|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Adversarial example using ONNX\n", |
| 9 | + "\n" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "id": "1", |
| 15 | + "metadata": {}, |
| 16 | + "source": [ |
| 17 | + "## Import the necessary packages and load data\n", |
| 18 | + "\n" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": null, |
| 24 | + "id": "2", |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "from matplotlib import pyplot as plt\n", |
| 29 | + "import numpy as np\n", |
| 30 | + "import tensorflow as tf\n", |
| 31 | + "from tensorflow import keras\n", |
| 32 | + "import onnx\n", |
| 33 | + "from onnx import helper, TensorProto\n", |
| 34 | + "\n", |
| 35 | + "import gurobipy as gp\n", |
| 36 | + "\n", |
| 37 | + "from gurobi_ml import add_predictor_constr" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "id": "3", |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "markdown", |
| 52 | + "id": "4", |
| 53 | + "metadata": {}, |
| 54 | + "source": [ |
| 55 | + "We reshape and scale `x_train` and `x_test`.\n" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": null, |
| 61 | + "id": "5", |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "x_train = tf.reshape(tf.cast(x_train, tf.float32) / 255.0, [-1, 28 * 28])\n", |
| 66 | + "x_test = tf.reshape(tf.cast(x_test, tf.float32) / 255.0, [-1, 28 * 28])" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "id": "6", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "## Construct and train the neural network\n", |
| 75 | + "\n" |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": null, |
| 81 | + "id": "7", |
| 82 | + "metadata": {}, |
| 83 | + "outputs": [], |
| 84 | + "source": [ |
| 85 | + "nn = tf.keras.models.Sequential(\n", |
| 86 | + " [\n", |
| 87 | + " tf.keras.layers.InputLayer((28 * 28,)),\n", |
| 88 | + " tf.keras.layers.Dense(50, activation=\"relu\"),\n", |
| 89 | + " tf.keras.layers.Dense(50, activation=\"relu\"),\n", |
| 90 | + " tf.keras.layers.Dense(10), # logits\n", |
| 91 | + " ]\n", |
| 92 | + ")" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": null, |
| 98 | + "id": "8", |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "nn.compile(\n", |
| 103 | + " optimizer=tf.keras.optimizers.Adam(0.001),\n", |
| 104 | + " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", |
| 105 | + " metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],\n", |
| 106 | + ")" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "9", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "nn.fit(\n", |
| 117 | + " x_train,\n", |
| 118 | + " y_train,\n", |
| 119 | + " epochs=3,\n", |
| 120 | + " validation_data=(x_test, y_test),\n", |
| 121 | + ")" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "markdown", |
| 126 | + "id": "10", |
| 127 | + "metadata": {}, |
| 128 | + "source": [ |
| 129 | + "Convert the trained Keras model to an ONNX MLP\n" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": null, |
| 135 | + "id": "11", |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [], |
| 138 | + "source": [ |
| 139 | + "def keras_dense_layers_to_onnx(model):\n", |
| 140 | + " # Extract dense layers weights/bias and activation\n", |
| 141 | + " layers = []\n", |
| 142 | + " in_dim = None\n", |
| 143 | + " for layer in model.layers:\n", |
| 144 | + " if isinstance(layer, tf.keras.layers.InputLayer):\n", |
| 145 | + " try:\n", |
