,ISTATE)= -HReQ*(1.d0 - YQA**2)*YPMA*DVAL
1 + HReP*(1.d0 - YPA**2)*(VAL- UA(NUA(ISTATE),ISTATE))
ENDIF
IF(NUB(ISTATE).GE.0) THEN
c ... Now ... derivatives of UB w.r.t. expansion coefficients
VAL= UB(0,ISTATE)
DVAL= 0.d0
IF(NUA(ISTATE).LT.0) THEN
IPV= IPVSTART + 1
ELSE
IPV= IPV + 1
ENDIF
DVtot(IPV,I)= YPMB
YQPB= 1.d0
IF(NUB(ISTATE).GE.2) THEN
DO J= 1,NUB(ISTATE)-1
DVAL= DVAL+ DBLE(J)*YQPB*UB(J,ISTATE)
YQPB= YQPB*YQB
VAL= VAL+ UB(J,ISTATE)*YQPB
IPV= IPV + 1
DVtot(IPV,I)= YPMB*YQPB
ENDDO
ENDIF
IPV= IPV + 1
DVtot(IPV,I)= YPB
UBR(I,ISTATE)= VAL*YPMB + YPB*UB(NUB(ISTATE),ISTATE)
DUBDRe(I,ISTATE)= 0.d0
c ... and derivative of UB w.r.t. Re ...
DUBDRe(I,ISTATE)= -HReQ*(1.d0 - YQB**2)*YPMB*DVAL
1 + HReP*(1.d0 - YPB**2)*(VAL- UB(NUB(ISTATE),ISTATE))
ENDIF
ENDDO
ENDIF
c++++ END of treatment of adiabatic potential BOB function++++++++++++++
IF((NTA(ISTATE).GE.0).OR.(NTB(ISTATE).GE.0)) THEN
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c** Treat any 'non-adiabatic' centrifugal BOB functions here ...
c q_A(r) = yp*qA_\infty + [1 - yp]\sum_{i=0,NTA} {qA_i yq^i}
c where the q_\infty values stored/fitted as TA(NTA(ISTATE))
c Incorporate the 1/r^2 factor into the partial derivatives (but not in
c the g(r) functions themselves, since pre-SCHRQ takes care of that).
c Need to add M_A^{(1)}/M_A^{(\alpha)} factor later too
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
REp= RE(ISTATE)**pNA(ISTATE)
REq= RE(ISTATE)**qNA(ISTATE)
HReP= 0.5d0*pNA(ISTATE)/RE(ISTATE)
HReQ= 0.5d0*qNA(ISTATE)/RE(ISTATE)
IF((BOBCN(ISTATE).GE.1).AND.(pNA(ISTATE).EQ.0)) THEN
HReP= 2.d0*HReP
HReQ= 2.d0*HReQ
ENDIF
IPVSTART= IPV
DO I= ISTART,ISTOP
RVAL(I)= RD(I,ISTATE)
IF(RDIST(I).GT.0.d0) RVAL(I)= RDIST(I)
RM2= 1/RVAL(I)**2
RDp= RVAL(I)**pNA(ISTATE)
RDq= RVAL(I)**qNA(ISTATE)
YP= (RDp - REp)/(RDp + REp)
YQ= (RDq - REq)/(RDq + REq)
YPM= 1.d0 - YP
IF(BOBCN(ISTATE).GE.1) THEN
YPM= 1.d0
YP= 2.d0*YP
ENDIF
IF(NTA(ISTATE).GE.0) THEN
c ... Now ... derivatives of TA w,r,t, expansion coefficients
VAL= TA(0,ISTATE)
DVAL= 0.d0
IPV= IPVSTART + 1
DVtot(IPV,I)= YPM*RM2
YQP= 1.d0
IF(NTA(ISTATE).GE.2) THEN
DO J= 1,NTA(ISTATE)-1
DVAL= DVAL+ DBLE(J)*YQP*TA(J,ISTATE)
YQP= YQP*YQ
VAL= VAL+ TA(J,ISTATE)*YQP
IPV= IPV + 1
DVtot(IPV,I)= YPM*YQP*RM2
ENDDO
ENDIF
IPV= IPV + 1
DVtot(IPV,I)= YP*RM2
TAR(I,ISTATE)= VAL*YPM + YP*TA(NTA(ISTATE),ISTATE)
c ... and derivative of TA w.r.t. Re ...
