-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_datatransfer.R
569 lines (485 loc) · 22.3 KB
/
02_datatransfer.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# Analyze the accuracy and precision of the GPS Devices
rm(list=ls()) # remove everything out of the workspace
library(dplyr)
library(ggplot2)
library(lubridate)
library(writexl)
setwd("/Users/sven-olebuhrmann/Documents/01_Uni/Master_Kiel/00_Master Arbeit/03_R") # set the working dorectory - file location
# load in the reference points recorded by the Emlid Device, named reference
# Referenz datapoints
#### Transferrates ####
# load in csv
# Clean = no outliers after IQR
# calced = standard dataframe with outliers
{
data_clean <- read_csv("/Users/sven-olebuhrmann/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/01_Data_accuracy.csv")
data_calced <- read_csv("/Users/sven-olebuhrmann/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/01_Data_w_dist.csv")
}
# create factors to have ordered display in plots
{
data_calced$Pos <- factor(data_calced$Pos, levels = c("50m", "90m", "115m"))
data_calced$Trial <- factor(data_calced$Trial, levels = c("1.1", "1.2", "2.1", "2.2"))
data_clean$Pos <- factor(data_clean$Pos, levels = c("50m", "90m", "115m"))
data_clean$Trial <- factor(data_clean$Trial, levels = c("1.1", "1.2", "2.1", "2.2"))
}
# standardize the data that only data from hour 1 till the 20th hour is looked at
# With outliers
{
data_std <- data_calced %>%
group_by(File_Dat) %>%
filter(Date_Time >= (min(Date_Time) + hours(1)) & Date_Time <= (min(Date_Time) + hours(20))) %>%
ungroup()
}
# W/o outliers
{
data_std_clean <- data_clean %>%
group_by(File_Dat) %>%
filter(Date_Time >= (min(Date_Time) + hours(1)) & Date_Time <= (min(Date_Time) + hours(20))) %>%
ungroup()
}
# write csv for standarized df
setwd("~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data")
#write_csv(data_std_clean, file = "~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Data_std.csv")
# Boxplots for the Trials
### Create subsets and boxplots for transferrates in comparison of parameters of
### interest
#### Observatios per minute for Trials ####
### With Outliers
# Count the number of observations per minute for each GPS device and trial
# With outliers
# create df with n per min and n per h, start and end time divided by observations
{
sum_Trial_with <- data_std %>%
group_by(DeviceNumber, Trial) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
}
# Create the boxplot
Trial_permin_with <- ggplot(sum_Trial_with, aes(x = as.factor(Trial),
y = Observations)) +
geom_boxplot() +
labs(x = "Versuch",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(Trial_permin_with)
ggsave(filename = "Abb30_Versuch_Transferrate_mitAus.png",
plot = Trial_permin_with,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Without outliers
# create df with n per min and n per h, start and end time divided by observations
{
sum_Trial_clean <- data_std_clean %>%
group_by(DeviceNumber, Trial) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
}
# Create the boxplot
Trial_permin_clean <- ggplot(sum_Trial_clean, aes(x = as.factor(Trial),
y = Observations)) +
geom_boxplot() +
labs(x = "Versuch",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(Trial_permin_clean)
ggsave(filename = "Abb31_Versuch_Transferrate_clean.png",
plot = Trial_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
#### Observatios per minute for GNSS Systeme ####
### With Outliers
# Count the number of observations per minute for each GPS device and trial
# With outliers
# create df with n per min and n per h, start and end time divided by observations
{
GNSS_n_p_min_with <- data_std %>%
group_by(DeviceNumber, Trial, Gateway) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
}
# Create the boxplot
GNSS_permin_with <- ggplot(GNSS_n_p_min_with, aes(x = as.factor(Gateway),
y = Observations)) +
geom_boxplot() +
labs(x = "GNSS-System",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(GNSS_permin_with)
ggsave(filename = "Abb32_GNSS_Transferrate_mitAus.png",
plot = GNSS_permin_with,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Without outliers
GNSS_n_p_min_clean <- data_std_clean %>%
group_by(DeviceNumber, Trial, Gateway) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
GNSS_permin_clean <- ggplot(GNSS_n_p_min_clean, aes(x = as.factor(Gateway),
y = Observations)) +
geom_boxplot() +
labs(x = "GNSS-System",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(GNSS_permin_clean)
