-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
247 lines (210 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os, sys
import math, time, random
import pickle
import argparse, configargparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric
from tqdm import tqdm
from models import SetGNN, HCHA, HNHN, HyperGCN, HyperSAGE, \
LEGCN, UniGCNII, HyperND, EquivSetGNN
import datasets
import utils
@torch.no_grad()
def evaluate(model, data, split_idx, evaluator, loss_fn=None, return_out=False):
model.eval()
out = model(data)
out = F.log_softmax(out, dim=1)
train_acc = evaluator.eval(data.y[split_idx['train']], out[split_idx['train']])['acc']
valid_acc = evaluator.eval(data.y[split_idx['valid']], out[split_idx['valid']])['acc']
test_acc = evaluator.eval(data.y[split_idx['test']], out[split_idx['test']])['acc']
ret_list = [train_acc, valid_acc, test_acc]
# Also keep track of losses
if loss_fn is not None:
train_loss = loss_fn(out[split_idx['train']], data.y[split_idx['train']])
valid_loss = loss_fn(out[split_idx['valid']], data.y[split_idx['valid']])
test_loss = loss_fn(out[split_idx['test']], data.y[split_idx['test']])
ret_list += [train_loss, valid_loss, test_loss]
if return_out:
ret_list.append(out)
return ret_list
def main(args):
device = torch.device('cuda:'+str(args.cuda) if torch.cuda.is_available() else 'cpu')
if args.method not in ['HyperGCN', 'HyperSAGE']:
transform = torch_geometric.transforms.Compose([datasets.AddHypergraphSelfLoops()])
else:
transform = None
data = datasets.HypergraphDataset(root=args.data_dir, name=args.dname, path_to_download=args.raw_data_dir,
feature_noise=args.feature_noise, transform=transform).data
if args.method in ['AllSetTransformer', 'AllDeepSets']:
data = SetGNN.norm_contruction(data, option=args.normtype)
elif args.method == 'HNHN':
data = HNHN.generate_norm(data, args)
elif args.method == 'HyperSAGE':
data = HyperSAGE.generate_hyperedge_dict(data)
elif args.method == 'LEGCN':
data = LEGCN.line_expansion(data)
data = data.to(device)
# Get splits
split_idx_lst = []
for run in range(args.runs):
split_idx = utils.rand_train_test_idx(
data.y, train_prop=args.train_prop, valid_prop=args.valid_prop)
split_idx_lst.append(split_idx)
if args.method == 'AllSetTransformer':
if args.AllSet_LearnMask:
model = SetGNN(data.num_features, data.num_classes, args, data.norm)
else:
model = SetGNN(data.num_features, data.num_classes, args)
elif args.method == 'AllDeepSets':
args.AllSet_PMA = False
args.aggregate = 'add'
if args.AllSet_LearnMask:
model = SetGNN(data.num_features, data.num_classes, args, data.norm)
else:
model = SetGNN(data.num_features, data.num_classes, args)
elif args.method in ['HGNN', 'HCHA']:
model = HCHA(data.num_features, data.num_classes, args)
elif args.method in 'HNHN':
model = HNHN(data.num_features, data.num_classes, args)
elif args.method in 'HyperGCN':
model = HyperGCN(data.num_features, data.num_classes, args)
elif args.method == 'HyperSAGE':
model = HyperSAGE(data.num_features, data.num_classes, args)
elif args.method == 'LEGCN':
model = LEGCN(data.num_features, data.num_classes, args)
elif args.method == 'UniGCNII':
model = UniGCNII(data.num_features, data.num_classes, args)
elif args.method == 'HyperND':
model = HyperND(data.num_features, data.num_classes, args)
elif args.method == 'EDGNN':
model = EquivSetGNN(data.num_features, data.num_classes, args)
else:
raise ValueError(f'Undefined model name: {args.method}')
model = model.to(device)
print("# Params:", sum(p.numel() for p in model.parameters() if p.requires_grad))
logger = utils.Logger(args.runs, args)
loss_fn = nn.NLLLoss()
evaluator = utils.NodeClsEvaluator()
runtime_list = []
for run in range(args.runs):
start_time = time.time()
split_idx = split_idx_lst[run]
train_idx = split_idx['train'].to(device)
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
best_val = float('-inf')
for epoch in range(args.epochs):
# Training loop
model.train()
optimizer.zero_grad()
out = model(data)
out = F.log_softmax(out, dim=1)
loss = loss_fn(out[train_idx], data.y[train_idx])
loss.backward()
optimizer.step()
# Evaluation and logging
result = evaluate(model, data, split_idx, evaluator, loss_fn)
logger.add_result(run, *result[:3])
if epoch % args.display_step == 0 and args.display_step > 0:
print(f'Run: {run:02d}, '
f'Epoch: {epoch:02d}, '
f'Train Loss: {loss:.4f}, '
f'Valid Loss: {result[4]:.4f}, '
f'Test Loss: {result[5]:.4f}, '
f'Train Acc: {100 * result[0]:.2f}%, '
f'Valid Acc: {100 * result[1]:.2f}%, '
f'Test Acc: {100 * result[2]:.2f}%')
end_time = time.time()
runtime_list.append(end_time - start_time)
logger.print_statistics()
