-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred_r.py
217 lines (181 loc) · 8.16 KB
/
pred_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import pandas as pd
import argparse
from tqdm import tqdm
import random
import re
import numpy as np
from sklearn.metrics import f1_score
import pickle as pkl
import torch
import torch.nn.functional as F
import torch.nn as nn
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import openai
from openai import OpenAI
from torch_geometric.nn import MessagePassing
from torch_geometric.data import Data
import dgl
prompt_dict = {
'cora': 'opening text of machine learning papers',
'citeseer': 'description or opening text of scientific publications',
'pubmed': 'title and abstract of scientific publications',
'ogbn-arxiv': 'description or opening text of scientific publications',
'wikics': 'entry and content of wikipedia',
'bookhis': 'description or title of the book',
'bookchild': 'description or title of the child literature',
'sportsfit': 'the title of a good in sports & fitness',
'cornell': 'webpage text',
'texas': 'webpage text',
'wisconsin': 'webpage text',
'washington': 'webpage text',
}
def setup_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def create_nested_folder(path):
os.makedirs(path, exist_ok=True)
class Runner():
def __init__(self, args):
self.args = args
self.num_class_dict = {'cora': 7, 'citeseer': 6, 'pubmed': 3,
'bookhis': 12, 'bookchild': 24, 'sportsfit': 13, 'wikics': 10,
'cornell': 5, 'texas': 5, 'washington': 5, 'wisconsin': 5}
self.num_class = self.num_class_dict[self.args.dataset]
def run(self):
self.train_folder = './results/'+ str(self.args.task)+'_'+str(self.args.dataset)+'/'+str(self.args.model)+'/agenth/'
create_nested_folder(self.train_folder)
# prepare data
if self.args.dataset in ['cornell', 'texas', 'wisconsin', 'washington']:
df = pd.read_csv(f'./dataset/{self.args.dataset}/{self.args.dataset.capitalize()}.csv')
raw_texts = df.raw_text.to_list()
else:
raw_texts = self.load_raw_texts(self.args.dataset)
labels = self.load_labels(self.args.dataset)
graph_data = self.prepare_data()
edge_index = graph_data.edge_index
# do inference
if self.args.mode == 'inference':
for trial in range(5):
print(f'Trial: {trial}')
response_list = []
epoch = self.args.n_total // self.args.batch_size
for epoch_idx in tqdm(range(epoch)):
content = self.sample_content(raw_texts, edge_index, self.args.batch_size)
prompt = self.prepare_prompt(labels, content, self.args.batch_size)
response = self.generate(self.args.model, prompt)
print(response)
response_list.append(response)
with open(self.train_folder+f'response_{trial}.pkl', "wb") as file:
pkl.dump(response_list, file)
# do evaluation
elif self.args.mode == 'evaluate':
preds = np.zeros(self.args.n_total // self.args.batch_size)
for trial in range(5):
with open(self.train_folder+f'response_{trial}.pkl', "rb") as file:
loaded_list = pkl.load(file)
pred_list = self.catch_answer(loaded_list)
preds += np.array(pred_list)
mask = preds>=3
if self.args.dataset in ['cora', 'cornell', 'texas', 'wisconsin', 'washington']:
mask = mask[:50]
preds = preds[:50]
print(f'predicted r: {np.sum(mask)/preds.shape[0]}')
def catch_answer(self, response_list):
pred_list = []
for response in response_list:
if self.args.model in ['4o', '4o_mini', '35t']:
content = response.content
else:
content = response
if self.args.model in ['4o', '4o_mini', '35t']:
if '**not**' in content or 'not belong' in content or 'different categories' in content or 'No' in content:
pred_list.append(0)
else:
pred_list.append(1)
return pred_list
def generate(self, model, prompt):
if model in ['4o_mini', '4o', '35t']:
client = OpenAI()
if model == '4o_mini':
engine = "gpt-4o-mini"
elif model == '4o':
engine = 'gpt-4o'
elif model == '35t':
engine = 'gpt-3.5-turbo'
else:
raise NotImplementedError
completion = client.chat.completions.create(
model=engine,
messages=prompt
)
response = completion.choices[0].message
return response
def sample_content(self, raw_texts, edge_index, batch_size):
edge_ids = torch.randint(0, edge_index.shape[1], (batch_size,))
txt = ''
for edge_id in edge_ids:
node_1 = edge_index[0][edge_id].item()
node_2 = edge_index[1][edge_id].item()
text_1 = raw_texts[node_1]
text_2 = raw_texts[node_2]
pair = '[ The first text is: '+text_1+' \n The second text is: '+text_2+']'
txt+=pair
txt+='\n'
return txt
def prepare_prompt(self, labels, content, batch_size):
init_instruct_1 = f'We have two {prompt_dict[self.args.dataset]} from the following {self.num_class} categories: {labels}'
init_instruct_2 = f'The texts are as follows:'
init_instruct_3 = f'Please tell whether they belong to the same category or not by answering Yes or No after reasoning step by step'
messages = [
{"role": "system",
"content": "You are a chatbot who is an expert in text classification",},
{"role": "user", "content": init_instruct_1+'\n'+init_instruct_2+'\n'+content+'\n'+init_instruct_3},
]
return messages
def load_raw_texts(self, dataset):
raw_texts_path = f'dataset/{dataset}/raw_texts.pt'
raw_texts = torch.load(raw_texts_path)
return raw_texts
def prepare_data(self):
if self.args.dataset in ['cornell', 'texas', 'wisconsin', 'washington']:
dgl_graph = dgl.load_graphs(f'./dataset/{self.args.dataset}/{self.args.dataset.capitalize()}.pt')[0][0]
edge_index = torch.stack(dgl_graph.edges())
graph_data = Data(edge_index = edge_index, y = dgl_graph.ndata['label'])
graph_data.test_id = torch.arange(len(graph_data.y))
graph_data.train_id = torch.arange(len(graph_data.y))
else:
graph_data = torch.load(f'./dataset/{self.args.dataset}/processed_data.pt')
return graph_data
def load_labels(self, dataset):
label_desc = pd.read_csv(f'dataset/{dataset}/categories.csv')
labels = []
num_label = len(label_desc)
num_columns = label_desc.shape[1]
for row in range(num_label):
label = label_desc.iloc[row][0]
labels.append(label)
return labels
def main():
parser = argparse.ArgumentParser(description='agent to get H')
# hardware and general
parser.add_argument('--seed', default=42)
# path
parser.add_argument('--task', dest = 'task', default = 'nc', help = 'nc')
# data
parser.add_argument('--dataset', dest = 'dataset', type = str, default = 'cora', help = 'cora')
parser.add_argument('--model', dest = 'model', type = str, default = '4o_mini', help = 'the model to predict h')
parser.add_argument('--n_total', dest = 'n_total', type = int, default = 100)
parser.add_argument('--batch_size', dest = 'batch_size', type = int, default = 1)
parser.add_argument('--mode', dest = 'mode', type = str, default = 'inference', help = 'inference or evaluate')
args = parser.parse_args()
setup_seed(args.seed)
runner = Runner(args)
runner.run()
if __name__ == '__main__':
main()