-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmain.cpp
358 lines (308 loc) · 15 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#include "main.h"
#include "ACMP.h"
void GenerateSampleList(const std::string &dense_folder, std::vector<Problem> &problems)
{
std::string cluster_list_path = dense_folder + std::string("/pair.txt");
problems.clear();
std::ifstream file(cluster_list_path);
int num_images;
file >> num_images;
for (int i = 0; i < num_images; ++i) {
Problem problem;
problem.src_image_ids.clear();
file >> problem.ref_image_id;
int num_src_images;
file >> num_src_images;
for (int j = 0; j < num_src_images; ++j) {
int id;
float score;
file >> id >> score;
if (score <= 0.0f) {
continue;
}
problem.src_image_ids.push_back(id);
}
problems.push_back(problem);
}
}
void ProcessProblem(const std::string &dense_folder, const Problem &problem, bool geom_consistency, bool planar_prior, bool multi_geometrty=false)
{
std::cout << "Processing image " << std::setw(8) << std::setfill('0') << problem.ref_image_id << "..." << std::endl;
cudaSetDevice(0);
std::stringstream result_path;
result_path << dense_folder << "/ACMP" << "/2333_" << std::setw(8) << std::setfill('0') << problem.ref_image_id;
std::string result_folder = result_path.str();
mkdir(result_folder.c_str(), 0755);
ACMP acmp;
if (geom_consistency) {
acmp.SetGeomConsistencyParams(multi_geometrty);
}
acmp.InuputInitialization(dense_folder, problem);
acmp.CudaSpaceInitialization(dense_folder, problem);
acmp.RunPatchMatch();
const int width = acmp.GetReferenceImageWidth();
const int height = acmp.GetReferenceImageHeight();
cv::Mat_<float> depths = cv::Mat::zeros(height, width, CV_32FC1);
cv::Mat_<cv::Vec3f> normals = cv::Mat::zeros(height, width, CV_32FC3);
cv::Mat_<float> costs = cv::Mat::zeros(height, width, CV_32FC1);
for (int col = 0; col < width; ++col) {
for (int row = 0; row < height; ++row) {
int center = row * width + col;
float4 plane_hypothesis = acmp.GetPlaneHypothesis(center);
depths(row, col) = plane_hypothesis.w;
normals(row, col) = cv::Vec3f(plane_hypothesis.x, plane_hypothesis.y, plane_hypothesis.z);
costs(row, col) = acmp.GetCost(center);
}
}
if (planar_prior) {
std::cout << "Run Planar Prior Assisted PatchMatch MVS ..." << std::endl;
acmp.SetPlanarPriorParams();
const cv::Rect imageRC(0, 0, width, height);
std::vector<cv::Point> support2DPoints;
acmp.GetSupportPoints(support2DPoints);
const auto triangles = acmp.DelaunayTriangulation(imageRC, support2DPoints);
cv::Mat refImage = acmp.GetReferenceImage().clone();
std::vector<cv::Mat> mbgr(3);
mbgr[0] = refImage.clone();
mbgr[1] = refImage.clone();
mbgr[2] = refImage.clone();
cv::Mat srcImage;
cv::merge(mbgr, srcImage);
for (const auto triangle : triangles) {
if (imageRC.contains(triangle.pt1) && imageRC.contains(triangle.pt2) && imageRC.contains(triangle.pt3)) {
cv::line(srcImage, triangle.pt1, triangle.pt2, cv::Scalar(0, 0, 255));
cv::line(srcImage, triangle.pt1, triangle.pt3, cv::Scalar(0, 0, 255));
cv::line(srcImage, triangle.pt2, triangle.pt3, cv::Scalar(0, 0, 255));
}
}
std::string triangulation_path = result_folder + "/triangulation.png";
cv::imwrite(triangulation_path, srcImage);
cv::Mat_<float> mask_tri = cv::Mat::zeros(height, width, CV_32FC1);
std::vector<float4> planeParams_tri;
planeParams_tri.clear();
uint32_t idx = 0;
for (const auto triangle : triangles) {
if (imageRC.contains(triangle.pt1) && imageRC.contains(triangle.pt2) && imageRC.contains(triangle.pt3)) {
float L01 = sqrt(pow(triangle.pt1.x - triangle.pt2.x, 2) + pow(triangle.pt1.y - triangle.pt2.y, 2));
float L02 = sqrt(pow(triangle.pt1.x - triangle.pt3.x, 2) + pow(triangle.pt1.y - triangle.pt3.y, 2));
float L12 = sqrt(pow(triangle.pt2.x - triangle.pt3.x, 2) + pow(triangle.pt2.y - triangle.pt3.y, 2));
float max_edge_length = std::max(L01, std::max(L02, L12));
float step = 1.0 / max_edge_length;
for (float p = 0; p < 1.0; p += step) {
for (float q = 0; q < 1.0 - p; q += step) {
int x = p * triangle.pt1.x + q * triangle.pt2.x + (1.0 - p - q) * triangle.pt3.x;
