-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathxnetmf.py
247 lines (204 loc) · 10.2 KB
/
xnetmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np, scipy as sp, networkx as nx
import math, time, os, sys
from config import *
#Input: graph, RepMethod
#Output: dictionary of dictionaries: for each node, dictionary containing {node : {layer_num : [list of neighbors]}}
# dictionary {node ID: degree}
def get_khop_neighbors(graph, emb_method):
if emb_method.max_layer is None:
emb_method.max_layer = graph.N #Don't need this line, just sanity prevent infinite loop
kneighbors_dict = {}
#only 0-hop neighbor of a node is itself
#neighbors of a node have nonzero connections to it in adj matrix
for node in range(graph.N):
neighbors = np.nonzero(graph.adj[node])[-1].tolist() ###
if len(neighbors) == 0: #disconnected node
#print("Warning: node %d is disconnected" % node)
kneighbors_dict[node] = {0: set([node]), 1: set()}
else:
if type(neighbors[0]) is list:
neighbors = neighbors[0]
kneighbors_dict[node] = {0: set([node]), 1: set(neighbors) - set([node]) }
#For each node, keep track of neighbors we've already seen
all_neighbors = {}
for node in range(graph.N):
all_neighbors[node] = set([node])
all_neighbors[node] = all_neighbors[node].union(kneighbors_dict[node][1])
#Recursively compute neighbors in k
#Neighbors of k-1 hop neighbors, unless we've already seen them before
current_layer = 2 #need to at least consider neighbors
while True:
if emb_method.max_layer is not None and current_layer > emb_method.max_layer: break
reached_max_layer = True #whether we've reached the graph diameter
for i in range(graph.N):
#All neighbors k-1 hops away
neighbors_prevhop = kneighbors_dict[i][current_layer - 1]
khop_neighbors = set()
#Add neighbors of each k-1 hop neighbors
for n in neighbors_prevhop:
neighbors_of_n = kneighbors_dict[n][1]
for neighbor2nd in neighbors_of_n:
khop_neighbors.add(neighbor2nd)
#Correction step: remove already seen nodes (k-hop neighbors reachable at shorter hop distance)
khop_neighbors = khop_neighbors - all_neighbors[i]
#Add neighbors at this hop to set of nodes we've already seen
num_nodes_seen_before = len(all_neighbors[i])
all_neighbors[i] = all_neighbors[i].union(khop_neighbors)
num_nodes_seen_after = len(all_neighbors[i])
#See if we've added any more neighbors
#If so, we may not have reached the max layer: we have to see if these nodes have neighbors
if len(khop_neighbors) > 0:
reached_max_layer = False
#add neighbors
kneighbors_dict[i][current_layer] = khop_neighbors #k-hop neighbors must be at least k hops away
if reached_max_layer:
break #finished finding neighborhoods (to the depth that we want)
else:
current_layer += 1 #move out to next layer
return kneighbors_dict
#Turn lists of neighbors into a degree sequence
#Input: graph, RepMethod, node's neighbors at a given layer, the node
#Output: length-D list of ints (counts of nodes of each degree), where D is max degree in graph
def get_degree_sequence(graph, emb_method, kneighbors, current_node):
if emb_method.num_buckets is not None:
degree_counts = [0] * int(math.log(graph.max_features["degree"], emb_method.num_buckets) + 1)
else:
degree_counts = [0] * (graph.max_features["degree"] + 1)
#For each node in k-hop neighbors, count its degree
for kn in kneighbors:
weight = 1 #unweighted graphs supported here
degree = graph.node_features["degree"][kn]
if emb_method.num_buckets is not None:
try:
degree_counts[int(math.log(degree, emb_method.num_buckets))] += weight
except:
print("Node %d has degree %d and will not contribute to feature distribution" % (kn, degree))
else:
if degree >= len(degree_counts): #larger degree than these buckets were created for
degree_counts[-1] += weight #add to last bucket, which captures all the largest degrees
else:
degree_counts[degree] += weight
return degree_counts
#Get structural features for nodes in a graph based on degree sequences of neighbors
#Input: graph, RepMethod
#Output: nxD feature matrix
def get_features(graph, emb_method, verbose = True):
before_khop = time.time()
#Get k-hop neighbors of all nodes
khop_neighbors_nobfs = get_khop_neighbors(graph, emb_method)
graph.khop_neighbors = khop_neighbors_nobfs
if verbose:
print("max degree: ", graph.max_features["degree"])
after_khop = time.time()
print("got k hop neighbors in time: ", after_khop - before_khop)
adj = graph.adj
num_nodes = adj.shape[0]
if emb_method.num_buckets is not None:
num_features = int(math.log(graph.max_features["degree"], emb_method.num_buckets) + 1)
else:
num_features = int(graph.max_features["degree"]) + 1
feature_matrix = np.zeros((num_nodes, num_features))
before_degseqs = time.time()
for n in range(num_nodes):
for layer in graph.khop_neighbors[n].keys(): #construct feature matrix one layer at a time
if len(graph.khop_neighbors[n][layer]) > 0:
#degree sequence of node n at layer "layer"
deg_seq = get_degree_sequence(graph, emb_method, graph.khop_neighbors[n][layer], n)
#add degree info from this degree sequence, weighted depending on layer and discount factor alpha
feature_matrix[n] += [(emb_method.alpha**layer) * x for x in deg_seq]
