-
Notifications
You must be signed in to change notification settings - Fork 82
/
train_test.py
153 lines (124 loc) · 5.16 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#-----------------------------------
# TRAINING OUR MODEL
#-----------------------------------
import h5py
import numpy as np
import os
import glob
import cv2
import warnings
from matplotlib import pyplot
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.externals import joblib
warnings.filterwarnings('ignore')
#--------------------
# tunable-parameters
#--------------------
num_trees = 100
test_size = 0.10
seed = 9
train_path = "dataset/train"
test_path = "dataset/test"
h5_data = 'output/data.h5'
h5_labels = 'output/labels.h5'
scoring = "accuracy"
# get the training labels
train_labels = os.listdir(train_path)
# sort the training labels
train_labels.sort()
if not os.path.exists(test_path):
os.makedirs(test_path)
# create all the machine learning models
models = []
models.append(('LR', LogisticRegression(random_state=seed)))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier(random_state=seed)))
models.append(('RF', RandomForestClassifier(n_estimators=num_trees, random_state=seed)))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(random_state=seed)))
# variables to hold the results and names
results = []
names = []
# import the feature vector and trained labels
h5f_data = h5py.File(h5_data, 'r')
h5f_label = h5py.File(h5_labels, 'r')
global_features_string = h5f_data['dataset_1']
global_labels_string = h5f_label['dataset_1']
global_features = np.array(global_features_string)
global_labels = np.array(global_labels_string)
h5f_data.close()
h5f_label.close()
# verify the shape of the feature vector and labels
print("[STATUS] features shape: {}".format(global_features.shape))
print("[STATUS] labels shape: {}".format(global_labels.shape))
print("[STATUS] training started...")
# split the training and testing data
(trainDataGlobal, testDataGlobal, trainLabelsGlobal, testLabelsGlobal) = train_test_split(np.array(global_features),
np.array(global_labels),
test_size=test_size,
random_state=seed)
print("[STATUS] splitted train and test data...")
print("Train data : {}".format(trainDataGlobal.shape))
print("Test data : {}".format(testDataGlobal.shape))
print("Train labels: {}".format(trainLabelsGlobal.shape))
print("Test labels : {}".format(testLabelsGlobal.shape))
# 10-fold cross validation
for name, model in models:
kfold = KFold(n_splits=10, random_state=seed)
cv_results = cross_val_score(model, trainDataGlobal, trainLabelsGlobal, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
# boxplot algorithm comparison
fig = pyplot.figure()
fig.suptitle('Machine Learning algorithm comparison')
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(names)
pyplot.show()
#-----------------------------------
# TESTING OUR MODEL
#-----------------------------------
# to visualize results
import matplotlib.pyplot as plt
# create the model - Random Forests
clf = RandomForestClassifier(n_estimators=num_trees, random_state=seed)
# fit the training data to the model
clf.fit(trainDataGlobal, trainLabelsGlobal)
# loop through the test images
for file in glob.glob(test_path + "/*.jpg"):
# read the image
image = cv2.imread(file)
# resize the image
image = cv2.resize(image, fixed_size)
####################################
# Global Feature extraction
####################################
fv_hu_moments = fd_hu_moments(image)
fv_haralick = fd_haralick(image)
fv_histogram = fd_histogram(image)
###################################
# Concatenate global features
###################################
global_feature = np.hstack([fv_histogram, fv_haralick, fv_hu_moments])
# scale features in the range (0-1)
scaler = MinMaxScaler(feature_range=(0, 1))
rescaled_feature = scaler.fit_transform(global_feature)
# predict label of test image
prediction = clf.predict(rescaled_feature.reshape(1,-1))[0]
# show predicted label on image
cv2.putText(image, train_labels[prediction], (20,30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,255), 3)
# display the output image
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()