-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimplicit_differentiable_renderer.py
760 lines (630 loc) · 32.4 KB
/
implicit_differentiable_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import time
import torch
import torch.nn as nn
import numpy as np
from utils import rend_util
from model.embedder import *
from model.ray_tracing import RayTracing
from model.sample_network import SampleNetwork
from model.sg_envmap_material import EnvmapMaterialNetwork
from model.sg_render import render_with_sg, prepend_dims
from model.path_tracing_render import sg_fn
import utils.debug_helper as debug
class ImplicitNetwork(nn.Module):
def __init__(
self,
feature_vector_size,
d_in,
d_out,
dims,
geometric_init=True,
bias=1.0,
skip_in=(),
weight_norm=True,
multires=0,
use_last_as_f=False
):
super().__init__()
if use_last_as_f:
assert feature_vector_size == dims[-1]
self.feature_vector_size = feature_vector_size
print('ImplicitNetowork feature_vector_size: ', self.feature_vector_size)
if not use_last_as_f:
dims = [d_in] + dims + [d_out + feature_vector_size]
else:
dims = [d_in] + dims + [d_out]
self.embed_fn = None
if multires > 0:
embed_fn, input_ch = get_embedder(multires)
self.embed_fn = embed_fn
dims[0] = input_ch
self.num_layers = len(dims)
self.skip_in = skip_in
self.use_last_as_f = use_last_as_f
for l in range(0, self.num_layers - 1):
if l + 1 in self.skip_in:
out_dim = dims[l + 1] - dims[0]
else:
out_dim = dims[l + 1]
lin = nn.Linear(dims[l], out_dim)
if geometric_init:
if l == self.num_layers - 2:
torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, -bias)
elif multires > 0 and l == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim))
elif multires > 0 and l in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0)
else:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
if weight_norm:
lin = nn.utils.weight_norm(lin)
setattr(self, "lin" + str(l), lin)
self.softplus = nn.Softplus(beta=100)
def forward(self, input, compute_grad=False):
if self.embed_fn is not None:
input = self.embed_fn(input)
x = input
for l in range(0, self.num_layers - 1):
if self.use_last_as_f and l == self.num_layers - 2:
feature_vector = x
lin = getattr(self, "lin" + str(l))
if l in self.skip_in:
x = torch.cat([x, input], 1) / np.sqrt(2)
x = lin(x)
if l < self.num_layers - 2:
x = self.softplus(x)
if self.use_last_as_f:
x = torch.cat([x, feature_vector], dim=-1)
return x
def gradient(self, x, no_grad=False):
x.requires_grad_(True)
y = self.forward(x)[:,:1]
d_output = torch.ones_like(y, requires_grad=False, device=y.device)
gradients = torch.autograd.grad(
outputs=y,
inputs=x,
grad_outputs=d_output,
create_graph=not no_grad,
retain_graph=not no_grad,
only_inputs=True)[0]
if no_grad:
gradients = gradients.detach()
return gradients.unsqueeze(1)
class RenderingNetwork(nn.Module):
def __init__(
self,
feature_vector_size,
mode,
d_in,
d_out,
dims,
weight_norm=True,
weight_init=False,
multires_view=0,
multires_xyz=0,
normalize_output=True,
clip_output=False,
clip_method="relu",
):
super().__init__()
self.normalize_output = normalize_output
self.clip_output = clip_output
self.clip_method = clip_method
self.feature_vector_size = feature_vector_size
print('RenderingNetowork feature_vector_size: ', self.feature_vector_size)
self.mode = mode
dims = [d_in + feature_vector_size] + dims + [d_out]
self.embedview_fn = None
if multires_view > 0:
print('Applying positional encoding to view directions: ', multires_view)
embedview_fn, input_ch = get_embedder(multires_view)
self.embedview_fn = embedview_fn
dims[0] += (input_ch - 3)
self.embedxyz_fn = None
if multires_xyz > 0:
print('Applying positional encoding to xyz: ', multires_xyz)
embedxyz_fn, input_ch = get_embedder(multires_xyz)
self.embedxyz_fn = embedxyz_fn
dims[0] += (input_ch - 3)
self.num_layers = len(dims)
for l in range(0, self.num_layers - 1):
