-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex3.m
71 lines (51 loc) · 2.12 KB
/
ex3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this part of the exercise
input_layer_size = 400; % 20x20 Input Images of Digits
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, 1);
% Randomly select 100 data points to display
rand_indices = randperm(m);
sel = X(rand_indices(1:100), :);
displayData(sel);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============ Part 2a: Vectorize Logistic Regression ============
% In this part of the exercise, you will reuse your logistic regression
% code from the last exercise. You task here is to make sure that your
% regularized logistic regression implementation is vectorized. After
% that, you will implement one-vs-all classification for the handwritten
% digit dataset.
%
% Test case for lrCostFunction
fprintf('\nTesting lrCostFunction() with regularization');
theta_t = [-2; -1; 1; 2];
X_t = [ones(5,1) reshape(1:15,5,3)/10];
y_t = ([1;0;1;0;1] >= 0.5);
lambda_t = 3;
[J grad] = lrCostFunction(theta_t, X_t, y_t, lambda_t);
fprintf('\nCost: %f\n', J);
fprintf('Expected cost: 2.534819\n');
fprintf('Gradients:\n');
fprintf(' %f \n', grad);
fprintf('Expected gradients:\n');
fprintf(' 0.146561\n -0.548558\n 0.724722\n 1.398003\n');
fprintf('Program paused. Press enter to continue.\n');
%pause;
%% ============ Part 2b: One-vs-All Training ============
fprintf('\nTraining One-vs-All Logistic Regression...\n')
lambda = 0.1;
[all_theta] = oneVsAll(X, y, num_labels, lambda);
fprintf('Program paused. Press enter to continue.\n');
%pause;
%% ================ Part 3: Predict for One-Vs-All ================
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);