|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "code", |
5 | | - "execution_count": 12, |
| 5 | + "execution_count": null, |
6 | 6 | "id": "c8d57e80-9075-4d63-bc36-f9aaad08ea2f", |
7 | 7 | "metadata": {}, |
8 | 8 | "outputs": [], |
|
12 | 12 | }, |
13 | 13 | { |
14 | 14 | "cell_type": "code", |
15 | | - "execution_count": 13, |
| 15 | + "execution_count": null, |
16 | 16 | "id": "90fa4efb-f9d5-40fb-8e4a-5e3ed1094740", |
17 | 17 | "metadata": {}, |
18 | | - "outputs": [ |
19 | | - { |
20 | | - "data": { |
21 | | - "text/plain": [ |
22 | | - "'3.7.0'" |
23 | | - ] |
24 | | - }, |
25 | | - "execution_count": 13, |
26 | | - "metadata": {}, |
27 | | - "output_type": "execute_result" |
28 | | - } |
29 | | - ], |
| 18 | + "outputs": [], |
30 | 19 | "source": [ |
31 | 20 | "keras.__version__" |
32 | 21 | ] |
33 | 22 | }, |
34 | 23 | { |
35 | 24 | "cell_type": "code", |
36 | | - "execution_count": 14, |
| 25 | + "execution_count": null, |
37 | 26 | "id": "5d98d000-661e-4495-bef0-49c5eb180aff", |
38 | 27 | "metadata": {}, |
39 | 28 | "outputs": [], |
40 | 29 | "source": [ |
41 | 30 | "nn = keras.models.Sequential(\n", |
42 | 31 | " [\n", |
43 | | - " keras.layers.InputLayer((8,)),\n", |
44 | | - " keras.layers.Dense(30, activation='relu'),\n", |
45 | | - " keras.layers.Dense(1),\n", |
| 32 | + " keras.layers.InputLayer((8,)),\n", |
| 33 | + " keras.layers.Dense(30, activation=\"relu\"),\n", |
| 34 | + " keras.layers.Dense(1),\n", |
46 | 35 | " ]\n", |
47 | 36 | ")" |
48 | 37 | ] |
49 | 38 | }, |
50 | 39 | { |
51 | 40 | "cell_type": "code", |
52 | | - "execution_count": 15, |
| 41 | + "execution_count": null, |
53 | 42 | "id": "ba3cf3ee-bd25-4180-95c0-2ff42d858a34", |
54 | 43 | "metadata": {}, |
55 | 44 | "outputs": [], |
56 | 45 | "source": [ |
57 | | - "nn.compile(loss='mean_squared_error', optimizer='adam')" |
| 46 | + "nn.compile(loss=\"mean_squared_error\", optimizer=\"adam\")" |
58 | 47 | ] |
59 | 48 | }, |
60 | 49 | { |
61 | 50 | "cell_type": "code", |
62 | | - "execution_count": 16, |
| 51 | + "execution_count": null, |
63 | 52 | "id": "247bd200-8026-4f08-8739-9aabb3c37e99", |
64 | 53 | "metadata": {}, |
65 | 54 | "outputs": [], |
66 | 55 | "source": [ |
67 | | - "(X_train, y_train), (X_test, y_test) = tf.keras.datasets.california_housing.load_data(\n", |
| 56 | + "(X_train, y_train), (X_test, y_test) = keras.datasets.california_housing.load_data(\n", |
68 | 57 | " version=\"small\"\n", |
69 | | - ")\n" |
| 58 | + ")" |
70 | 59 | ] |
71 | 60 | }, |
72 | 61 | { |
73 | 62 | "cell_type": "code", |
74 | | - "execution_count": 18, |
| 63 | + "execution_count": null, |
75 | 64 | "id": "a29325dd-1ab1-4cce-81c0-2528e892adb6", |
76 | 65 | "metadata": {}, |
77 | 66 | "outputs": [], |
|
81 | 70 | }, |
82 | 71 | { |
83 | 72 | "cell_type": "code", |
84 | | - "execution_count": 19, |
| 73 | + "execution_count": null, |
85 | 74 | "id": "cbecbd91-e100-4568-9424-efd9e3b6d5fc", |
86 | 75 | "metadata": {}, |
87 | 76 | "outputs": [], |
|
93 | 82 | }, |
94 | 83 | { |
95 | 84 | "cell_type": "code", |
96 | | - "execution_count": 21, |
| 85 | + "execution_count": null, |
97 | 86 | "id": "5656d2da-ee2d-4a8f-aef3-65876c20193b", |
98 | 87 | "metadata": {}, |
99 | | - "outputs": [ |
100 | | - { |
101 | | - "name": "stdout", |
102 | | - "output_type": "stream", |
103 | | - "text": [ |
104 | | - "Epoch 1/20\n", |
105 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 36ms/step - loss: 51257974784.0000 - val_loss: 48780189696.0000\n", |
106 | | - "Epoch 2/20\n", |
107 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 34ms/step - loss: 51058966528.0000 - val_loss: 48779857920.0000\n", |
108 | | - "Epoch 3/20\n", |
109 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 30ms/step - loss: 56175738880.0000 - val_loss: 48779501568.0000\n", |
110 | | - "Epoch 4/20\n", |
111 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - loss: 48874921984.0000 - val_loss: 48779141120.0000\n", |
112 | | - "Epoch 5/20\n", |