out_dim = dims[l + 1]
lin = nn.Linear(dims[l], out_dim)
if weight_norm:
lin = nn.utils.weight_norm(lin)
setattr(self, "lin" + str(l), lin)
if weight_init:
for l in range(0, self.num_layers - 2):
lin = getattr(self, "lin" + str(l))
nn.init.kaiming_uniform_(lin.weight, mode='fan_in', nonlinearity='relu')
nn.init.constant_(lin.bias, 0.0)
l = self.num_layers - 2
lin = getattr(self, "lin" + str(l))
nn.init.constant_(lin.bias, 0.0)
if self.normalize_output: # tanh
nn.init.xavier_uniform_(lin.weight, gain=nn.init.calculate_gain('tanh'))
elif self.clip_method == "relu":
nn.init.kaiming_uniform_(lin.weight, mode='fan_in', nonlinearity='relu')
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def forward(self, points, normals, view_dirs, feature_vectors=None):
if self.embedview_fn is not None:
view_dirs = self.embedview_fn(view_dirs)
if self.embedxyz_fn is not None:
points = self.embedxyz_fn(points)
if feature_vectors is not None:
if self.mode == 'idr':
rendering_input = torch.cat([points, view_dirs, normals, feature_vectors], dim=-1)
elif self.mode == 'no_view_dir':
rendering_input = torch.cat([points, normals, feature_vectors], dim=-1)
elif self.mode == 'no_normal':
rendering_input = torch.cat([points, view_dirs, feature_vectors], dim=-1)
else:
if self.mode == 'idr':
rendering_input = torch.cat([points, view_dirs, normals], dim=-1)
elif self.mode == 'no_view_dir':
rendering_input = torch.cat([points, normals], dim=-1)
elif self.mode == 'no_normal':
rendering_input = torch.cat([points, view_dirs], dim=-1)
x = rendering_input
for l in range(0, self.num_layers - 1):
lin = getattr(self, "lin" + str(l))
x = lin(x)
if l < self.num_layers - 2:
x = self.relu(x)
if self.normalize_output:
x = self.tanh(x)
return (x + 1.) / 2.
elif not self.clip_output:
return x
else:
if self.clip_method == "relu":
return self.relu(x)
elif self.clip_method == "abs":
return torch.abs(x)
elif self.clip_method == "relu_init":
return self.relu(x) + 0.5
elif self.clip_method == "pow2":
return x ** 2
class IDRNetwork(nn.Module):
def __init__(self, conf):
super().__init__()
self.feature_vector_size = conf.get_int('feature_vector_size')
self.correct_normal = conf.get_bool('correct_normal', default=False)
self.implicit_network = ImplicitNetwork(self.feature_vector_size, **conf.get_config('implicit_network'))
self.rendering_network = RenderingNetwork(self.feature_vector_size, **conf.get_config('rendering_network'))
self.envmap_material_network = EnvmapMaterialNetwork(correct_normal=self.correct_normal, feature_vector_size=self.feature_vector_size, **conf.get_config('envmap_material_network'))
self.ray_tracer = RayTracing(**conf.get_config('ray_tracer'))
self.sample_network = SampleNetwork()
self.object_bounding_sphere = conf.get_float('ray_tracer.object_bounding_sphere')
self.render_type = conf.get_string('render_type', default='sg')
self.rgb_render = self.get_rgb_render(self.render_type)
self.fast_multi_ray = conf.get_bool('fast_multi_ray', default=False)
self.render_background = conf.get_bool('render_background', default=False)
self.state_freeze_geo = False
self.state_freeze_idr = False
self.state_freeze_env_mat = False
def freeze_geometry(self):
for param in self.implicit_network.parameters():
param.requires_grad = False
self.state_freeze_geo = True
def unfreeze_geometry(self):
for param in self.implicit_network.parameters():
param.requires_grad = True
self.state_freeze_geo = False
def freeze_idr(self):
self.freeze_geometry()
for param in self.rendering_network.parameters():
param.requires_grad = False
self.state_freeze_idr = True
def unfreeze_idr(self):
self.unfreeze_geometry()
for param in self.rendering_network.parameters():
param.requires_grad = True
self.state_freeze_idr = False
def freeze_decompose_render(self):
for param in self.envmap_material_network.parameters():
param.requires_grad = False