ggsave(filename = "Abb33_GNSS_Transferrate_clean.png",
plot = GNSS_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
#### Observatios per minute for Temp Class ####
### With Outliers
# Count the number of observations per minute for each GPS device and trial
# With outliers
temp_n_p_min_with <- data_std %>%
group_by(DeviceNumber, Trial, TempClass) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
temp_permin_with <- ggplot(temp_n_p_min_with, aes(x = as.factor(TempClass),
y = Observations)) +
geom_boxplot() +
labs(x = "Temperatur-Klassen",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(temp_permin_with)
ggsave(filename = "Abb34_Temp_Transferrate_mitAus.png",
plot = temp_permin_with,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Without outliers
temp_n_p_min_clean <- data_std_clean %>%
group_by(DeviceNumber, Trial, TempClass) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
temp_permin_clean <- ggplot(temp_n_p_min_clean, aes(x = as.factor(TempClass),
y = Observations)) +
geom_boxplot() +
labs(x = "Temperatur-Klassen",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(temp_permin_clean)
ggsave(filename = "Abb35_temp_Transferrate_clean.png",
plot = temp_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
#### Observatios per minute for V Class ####
### With Outliers
# Count the number of observations per minute for each GPS device and trial
# With outliers
V_n_p_min_with <- data_std %>%
group_by(DeviceNumber, Trial, VoltageClass) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
V_permin_with <- ggplot(V_n_p_min_with, aes(x = as.factor(VoltageClass),
y = Observations)) +
geom_boxplot() +
labs(x = "Spannungsklassen",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(V_permin_with)
ggsave(filename = "Abb36_V_Transferrate_mitAus.png",
plot = V_permin_with,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Without outliers
V_n_p_min_clean <- data_std_clean %>%
group_by(DeviceNumber, Trial, VoltageClass) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
V_permin_clean <- ggplot(V_n_p_min_clean, aes(x = as.factor(VoltageClass),
y = Observations)) +
geom_boxplot() +
labs(x = "Spannungsklassen",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(V_permin_clean)
ggsave(filename = "Abb37_V_Transferrate_clean.png",
plot = V_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
#### Observatios per minute for Positionen ####
### With Outliers
# Count the number of observations per minute for each GPS device and trial
# With outliers
Pos_n_p_min_with <- data_std %>%
group_by(DeviceNumber, Trial, Pos) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
Pos_permin_with <- ggplot(Pos_n_p_min_with, aes(x = as.factor(Pos),
y = Observations)) +
geom_boxplot() +
labs(x = "Position",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(Pos_permin_with)
ggsave(filename = "Abb38_Pos_Transferrate_mitAus.png",
plot = Pos_permin_with,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Without outliers
Pos_n_p_min_clean <- data_std_clean %>%
group_by(DeviceNumber, Trial, Pos) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
Pos_permin_clean <- ggplot(Pos_n_p_min_clean, aes(x = as.factor(Pos),
y = Observations)) +
geom_boxplot() +
labs(x = "Position",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(Pos_permin_clean)
ggsave(filename = "Abb39_Pos_Transferrate_clean.png",
plot = Pos_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Create the boxplot incl Trials
Pos_permin_clean <- ggplot(Pos_n_p_min_clean, aes(x = as.factor(Pos),
y = Observations)) +
geom_boxplot() +
labs(x = "Position",
y = "Übertragungsrate [n/min]") +
facet_wrap(~Trial) +
theme_minimal()
print(Pos_permin_clean)
ggsave(filename = "Abb39_Pos_Transferrate_clean.png",
plot = Pos_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
#### excluded cause wrong, keeping it for future reference if true ####
# Create a new column for date and minute part of Date_Time
data_std <- data_std %>%
mutate(Date_Minute = floor_date(Date_Time, unit = "minute"))
data_std_clean <- data_std_clean %>%
mutate(Date_Minute = floor_date(Date_Time, unit = "minute"))
Trials_n_p_min_with <- data_std %>%
group_by(Trial, DeviceNumber, Date_Minute) %>%
summarise(Observations = n()) %>%
ungroup()
#### Observatios per minute for Distanzen ####
### With Outliers
# Count the number of observations per minute for each GPS device and trial
# With outliers
dist_n_p_min_with <- data_std %>%
group_by(DeviceNumber, Trial, m_class) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