int y = p * triangle.pt1.y + q * triangle.pt2.y + (1.0 - p - q) * triangle.pt3.y;
mask_tri(y, x) = idx + 1.0; // To distinguish from the label of non-triangulated areas
}
}
// estimate plane parameter
float4 n4 = acmp.GetPriorPlaneParams(triangle, depths);
planeParams_tri.push_back(n4);
idx++;
}
}
cv::Mat_<float> priordepths = cv::Mat::zeros(height, width, CV_32FC1);
for (int i = 0; i < width; ++i) {
for (int j = 0; j < height; ++j) {
if (mask_tri(j, i) > 0) {
float d = acmp.GetDepthFromPlaneParam(planeParams_tri[mask_tri(j, i) - 1], i, j);
if (d <= acmp.GetMaxDepth() && d >= acmp.GetMinDepth()) {
priordepths(j, i) = d;
}
else {
mask_tri(j, i) = 0;
}
}
}
}
// std::string depth_path = result_folder + "/depths_prior.dmb";
// writeDepthDmb(depth_path, priordepths);
acmp.CudaPlanarPriorInitialization(planeParams_tri, mask_tri);
acmp.RunPatchMatch();
for (int col = 0; col < width; ++col) {
for (int row = 0; row < height; ++row) {
int center = row * width + col;
float4 plane_hypothesis = acmp.GetPlaneHypothesis(center);
depths(row, col) = plane_hypothesis.w;
normals(row, col) = cv::Vec3f(plane_hypothesis.x, plane_hypothesis.y, plane_hypothesis.z);
costs(row, col) = acmp.GetCost(center);
}
}
}
std::string suffix = "/depths.dmb";
if (geom_consistency) {
suffix = "/depths_geom.dmb";
}
std::string depth_path = result_folder + suffix;
std::string normal_path = result_folder + "/normals.dmb";
std::string cost_path = result_folder + "/costs.dmb";
writeDepthDmb(depth_path, depths);
writeNormalDmb(normal_path, normals);
writeDepthDmb(cost_path, costs);
std::cout << "Processing image " << std::setw(8) << std::setfill('0') << problem.ref_image_id << " done!" << std::endl;
}
void RunFusion(std::string &dense_folder, const std::vector<Problem> &problems, bool geom_consistency)
{
size_t num_images = problems.size();
std::string image_folder = dense_folder + std::string("/images");
std::string cam_folder = dense_folder + std::string("/cams");
std::vector<cv::Mat> images;
std::vector<Camera> cameras;
std::vector<cv::Mat_<float>> depths;
std::vector<cv::Mat_<cv::Vec3f>> normals;
std::vector<cv::Mat> masks;
images.clear();
cameras.clear();
depths.clear();
normals.clear();
masks.clear();
std::map<int, int> image_id_2_index;
for (size_t i = 0; i < num_images; ++i) {
std::cout << "Reading image " << std::setw(8) << std::setfill('0') << i << "..." << std::endl;
image_id_2_index[problems[i].ref_image_id] = i;
std::stringstream image_path;
image_path << image_folder << "/" << std::setw(8) << std::setfill('0') << problems[i].ref_image_id << ".jpg";
cv::Mat_<cv::Vec3b> image = cv::imread (image_path.str(), cv::IMREAD_COLOR);
std::stringstream cam_path;
cam_path << cam_folder << "/" << std::setw(8) << std::setfill('0') << problems[i].ref_image_id << "_cam.txt";
Camera camera = ReadCamera(cam_path.str());
std::stringstream result_path;
result_path << dense_folder << "/ACMP" << "/2333_" << std::setw(8) << std::setfill('0') << problems[i].ref_image_id;
std::string result_folder = result_path.str();
std::string suffix = "/depths.dmb";
if (geom_consistency) {
suffix = "/depths_geom.dmb";
}
std::string depth_path = result_folder + suffix;
std::string normal_path = result_folder + "/normals.dmb";
cv::Mat_<float> depth;
cv::Mat_<cv::Vec3f> normal;
readDepthDmb(depth_path, depth);
readNormalDmb(normal_path, normal);
cv::Mat_<cv::Vec3b> scaled_image;
RescaleImageAndCamera(image, scaled_image, depth, camera);
images.push_back(scaled_image);
cameras.push_back(camera);
depths.push_back(depth);
normals.push_back(normal);
cv::Mat mask = cv::Mat::zeros(depth.rows, depth.cols, CV_8UC1);
masks.push_back(mask);
}
std::vector<PointList> PointCloud;
PointCloud.clear();
for (size_t i = 0; i < num_images; ++i) {
std::cout << "Fusing image " << std::setw(8) << std::setfill('0') << i << "..." << std::endl;
const int cols = depths[i].cols;
const int rows = depths[i].rows;
int num_ngb = problems[i].src_image_ids.size();
std::vector<int2> used_list(num_ngb, make_int2(-1, -1));