113 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 52104830976.0000 - val_loss: 48778752000.0000\n", |
114 | | - "Epoch 6/20\n", |
115 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 41ms/step - loss: 53767278592.0000 - val_loss: 48778342400.0000\n", |
116 | | - "Epoch 7/20\n", |
117 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 51997323264.0000 - val_loss: 48777920512.0000\n", |
118 | | - "Epoch 8/20\n", |
119 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 34ms/step - loss: 52127023104.0000 - val_loss: 48777490432.0000\n", |
120 | | - "Epoch 9/20\n", |
121 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 31ms/step - loss: 55014318080.0000 - val_loss: 48777023488.0000\n", |
122 | | - "Epoch 10/20\n", |
123 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - loss: 50627502080.0000 - val_loss: 48776540160.0000\n", |
124 | | - "Epoch 11/20\n", |
125 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 28ms/step - loss: 52081172480.0000 - val_loss: 48776024064.0000\n", |
126 | | - "Epoch 12/20\n", |
127 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - loss: 55939633152.0000 - val_loss: 48775487488.0000\n", |
128 | | - "Epoch 13/20\n", |
129 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 34ms/step - loss: 51670016000.0000 - val_loss: 48774975488.0000\n", |
130 | | - "Epoch 14/20\n", |
131 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - loss: 55131279360.0000 - val_loss: 48774389760.0000\n", |
132 | | - "Epoch 15/20\n", |
133 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 30ms/step - loss: 51200266240.0000 - val_loss: 48773820416.0000\n", |
134 | | - "Epoch 16/20\n", |
135 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 30ms/step - loss: 53789458432.0000 - val_loss: 48773218304.0000\n", |
136 | | - "Epoch 17/20\n", |
137 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - loss: 50551488512.0000 - val_loss: 48772616192.0000\n", |
138 | | - "Epoch 18/20\n", |
139 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - loss: 50127593472.0000 - val_loss: 48771956736.0000\n", |
140 | | - "Epoch 19/20\n", |
141 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 31ms/step - loss: 48622862336.0000 - val_loss: 48771301376.0000\n", |
142 | | - "Epoch 20/20\n", |
143 | | - "\u001b[1m15/15\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 30ms/step - loss: 53927636992.0000 - val_loss: 48770617344.0000\n" |
144 | | - ] |
145 | | - }, |
146 | | - { |
147 | | - "data": { |
148 | | - "text/plain": [ |
149 | | - "<keras.src.callbacks.history.History at 0x7eb858fa50>" |
150 | | - ] |
151 | | - }, |
152 | | - "execution_count": 21, |
153 | | - "metadata": {}, |
154 | | - "output_type": "execute_result" |
155 | | - } |
156 | | - ], |
| 88 | + "outputs": [], |
157 | 89 | "source": [ |
158 | 90 | "nn.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))" |
159 | 91 | ] |
160 | 92 | }, |
161 | 93 | { |
162 | 94 | "cell_type": "code", |
163 | | - "execution_count": 22, |
| 95 | + "execution_count": null, |
164 | 96 | "id": "128b1ba9-55e9-4d78-9b31-d2a0da9bb165", |
165 | 97 | "metadata": {}, |
166 | 98 | "outputs": [], |
167 | 99 | "source": [ |
168 | | - "nn.save('toto.keras')" |
| 100 | + "nn.save(\"toto.keras\")" |
169 | 101 | ] |
170 | 102 | }, |
171 | 103 | { |
172 | 104 | "cell_type": "code", |
173 | | - "execution_count": 24, |
| 105 | + "execution_count": null, |
174 | 106 | "id": "9c820767-db55-48ba-8dd3-675d06fb5c3d", |
175 | 107 | "metadata": {}, |
176 | | - "outputs": [ |
177 | | - { |
178 | | - "data": { |
179 | | - "text/plain": [ |
180 | | - "<Sequential name=sequential_1, built=True>" |
181 | | - ] |
182 | | - }, |
183 | | - "execution_count": 24, |
184 | | - "metadata": {}, |
185 | | - "output_type": "execute_result" |
186 | | - } |
187 | | - ], |
| 108 | + "outputs": [], |
188 | 109 | "source": [ |
189 | | - "keras.saving.load_model('toto.keras')" |
| 110 | + "keras.saving.load_model(\"toto.keras\")" |
190 | 111 | ] |
191 | 112 | }, |
192 | 113 | { |
|
0 commit comments