DTADRe(I,ISTATE)= (-HReQ*(1.d0 - YQ**2)*YPM*DVAL
1 + HReP*(1.d0 - YP**2)*(VAL- TA(NTA(ISTATE),ISTATE)))*RM2
ENDIF
IF(NTB(ISTATE).GE.0) THEN
c ... Now ... derivatives of TB w,r,t, expansion coefficients
VAL= TB(0,ISTATE)
DVAL= 0.d0
IF(NTA(ISTATE).LT.0) THEN
IPV= IPVSTART + 1
ELSE
IPV= IPV + 1
ENDIF
DVtot(IPV,I)= YPM*RM2
YQP= 1.d0
IF(NTB(ISTATE).GE.2) THEN
DO J= 1,NTB(ISTATE)-1
DVAL= DVAL+ DBLE(J)*YQP*TB(J,ISTATE)
YQP= YQP*YQ
VAL= VAL+ TB(J,ISTATE)*YQP
IPV= IPV + 1
DVtot(IPV,I)= YPM*YQP*RM2
ENDDO
ENDIF
IPV= IPV + 1
DVtot(IPV,I)= YP*RM2
TBR(I,ISTATE)= VAL*YPM + YP*TB(NTB(ISTATE),ISTATE)
c ... and derivative of TB w.r.t. Re ...
DTBDRe(I,ISTATE)= (-HReQ*(1.d0 - YQ**2)*YPM*DVAL
1 + HReP*(1.d0 - YP**2)*(VAL- TB(NTB(ISTATE),ISTATE)))*RM2
ENDIF
ENDDO
ENDIF
c++++ END of treatment of non-adiabatic centrifugal BOB function++++++++
IF(NwCFT(ISTATE).GE.0) THEN
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c** Treat any Lambda- or 2\Sigma-doubling radial strength functions here
c representing it as f(r)= Sum{ w_i * yp^i}
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
LAMB2= 2*IOMEG(ISTATE)
REP= RE(ISTATE)**Pqw(ISTATE)
HReP= 0.5d0*Pqw(ISTATE)/RE(ISTATE)
IPVSTART= IPV
DO I= ISTART,ISTOP
RVAL(I)= RD(I,ISTATE)
IF(RDIST(I).GT.0.d0) RVAL(I)= RDIST(I)
RMF= 1.d0/RVAL(I)**2
IF(IOMEG(ISTATE).GT.0) RMF= RMF**LAMB2
RDp= RVAL(I)**Pqw(ISTATE)
YP= (RDp - REP)/(RDp + REP)
DVAL= 0.d0
YPP= RMF
VAL= wCFT(0,ISTATE)*YPP
IPV= IPVSTART + 1
DVtot(IPV,I)= YPP
IF(NwCFT(ISTATE).GE.1) THEN
DO J= 1,NwCFT(ISTATE)
DVAL= DVAL+ DBLE(J)*YPP*wCFT(J,ISTATE)
YPP= YPP*YP
IPV= IPV + 1
DVtot(IPV,I)= YPP
VAL= VAL+ wCFT(J,ISTATE)*YPP
ENDDO
ENDIF
wRAD(I,ISTATE)= VAL
dLDDRe(I,NSTATEMX)= -HReP*(1.d0 - YP**2)*DVAL
ENDDO
ENDIF
c++++ END of treatment of Lambda/2-sigma centrifugal BOB function+++++++
c++++ Test for inner wall inflection above the asymptote, and if it ++++
c++++ occurs, replace inward potential with linear approximation +++++++
cc I1= (RE(ISTATE)-RD(1,ISTATE))/(RD(2,ISTATE)-RD(1,ISTATE))
cc IF(I1.GT.3) THEN
cc SL= 0.d0
cc DO I= I1-2, 1, -1
cc SLB= SL
cc SL= VPOT(I,ISTATE) - VPOT(I+1,ISTATE)
cc IF((SL.LE.SLB).AND.(VPOT(I,ISTATE).GT.VLIM(ISTATE))) THEN
cc DO J= I,1,-1
cc VPOT(J,ISTATE)= VPOT(I,ISTATE) + (I-J)*SL
cc ENDDO
cc WRITE(6,606) SLABL(ISTATE),RD(I,ISTATE),VPOT(I,ISTATE)
cc GOTO 66
cc ENDIF
cc ENDDO
cc ENDIF
cc 66 CONTINUE
cc606 FORMAT(9('===')/'!!!! Extrapolate to correct ',A3,' inner-wall inf
cc 1lection at R=',f6.4,' V=',f8.0/9('==='))
c++++++++++++End of Inner Wall Test/Correction code+++++++++++++++++++++
c======================================================================
c** At the one distance RDIST calculate total effective potential VDIST
c including (!!) centrifugal and Lambda/2Sigma doubling terms,
c and its partial derivatives w.r.t. Hamiltonian parameters dVdPk.
c** This case only for simulation & fitting of tunneling width data.