| 146 | + " in_dim = layer.input_shape[-1]\n", |
| 147 | + " except Exception:\n", |
| 148 | + " pass\n", |
| 149 | + " elif isinstance(layer, tf.keras.layers.Dense):\n", |
| 150 | + " W, b = layer.get_weights()\n", |
| 151 | + " act = layer.get_config().get(\"activation\", \"linear\")\n", |
| 152 | + " layers.append((W.astype(np.float32), b.astype(np.float32), act))\n", |
| 153 | + "\n", |
| 154 | + " # Build ONNX graph from collected layers\n", |
| 155 | + " n_in = in_dim or layers[0][0].shape[0]\n", |
| 156 | + " X = helper.make_tensor_value_info(\"X\", TensorProto.FLOAT, [None, n_in])\n", |
| 157 | + "\n", |
| 158 | + " last = \"X\"\n", |
| 159 | + " inits = []\n", |
| 160 | + " nodes = []\n", |
| 161 | + " for i, (W, b, act) in enumerate(layers):\n", |
| 162 | + " W_name = f\"W{i + 1}\"\n", |
| 163 | + " b_name = f\"b{i + 1}\"\n", |
| 164 | + " # Gemm with transB=1 realizes (last @ W + b) when B is W.T\n", |
| 165 | + " inits.append(\n", |
| 166 | + " helper.make_tensor(W_name, TensorProto.FLOAT, W.T.shape, W.T.flatten())\n", |
| 167 | + " )\n", |
| 168 | + " inits.append(helper.make_tensor(b_name, TensorProto.FLOAT, b.shape, b))\n", |
| 169 | + " out_name = f\"H{i + 1}\"\n", |
| 170 | + " nodes.append(\n", |
| 171 | + " helper.make_node(\n", |
| 172 | + " \"Gemm\",\n", |
| 173 | + " inputs=[last, W_name, b_name],\n", |
| 174 | + " outputs=[out_name],\n", |
| 175 | + " name=f\"gemm{i + 1}\",\n", |
| 176 | + " transB=1,\n", |
| 177 | + " )\n", |
| 178 | + " )\n", |
| 179 | + " last = out_name\n", |
| 180 | + " if act == \"relu\":\n", |
| 181 | + " act_name = f\"A{i + 1}\"\n", |
| 182 | + " nodes.append(\n", |
| 183 | + " helper.make_node(\n", |
| 184 | + " \"Relu\", inputs=[last], outputs=[act_name], name=f\"relu{i + 1}\"\n", |
| 185 | + " )\n", |
| 186 | + " )\n", |
| 187 | + " last = act_name\n", |
| 188 | + "\n", |
| 189 | + " # Connect final tensor to a named output via Identity\n", |
| 190 | + " n_out = layers[-1][1].shape[0]\n", |
| 191 | + " nodes.append(\n", |
| 192 | + " helper.make_node(\"Identity\", inputs=[last], outputs=[\"Y\"], name=\"output\")\n", |
| 193 | + " )\n", |
| 194 | + " Y = helper.make_tensor_value_info(\"Y\", TensorProto.FLOAT, [None, n_out])\n", |
| 195 | + " graph = helper.make_graph(\n", |
| 196 | + " nodes=nodes, name=\"KerasMLP\", inputs=[X], outputs=[Y], initializer=inits\n", |
| 197 | + " )\n", |
| 198 | + " model = helper.make_model(graph)\n", |
| 199 | + " onnx.checker.check_model(model)\n", |
| 200 | + " return model\n", |
| 201 | + "\n", |
| 202 | + "\n", |
| 203 | + "onnx_model = keras_dense_layers_to_onnx(nn)" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "markdown", |
| 208 | + "id": "12", |
| 209 | + "metadata": {}, |
| 210 | + "source": [ |
| 211 | + "## Build optimization model\n", |
| 212 | + "\n", |
| 213 | + "Now we turn to building the optimization model.\n", |
| 214 | + "\n", |
| 215 | + "We choose a training example and follow the same steps as the Keras example.\n" |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "id": "13", |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [], |
| 224 | + "source": [ |
| 225 | + "example = x_train[18, :]\n", |
| 226 | + "plt.imshow(tf.reshape(example, [28, 28]), cmap=\"gray\")\n", |
| 227 | + "ex_prob = nn.predict(tf.reshape(example, (1, -1)))\n", |
| 228 | + "sorted_labels = tf.argsort(ex_prob)[0]\n", |