for (int r =0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
if (masks[i].at<uchar>(r, c) == 1)
continue;
float ref_depth = depths[i].at<float>(r, c);
cv::Vec3f ref_normal = normals[i].at<cv::Vec3f>(r, c);
if (ref_depth <= 0.0)
continue;
float3 PointX = Get3DPointonWorld(c, r, ref_depth, cameras[i]);
float3 consistent_Point = PointX;
cv::Vec3f consistent_normal = ref_normal;
float consistent_Color[3] = {(float)images[i].at<cv::Vec3b>(r, c)[0], (float)images[i].at<cv::Vec3b>(r, c)[1], (float)images[i].at<cv::Vec3b>(r, c)[2]};
int num_consistent = 0;
for (int j = 0; j < num_ngb; ++j) {
int src_id = image_id_2_index[problems[i].src_image_ids[j]];
const int src_cols = depths[src_id].cols;
const int src_rows = depths[src_id].rows;
float2 point;
float proj_depth;
ProjectonCamera(PointX, cameras[src_id], point, proj_depth);
int src_r = int(point.y + 0.5f);
int src_c = int(point.x + 0.5f);
if (src_c >= 0 && src_c < src_cols && src_r >= 0 && src_r < src_rows) {
if (masks[src_id].at<uchar>(src_r, src_c) == 1)
continue;
float src_depth = depths[src_id].at<float>(src_r, src_c);
cv::Vec3f src_normal = normals[src_id].at<cv::Vec3f>(src_r, src_c);
if (src_depth <= 0.0)
continue;
float3 tmp_X = Get3DPointonWorld(src_c, src_r, src_depth, cameras[src_id]);
float2 tmp_pt;
ProjectonCamera(tmp_X, cameras[i], tmp_pt, proj_depth);
float reproj_error = sqrt(pow(c - tmp_pt.x, 2) + pow(r - tmp_pt.y, 2));
float relative_depth_diff = fabs(proj_depth - ref_depth) / ref_depth;
float angle = GetAngle(ref_normal, src_normal);
if (reproj_error < 2.0f && relative_depth_diff < 0.01f && angle < 0.174533f) {
consistent_Point.x += tmp_X.x;
consistent_Point.y += tmp_X.y;
consistent_Point.z += tmp_X.z;
consistent_normal = consistent_normal + src_normal;
consistent_Color[0] += images[src_id].at<cv::Vec3b>(src_r, src_c)[0];
consistent_Color[1] += images[src_id].at<cv::Vec3b>(src_r, src_c)[1];
consistent_Color[2] += images[src_id].at<cv::Vec3b>(src_r, src_c)[2];
used_list[j].x = src_c;
used_list[j].y = src_r;
num_consistent++;
}
}
}
if (num_consistent >= 2) {
consistent_Point.x /= (num_consistent + 1.0f);
consistent_Point.y /= (num_consistent + 1.0f);
consistent_Point.z /= (num_consistent + 1.0f);
consistent_normal /= (num_consistent + 1.0f);
consistent_Color[0] /= (num_consistent + 1.0f);
consistent_Color[1] /= (num_consistent + 1.0f);
consistent_Color[2] /= (num_consistent + 1.0f);
PointList point3D;
point3D.coord = consistent_Point;
point3D.normal = make_float3(consistent_normal[0], consistent_normal[1], consistent_normal[2]);
point3D.color = make_float3(consistent_Color[0], consistent_Color[1], consistent_Color[2]);
PointCloud.push_back(point3D);
for (int j = 0; j < num_ngb; ++j) {
if (used_list[j].x == -1)
continue;
masks[image_id_2_index[problems[i].src_image_ids[j]]].at<uchar>(used_list[j].y, used_list[j].x) = 1;
}
}
}
}
}
std::string ply_path = dense_folder + "/ACMP/ACMP_model.ply";
StoreColorPlyFileBinaryPointCloud (ply_path, PointCloud);
}
int main(int argc, char** argv)
{
if (argc < 2) {
std::cout << "USAGE: ACMP dense_folder" << std::endl;
return -1;
}
std::string dense_folder = argv[1];
std::vector<Problem> problems;
GenerateSampleList(dense_folder, problems);
std::string output_folder = dense_folder + std::string("/ACMP");
mkdir(output_folder.c_str(), 0755);
size_t num_images = problems.size();
std::cout << "There are " << num_images << " problems needed to be processed!" << std::endl;
bool geom_consistency = false;
bool planar_prior = true;
bool multi_geometry = false;
int geom_iterations = 2;
for (size_t i = 0; i < num_images; ++i) {
ProcessProblem(dense_folder, problems[i], geom_consistency, planar_prior);
}
geom_consistency = true;
planar_prior = false;
for (int geom_iter = 0; geom_iter < geom_iterations; ++geom_iter) {
if (geom_iter == 0) {
multi_geometry = false;
}
else {
multi_geometry = true;
}
for (size_t i = 0; i < num_images; ++i) {
ProcessProblem(dense_folder, problems[i], geom_consistency, planar_prior, multi_geometry);
}
}
RunFusion(dense_folder, problems, geom_consistency);
return 0;
}