c
DO I= 1,8
IF((RDIST(I).GT.0).AND.(IDAT.GT.0)) THEN
NBAND= IB(IDAT)
IISTP= ISTP(NBAND)
cccccccc
c WRITE (40,644) IISTP,RDIST,RVAL,VDIST,I,NDATPT(ISTATE)
c 644 FORMAT ('IISTP =',I3,' RDIST =',G16.8,' RVAL =',G16.8,
c & ' VDIST =',G16.8,' I =',I6,' NDATPT =',I6)
cccccccc
BFCT= 16.857629206d0/(ZMASS(3,IISTP)*RDIST(I)**2)
JFCT= DBLE(JPP(IDAT)*(JPP(IDAT)+1))
IF(IOMEG(ISTATE).GT.0) JFCT= JFCT - IOMEG(ISTATE)**2
IF(IOMEG(ISTATE).EQ.-2) JFCT= JFCT + 2.D0 !! ?? for Li2(A,c)???
JFCT= JFCT*BFCT
c ... First get total effective potential, including BOB terms
VDIST(I)= VDIST(I) + JFCT
IF(NUA(ISTATE).GE.0) VDIST= VDIST
1 + ZMUA(IISTP,ISTATE)*UAR(ISTOP,ISTATE)
IF(NUB(ISTATE).GE.0) VDIST= VDIST
1 + ZMUB(IISTP,ISTATE)*UBR(ISTOP,ISTATE)
IF(NTA(ISTATE).GE.0) VDIST= VDIST
1 + JFCT*ZMTA(IISTP,ISTATE)*TAR(ISTOP,ISTATE)
IF(NTB(ISTATE).GE.0) VDIST= VDIST
1 + JFCT*ZMTB(IISTP,ISTATE)*TBR(ISTOP,ISTATE)
JFCTLD= 0.d0
IF(IOMEG(ISTATE).NE.0) THEN
IF(IOMEG(ISTATE).GT.0) THEN
c ... for Lambda doubling case ...
JFCTLD= (EFPP(IDAT)-EFREF(ISTATE))
1 *(DBLE(JPP(IDAT)*(JPP(IDAT)+1))*BFCT**2)**IOMEG(ISTATE)
ENDIF
IF(IOMEG(ISTATE).EQ.-1) THEN
c ... for doublet Sigma doubling case ...
IF(EFPP(IDAT).GT.0) JFCTLD= 0.5d0*JPP(IDAT)*BFCT
IF(EFPP(IDAT).EQ.0) JFCTLD= 0.d0
IF(EFPP(IDAT).LT.0) JFCTLD= -0.5d0*(JPP(IDAT)+1)*BFCT
ENDIF
VDIST(I)= VDIST(I) + JFCTLD* WRAD(ISTOP,ISTATE)
ENDIF
cccccccc
c WRITE (40,648) JPP(IDAT),EFPP(IDAT),RDIST,VDIST
c 648 FORMAT ('J =',I3,' efPARITY =',I3,' RDIST =',G16.8,' VDIST =',
c 1 G16.8/)
cccccccc
DO IPV= 1,TOTPOTPAR
dVdPk(IPV)= 0.d0
ENDDO
c** Now ... generate requisite partial derivatives.
DO IPV= POTPARI(ISTATE),POTPARF(ISTATE)
dVdPk(IPV)= DVtot(IPV,ISTOP)
ENDDO
IF(NUA(ISTATE).GE.0) THEN
DO IPV= UAPARI(ISTATE),UAPARF(ISTATE)
dVdPk(IPV)= ZMUA(IISTP,ISTATE)*DVtot(IPV,ISTOP)
ENDDO
ENDIF
IF(NUB(ISTATE).GE.0) THEN
DO IPV= UBPARI(ISTATE),UBPARF(ISTATE)
dVdPk(IPV)= ZMUB(IISTP,ISTATE)*DVtot(IPV,ISTOP)
ENDDO
ENDIF
IF(NTA(ISTATE).GE.0) THEN
DO IPV= TAPARI(ISTATE),TAPARF(ISTATE)
dVdPk(IPV)=JFCT*ZMTA(IISTP,ISTATE)*DVtot(IPV,ISTOP)
ENDDO
ENDIF
IF(NTB(ISTATE).GE.0) THEN
DO IPV= TBPARI(ISTATE),TBPARF(ISTATE)
dVdPk(IPV)=JFCT*ZMTB(IISTP,ISTATE)*DVtot(IPV,ISTOP)
ENDDO
ENDIF
IF(NwCFT(ISTATE).GE.0) THEN
DO IPV= LDPARI(ISTATE),LDPARF(ISTATE)
dVdPk(IPV)= JFCTLD*DVtot(IPV,ISTOP)
ENDDO
ENDIF
ENDIF
ENDDO
c*****7********************** BLOCK END ******************************72
999 RETURN
END
c23456789 123456789 123456789 123456789 123456789 123456789 123456789 12