dist_permin_with <- ggplot(dist_n_p_min_with, aes(x = as.factor(m_class),
y = Observations)) +
geom_boxplot() +
labs(x = "Entfernung zum Referenzpunkt [m, gerundet]",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(dist_permin_with)
ggsave(filename = "Abb40_dist_Transferrate_mitAus.png",
plot = Pos_permin_with,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
# Without outliers
dist_n_p_min_clean <- data_std_clean %>%
group_by(DeviceNumber, Trial, m_class) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
# Create the boxplot
dist_permin_clean <- ggplot(dist_n_p_min_clean, aes(x = as.factor(m_class),
y = Observations)) +
geom_boxplot() +
labs(x = "Entfernung zum Referenzpunkt [m, gerundet]",
y = "Übertragungsrate [n/min]") +
theme_minimal()
print(dist_permin_clean)
ggsave(filename = "Abb41_dist_Transferrate_clean.png",
plot = Pos_permin_clean,
path =
"~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/02_Transferrate/Plots",
height=10, width=16, bg = "white", units="cm")
#### excluded cause wrong, keeping it for future reference if true ####
# Create a new column for date and minute part of Date_Time
data_std <- data_std %>%
mutate(Date_Minute = floor_date(Date_Time, unit = "minute"))
data_std_clean <- data_std_clean %>%
mutate(Date_Minute = floor_date(Date_Time, unit = "minute"))
Trials_n_p_min_with <- data_std %>%
group_by(Trial, DeviceNumber, Date_Minute) %>%
summarise(Observations = n()) %>%
ungroup()
#### part of deskriptive Statistics ####
## mit ausreißer
{
summary_df <- data_std %>%
arrange(DeviceNumber, Date_Time) %>%
group_by(DeviceNumber, Trial, Gateway, Pos) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
}
# for summaries that do not get grouped by Devices use the following code to only count sum the max hour of one device per File_Dat
setwd("~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/00_Grundlagen/Summary - mit Ausreißer")
write_summary_files <- function(variable_names, custom_suffix) {
variable_summary <- summary_df %>%
group_by(across(all_of(variable_names), .names = "{.col}")) %>%
summarise(
Total_N = sum(N),
Total_h = sum(Total_Hours)
)
custom_names <- paste0(paste(variable_names, collapse = "_"), custom_suffix)
write.csv(variable_summary, paste0(custom_names, "_N_2.csv"))
write_xlsx(variable_summary, paste0(custom_names, "_N_2.xlsx"))
}
{
variables_to_summarize <- list(
list(variable_names = c("Trial"), custom_suffix = "Trial"),
list(variable_names = c("Pos"), custom_suffix = "Pos"),
list(variable_names = c("Trial", "Pos"), custom_suffix = "Trial_Pos"),
list(variable_names = c("Gateway"), custom_suffix = "Gate")
)
}
for (combination in variables_to_summarize) {
write_summary_files(combination$variable_names, combination$custom_suffix)
}
## ohne ausreißer
{
summary_df_clean <- data_std_clean %>%
arrange(DeviceNumber, Date_Time) %>%
group_by(DeviceNumber, Trial, Gateway, Pos) %>%
summarize(
"N" = n(), # Count all observations
"Start_Time" = min(Date_Time), #Start time and date
"End_Time" = max(Date_Time), # Finds the end time and date
"Total_Hours" = as.integer(difftime(End_Time, Start_Time, units = "hours")), # Calculate total hours
"Total_Minutes" = as.integer(difftime(End_Time, Start_Time, units = "mins")), # Calculate total minutes
"Observations_hourly" = N / Total_Hours, # Calculate observations per hour
"Observations" = N / Total_Minutes# Calculate observations per minute
)
}
# for summaries that do not get grouped by Devices use the following code to only count sum the max hour of one device per File_Dat
setwd("~/Documents/01_Uni/Master_Kiel/00_Master Arbeit/02_Data/00_Grundlagen/Summary - ohne Ausreißer")
write_summary_files <- function(variable_names, custom_suffix) {
variable_summary <- summary_df_clean %>%
group_by(across(all_of(variable_names), .names = "{.col}")) %>%
summarise(
Total_N = sum(N),
Total_h = sum(Total_Hours)
)
custom_names <- paste0(paste(variable_names, collapse = "_"), custom_suffix)
write.csv(variable_summary, paste0(custom_names, "_N.csv"))
write_xlsx(variable_summary, paste0(custom_names, "_N.xlsx"))
}
{
variables_to_summarize <- list(
list(variable_names = c("Trial"), custom_suffix = "Trial"),
list(variable_names = c("Pos"), custom_suffix = "Pos"),
list(variable_names = c("Trial", "Pos"), custom_suffix = "Trial_Pos"),
list(variable_names = c("Gateway"), custom_suffix = "Gate")
)
}
for (combination in variables_to_summarize) {
write_summary_files(combination$variable_names, combination$custom_suffix)
}