if __name__ == '__main__':
# parser = argparse.ArgumentParser()
parser = configargparse.ArgumentParser()
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--config', is_config_file=True)
# Dataset specific arguments
parser.add_argument('--dname', default='walmart-trips-100')
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--raw_data_dir', type=str, required=True)
parser.add_argument('--train_prop', type=float, default=0.5)
parser.add_argument('--valid_prop', type=float, default=0.25)
parser.add_argument('--feature_noise', default='1', type=str, help='std for synthetic feature noise')
parser.add_argument('--normtype', default='all_one', choices=['all_one','deg_half_sym'])
parser.add_argument('--add_self_loop', action='store_false')
parser.add_argument('--exclude_self', action='store_true', help='whether the he contain self node or not')
# Training specific hyperparameters
parser.add_argument('--epochs', default=500, type=int)
# Number of runs for each split (test fix, only shuffle train/val)
parser.add_argument('--runs', default=10, type=int)
parser.add_argument('--cuda', default=0, type=int)
parser.add_argument('--dropout', default=0.5, type=float)
parser.add_argument('--input_dropout', default=0.2, type=float)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--wd', default=0.0, type=float)
parser.add_argument('--display_step', type=int, default=50)
# Model common hyperparameters
parser.add_argument('--method', default='EDGNN', help='model type')
parser.add_argument('--All_num_layers', default=2, type=int, help='number of basic blocks')
parser.add_argument('--MLP_num_layers', default=2, type=int, help='layer number of mlps')
parser.add_argument('--MLP_hidden', default=64, type=int, help='hidden dimension of mlps')
parser.add_argument('--Classifier_num_layers', default=2,
type=int) # How many layers of decoder
parser.add_argument('--Classifier_hidden', default=64,
type=int) # Decoder hidden units
parser.add_argument('--aggregate', default='mean', choices=['sum', 'mean'])
parser.add_argument('--normalization', default='ln', choices=['bn','ln','None'])
parser.add_argument('--activation', default='relu', choices=['Id','relu', 'prelu'])
# Args for EDGNN
parser.add_argument('--MLP2_num_layers', default=-1, type=int, help='layer number of mlp2')
parser.add_argument('--MLP3_num_layers', default=-1, type=int, help='layer number of mlp3')
parser.add_argument('--edconv_type', default='EquivSet', type=str, choices=['EquivSet', 'JumpLink', 'MeanDeg', 'Attn', 'TwoSets'])
parser.add_argument('--restart_alpha', default=0.5, type=float)
# Args for AllSet
parser.add_argument('--AllSet_input_norm', default=True)
parser.add_argument('--AllSet_GPR', action='store_false') # skip all but last dec
parser.add_argument('--AllSet_LearnMask', action='store_false')
parser.add_argument('--AllSet_PMA', action='store_true')
parser.add_argument('--AllSet_num_heads', default=1, type=int)
# Args for CEGAT
parser.add_argument('--output_heads', default=1, type=int) # Placeholder
# Args for HyperGCN
parser.add_argument('--HyperGCN_mediators', action='store_true')
parser.add_argument('--HyperGCN_fast', action='store_true')
# Args for HyperSAGE
parser.add_argument('--HyperSAGE_power', default=1., type=float)
parser.add_argument('--HyperSAGE_num_sample', default=100, type=int)
# Args for HNHN
parser.add_argument('--HNHN_alpha', default=-1.5, type=float)
parser.add_argument('--HNHN_beta', default=-0.5, type=float)
parser.add_argument('--HNHN_nonlinear_inbetween', default=True, type=bool)
# Args for HCHA
parser.add_argument('--HCHA_symdegnorm', action='store_true')
# Args for UniGNN
parser.add_argument('--UniGNN_use_norm', action="store_true", help='use norm in the final layer')
parser.add_argument('--UniGNN_degV', default = 0)
parser.add_argument('--UniGNN_degE', default = 0)
# Args for HyperND
parser.add_argument('--HyperND_ord', default = 1., type=float)
parser.add_argument('--HyperND_tol', default = 1e-4, type=float)
parser.add_argument('--HyperND_steps', default = 100, type=int)
parser.set_defaults(add_self_loop=True)
parser.set_defaults(exclude_self=False)
parser.set_defaults(AllSet_GPR=False)
parser.set_defaults(AllSet_LearnMask=False)
parser.set_defaults(AllSet_PMA=True) # True: Use PMA. False: Use Deepsets.
parser.set_defaults(HyperGCN_mediators=True)
parser.set_defaults(HyperGCN_fast=True)
parser.set_defaults(HCHA_symdegnorm=False)
# Use the line below for .py file
args = parser.parse_args()
# Use the line below for notebook
# args = parser.parse_args([])
# args, _ = parser.parse_known_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
main(args)