| 229 | + "right_label = sorted_labels[-1]\n", |
| 230 | + "wrong_label = sorted_labels[-2]\n", |
| 231 | + "print(\n", |
| 232 | + " f\"Original classified as {int(right_label)}; target misclassify as {int(wrong_label)}\"\n", |
| 233 | + ")" |
| 234 | + ] |
| 235 | + }, |
| 236 | + { |
| 237 | + "cell_type": "code", |
| 238 | + "execution_count": null, |
| 239 | + "id": "14", |
| 240 | + "metadata": {}, |
| 241 | + "outputs": [], |
| 242 | + "source": [ |
| 243 | + "m = gp.Model()\n", |
| 244 | + "delta = 5\n", |
| 245 | + "\n", |
| 246 | + "x = m.addMVar(example.numpy().shape, lb=0.0, ub=1.0, name=\"x\")\n", |
| 247 | + "y = m.addMVar(ex_prob.shape, lb=-gp.GRB.INFINITY, name=\"y\")\n", |
| 248 | + "\n", |
| 249 | + "abs_diff = m.addMVar(example.numpy().shape, lb=0, ub=1, name=\"abs_diff\")\n", |
| 250 | + "\n", |
| 251 | + "m.setObjective(y[0, wrong_label] - y[0, right_label], gp.GRB.MAXIMIZE)\n", |
| 252 | + "\n", |
| 253 | + "# Bound on the distance to example in norm-1\n", |
| 254 | + "m.addConstr(abs_diff >= x - example.numpy())\n", |
| 255 | + "m.addConstr(abs_diff >= -x + example.numpy())\n", |
| 256 | + "m.addConstr(abs_diff.sum() <= delta)\n", |
| 257 | + "\n", |
| 258 | + "pred_constr = add_predictor_constr(m, onnx_model, x, y)\n", |
| 259 | + "\n", |
| 260 | + "pred_constr.print_stats()" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "code", |
| 265 | + "execution_count": null, |
| 266 | + "id": "15", |
| 267 | + "metadata": {}, |
| 268 | + "outputs": [], |
| 269 | + "source": [ |
| 270 | + "m.Params.BestBdStop = 0.0\n", |
| 271 | + "m.Params.BestObjStop = 0.0\n", |
| 272 | + "m.optimize()" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "markdown", |
| 277 | + "id": "16", |
| 278 | + "metadata": {}, |
| 279 | + "source": [ |
| 280 | + "Finally, display the adversarial example if one was found.\n" |
| 281 | + ] |
| 282 | + }, |
| 283 | + { |
| 284 | + "cell_type": "code", |
| 285 | + "execution_count": null, |
| 286 | + "id": "17", |
| 287 | + "metadata": {}, |
| 288 | + "outputs": [], |
| 289 | + "source": [ |
| 290 | + "if m.SolCount and m.ObjVal > 0.0:\n", |
| 291 | + " plt.imshow(x.X.reshape((28, 28)), cmap=\"gray\")\n", |
| 292 | + " label = tf.math.argmax(nn.predict(tf.reshape(x.X, (1, -1))), axis=1)\n", |
| 293 | + " print(f\"Solution is classified as {label.numpy()[0]}\")\n", |
| 294 | + "else:\n", |
| 295 | + " print(\"No counter example exists in neighborhood.\")" |
| 296 | + ] |
| 297 | + } |
| 298 | + ], |
| 299 | + "metadata": { |
| 300 | + "kernelspec": { |
| 301 | + "display_name": "Python 3 (ipykernel)", |
| 302 | + "language": "python", |
| 303 | + "name": "python3" |
| 304 | + }, |
| 305 | + "language_info": { |
| 306 | + "codemirror_mode": { |
| 307 | + "name": "ipython", |
| 308 | + "version": 3 |
| 309 | + }, |
| 310 | + "file_extension": ".py", |
| 311 | + "mimetype": "text/x-python", |
| 312 | + "name": "python", |
| 313 | + "nbconvert_exporter": "python", |
| 314 | + "pygments_lexer": "ipython3", |
| 315 | + "version": "3.13.3" |
| 316 | + }, |
| 317 | + "license": { |
| 318 | + "full_text": "# Copyright © 2025 Gurobi Optimization, LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# ==============================================================================" |
| 319 | + } |
| 320 | + }, |
| 321 | + "nbformat": 4, |
| 322 | + "nbformat_minor": 5 |
| 323 | +} |
0 commit comments