after_degseqs = time.time()
if verbose:
print("got degree sequences in time: ", after_degseqs - before_degseqs)
return feature_matrix
#Input: two vectors of the same length
#Optional: tuple of (same length) vectors of node attributes for corresponding nodes
#Output: number between 0 and 1 representing their similarity
def compute_similarity(graph, emb_method, vec1, vec2, node_attributes = None, node_indices = None):
dist = emb_method.gammastruc * np.linalg.norm(vec1 - vec2) #compare distances between structural identities
if graph.node_attributes is not None and emb_method.use_attr_dist:
#distance is number of disagreeing attributes
attr_dist = np.sum(graph.node_attributes[node_indices[0]] != graph.node_attributes[node_indices[1]])
dist += emb_method.gammaattr * attr_dist
return np.exp(-dist) #convert distances (weighted by coefficients on structure and attributes) to similarities
#Sample landmark nodes (to compute all pairwise similarities to in Nystrom approx)
#Input: graph (just need graph size here), RepMethod (just need dimensionality here)
#Output: np array of node IDs
def get_sample_nodes(graph, emb_method, verbose = True):
#Sample uniformly at random
sample = np.random.permutation(np.arange(graph.N))[:emb_method.dimensionality]
return sample
#Get dimensionality of learned representations
#Related to rank of similarity matrix approximations
#Input: graph, RepMethod
#Output: dimensionality of representations to learn (tied into rank of similarity matrix approximation)
def get_feature_dimensionality(graph, emb_method, verbose = True):
d = int(emb_method.k*math.log(graph.N, 2)) #k*log(n) -- user can set k, default 10
if verbose:
print("feature dimensionality is ", min(d, graph.N))
emb_method.dimensionality = min(d,graph.N) #don't return larger dimensionality than # of nodes
return emb_method.dimensionality
#xNetMF pipeline
def get_representations(graph, emb_method, verbose = True):
#Node identity extraction
feature_matrix = get_features(graph, emb_method, verbose)
#Efficient similarity-based representation
#Get landmark nodes, unless using previously computed ones
#if not (emb_method.method == "xnetmf" and emb_method.landmark_features is not None and emb_method.use_landmarks):
if emb_method.landmark_features is None or not emb_method.use_landmarks:
print("Getting landmark features...")
if emb_method.dimensionality is None:
emb_method.dimensionality = get_feature_dimensionality(graph, emb_method, verbose = verbose)
elif emb_method.dimensionality > graph.N:
print("Warning: dimensionality greater than number of nodes. Reducing to n")
emb_method.dimensionality = graph.N
landmarks = get_sample_nodes(graph, emb_method, verbose = verbose)
emb_method.landmark_features = feature_matrix[landmarks]
emb_method.landmark_indices = landmarks
#Explicitly compute similarities of all nodes to these landmarks
before_computesim = time.time()
C = np.zeros((graph.N,emb_method.dimensionality))
for node_index in range(graph.N): #for each of N nodes
for landmark_index in range(emb_method.dimensionality): #for each of p landmarks
#select the p-th landmark
if emb_method.landmark_features is not None: #landmarks are hard coded as actual features of landmark nodes
landmark_node_features = emb_method.landmark_features[landmark_index]
else:
landmark_node_features = feature_matrix[landmarks[landmark_index]] #landmarks are indices of landmark nodes
C[node_index,landmark_index] = compute_similarity(graph,
emb_method,
feature_matrix[node_index],
landmark_node_features,
graph.node_attributes,
(node_index, landmark_index))
before_computerep = time.time()
#Compute Nystrom-based node embeddings
if emb_method.l2l_decomp is None or not emb_method.use_landmarks:
#Compute and factorize SVD of pseudoinverse of landmark-to-landmark similarity matrix, unless we have one already
W_pinv = np.linalg.pinv(C[landmarks])
U,X,V = np.linalg.svd(W_pinv)
Wfac = np.dot(U, np.diag(np.sqrt(X)))
emb_method.l2l_decomp = Wfac
else:
if verbose:
print("Using saved decomposition of l2l similarity matrix")
reprsn = np.dot(C, emb_method.l2l_decomp)
after_computerep = time.time()
if verbose:
print("computed representation in time: ", after_computerep - before_computerep)
#Post-processing step to normalize embeddings (true by default, for use with REGAL)
if emb_method.normalize:
reprsn = reprsn / np.linalg.norm(reprsn, axis = 1).reshape((reprsn.shape[0],1))
return reprsn
if __name__ == "__main__":
if len(sys.argv) < 2:
#####PUT IN YOUR GRAPH AS AN EDGELIST HERE (or pass as cmd line argument)#####
#(see networkx read_edgelist() method...if networkx can read your file as an edgelist you're good!)
graph_file = "data/arenas_combined_edges.txt"
else:
graph_file = sys.argv[1]
nx_graph = nx.read_edgelist(graph_file, nodetype = int, comments="%")
adj_matrix = nx.adjacency_matrix(nx_graph).todense()
graph = Graph(adj_matrix)
emb_method = RepMethod(max_layer = 2) #Learn representations with xNetMF. Can adjust parameters (e.g. as in REGAL)
representations = get_representations(graph, emb_method)
print(representations.shape)