-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.py
269 lines (222 loc) · 9.6 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from anytree import NodeMixin, RenderTree
from instance import Instance
from math import log2
class Tree(NodeMixin):
def __init__(self, attribute_name, classes_num, childs_value, is_attr, parent=None):
self.attribute_name = attribute_name
self.classes_num = classes_num
self.parent = parent
self.childs_value = childs_value
self.childs_dict = {}
self.is_attr = is_attr
self.num_false = 0
if is_attr:
for attri_val in childs_value:
self.childs_dict[attri_val] = None
self.instances = []
def add_instance_propagte(self, instance):
self.instances.append(instance)
self.update_class_num(instance)
self = self.parent
if not self:
return
self.add_instance_propagte(instance)
def update_class_num(self, instance):
# [#positive, #negative]
self.classes_num[0] += (instance.class_value)
self.classes_num[1] += (1 - instance.class_value)
def add_instance(self, instance, attribute_value_dict):
# ---------------------------------------------------------------------------
blocked_list = []
change = False
node = self
parent_temp = None
# iterative
while node.is_attr:
blocked_list.append(node.attribute_name)
node.instances.append(instance)
node.update_class_num(instance)
attribute_name = instance.attribues_value[node.attribute_name]
parent_temp = node
node = node.childs_dict[attribute_name]
if not node:
break
if not node.is_attr:
break
if parent_temp and not node:
node = Tree(attribute_name=None, classes_num=[
0, 0], childs_value=None, parent=parent_temp, is_attr=False)
parent_temp.childs_dict[attribute_name] = node
node = parent_temp.childs_dict[attribute_name]
node.instances.append(instance)
node.update_class_num(instance)
if 0 not in node.classes_num:
instances = node.instances
if len(blocked_list) < len(attribute_value_dict.keys()):
best_attr = find_best_attr(
instances, blocked_list, attribute_value_dict)
node.attribute_name = best_attr
# add children attributes to node
for attri_val in attribute_value_dict[best_attr]:
node.childs_dict[attri_val] = None
node.is_attr = True
insts = node.instances
for ins in insts:
node.add_instance_leaf(ins)
# add instances to this node
change = True
return change, node
def add_instance_leaf(self, instance):
if self.is_attr:
attribut_value = instance.attribues_value[self.attribute_name]
node = self.childs_dict[attribut_value]
if not node:
node = Tree(attribute_name=None, classes_num=[
0, 0], childs_value=None, parent=self, is_attr=False)
self.childs_dict[attribut_value] = node
node.instances.append(instance)
node.update_class_num(instance)
def dfs(self, attribute_value_dict):
if self.attribute_name:
for attr_val in self.childs_dict.keys():
if self.childs_dict[attr_val]:
if self.childs_dict[attr_val].attribute_name:
self.childs_dict[attr_val].dfs(attribute_value_dict)
self.childs_dict[attr_val].check_pull_up(
attribute_value_dict)
if not self.parent:
self.check_pull_up(attribute_value_dict)
def check_pull_up(self, attribute_value_dict):
i = 0
for attr_val, child in self.childs_dict.items():
if child:
if child.is_attr:
if attr_entropy(child.attribute_name, child.instances, attribute_value_dict) < attr_entropy(self.attribute_name, self.instances, attribute_value_dict):
# set the child as root of the tree
new_tree_root = Tree(child.attribute_name, [
0, 0], attribute_value_dict[child.attribute_name], True, None)
# add old parent to each of value of new root attributes
for attr_val_child in new_tree_root.childs_value:
node_temp = Tree(attr_val_child, [
0, 0], self.childs_value, False, new_tree_root)
new_tree_root.childs_dict[attr_val_child] = node_temp
instances = self.instances
self = new_tree_root
# recreat tree
for instance in instances:
is_change, leaf_node = self.add_instance(
instance, attribute_value_dict)
def output_test(self, instance, attribute_value_dict):
node = self
while node.attribute_name:
l = 0
if node.classes_num[0] >= node.classes_num[1]:
l = 1
else:
l = 0
if l != instance.class_value:
node.num_false += 1
attr_value = instance.attribues_value[node.attribute_name]
parent = node
node = node.childs_dict[attr_value]
if not node:
# node = parent
# the data can't reach to leaf
# break
return -1
if not node.attribute_name:
break
if node.classes_num[0] >= node.classes_num[1]:
return 1
else:
return 0
def reduced_error_pruning(self, attribute_value_dict):
if self.attribute_name:
prun = False
for attr_val in self.childs_dict.keys():
if self.childs_dict[attr_val]:
# to do
if prun:
self.childs_dict[attr_val] = None
print(self.childs_dict[attr_val].attribute_name)
if self.childs_dict[attr_val].num_false > self.childs_dict[attr_val].parent.num_false:
prun = True
self.childs_dict[attr_val] = None
print(self.childs_dict[attr_val].attribute_name)
'''
def reduced_error_pruning(self):
if (self == None):
return
# standard level order traversal code (bfs)
# using queue
q = [] # Create a queue
q.append(self) # Enqueue root
while (len(q) != 0):
n = len(q)
# If this node has children
while (n > 0):
# Dequeue an item from queue and print it
p = q[0]
q.pop(0)
# print(p.attribute_name, end=' ')
# Enqueue all children of the dequeued item
for attr in p.childs_dict.keys():
if p.childs_dict[attr]:
# print(p.childs_dict[attr].num_false)
if p.childs_dict[attr].num_false > p.num_false:
p.childs_dict[attr] = None
else:
q.append(p.childs_dict[attr])
n -= 1
# print()
'''
'''def reduced_error_pruning(self):
if not self:
return
if not self.is_attr:
return
for attr_val in self.childs_dict.keys():
if self.childs_dict[attr_val]:
if self.num_false < self.childs_dict[attr_val].num_false:
self.childs_dict[attr_val] = None
else:
self = self.childs_dict[attr_val]
self.reduced_error_pruning()
'''
def attr_entropy(attribute, instances, attribute_value_dict):
attr_antropy_dict = {}
# initialization
for attr_val in attribute_value_dict[attribute]:
attr_antropy_dict[attr_val] = []
# devot every instance to each attr_value
for instance in instances:
attr_antropy_dict[instance.attribues_value[attribute]].append(
instance)
# calculate weighted average of antorpies
total_size = len(instances)
ave = 0
for key, list_instance in attr_antropy_dict.items():
ave += entropy(list_instance)*(len(list_instance)/total_size)
return ave
def entropy(instances):
if len(instances) == 0:
return 0
pos_num = 0
neg_num = 0
for instance in instances:
if instance.class_value == 1:
pos_num += 1
elif instance.class_value == 0:
neg_num += 1
pos_p = pos_num / (pos_num + neg_num)
neg_p = 1 - pos_p
if pos_num == 0 or neg_num == 0:
return 0
return -(pos_p*log2(pos_p)+neg_p*log2(neg_p))
def find_best_attr(instances, blocked_attrs, attribute_value_dict):
dict_attr_entropy = {attribute: attr_entropy(attribute, instances, attribute_value_dict)
for attribute in attribute_value_dict.keys() if attribute not in blocked_attrs}
# lowest E-score => best attribute
best_attr = min(dict_attr_entropy, key=(
lambda k: dict_attr_entropy[k]))
return best_attr