self.state_freeze_env_mat = True
def unfreeze_decompose_render(self):
for param in self.envmap_material_network.parameters():
param.requires_grad = True
self.state_freeze_env_mat = False
def train(self, mode: bool = True):
nn.Module.train(self, mode)
if self.state_freeze_idr:
self.rendering_network.eval()
if self.state_freeze_geo:
self.implicit_network.eval()
if self.state_freeze_env_mat:
self.envmap_material_network.eval()
def forward(self, input, with_point=False):
if not with_point:
return self.forward_with_uv(input)
else:
return self.forward_with_point(input)
def forward_with_uv(self, input):
# # TODO remove
# uv_in_area = ((input['uv'] <= 250) & (input['uv'] >= 248)).all(-1)
# if uv_in_area.any():
# print("debug")
# Parse model input
intrinsics = input["intrinsics"]
uv = input["uv"] # BxSx2 or BxSxRx2
pose = input["pose"]
object_mask = input["object_mask"].reshape(-1) # B*S
multi_ray_per_pix = len(uv.shape) == 4
if multi_ray_per_pix:
B, S, R, D = multi_ray_data_shape = uv.shape
if not self.fast_multi_ray:
uv = uv.reshape(B, S*R, D)
object_mask = object_mask.reshape(B, S, 1)
object_mask = object_mask.expand(B, S, R)
object_mask = object_mask.reshape(-1)
else:
uv = uv.mean(2) # BxSxD
else:
multi_ray_data_shape = None
ray_dirs, cam_loc = rend_util.get_camera_params(uv, pose, intrinsics)
batch_size, num_pixels, _ = ray_dirs.shape
training_implicit_network = self.implicit_network.training
if training_implicit_network: self.implicit_network.eval()
with torch.no_grad():
points, network_object_mask, dists = self.ray_tracer(sdf=lambda x: self.implicit_network(x)[:, 0],
cam_loc=cam_loc,
object_mask=object_mask,
ray_directions=ray_dirs)
if training_implicit_network: self.implicit_network.train()
points = (cam_loc.unsqueeze(1) + dists.reshape(batch_size, num_pixels, 1) * ray_dirs).reshape(-1, 3)
sdf_output = self.implicit_network(points)[:, 0:1]
ray_dirs = ray_dirs.reshape(-1, 3)
if self.training and not self.state_freeze_geo:
surface_mask = network_object_mask & object_mask
surface_points = points[surface_mask]
surface_dists = dists[surface_mask].unsqueeze(-1)
surface_ray_dirs = ray_dirs[surface_mask]
surface_cam_loc = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[surface_mask]
surface_output = sdf_output[surface_mask]
N = surface_points.shape[0]
# Sample points for the eikonal loss
eik_bounding_box = self.object_bounding_sphere
n_eik_points = batch_size * num_pixels // 2
eikonal_points = torch.empty(n_eik_points, 3).uniform_(-eik_bounding_box, eik_bounding_box).cuda()
eikonal_pixel_points = points.clone()
eikonal_pixel_points = eikonal_pixel_points.detach()
eikonal_points = torch.cat([eikonal_points, eikonal_pixel_points], 0)
points_all = torch.cat([surface_points, eikonal_points], dim=0)
output = self.implicit_network(surface_points)
surface_sdf_values = output[:N, 0:1].detach()
with torch.enable_grad():
g = self.implicit_network.gradient(points_all, self.state_freeze_geo)
surface_points_grad = g[:N, 0, :].clone().detach()
grad_theta = g[N:, 0, :]
differentiable_surface_points = self.sample_network(surface_output,
surface_sdf_values,
surface_points_grad,
surface_dists,
surface_cam_loc,
surface_ray_dirs)
# debug watcher
debug.watch_value(differentiable_surface_points, "differentiable_surface_points")
debug.watch_gradiant(differentiable_surface_points, "differentiable_surface_points")
else:
surface_mask = network_object_mask
differentiable_surface_points = points[surface_mask]
grad_theta = None
idr_rgb_values = torch.ones_like(points).float().cuda()
sg_rgb_values = torch.ones_like(points).float().cuda()
normal_values = torch.ones_like(points).float().cuda()
sg_diffuse_rgb_values = torch.ones_like(points).float().cuda()
sg_diffuse_albedo_values = torch.ones_like(points).float().cuda()
sg_specular_rgb_values = torch.zeros_like(points).float().cuda()
sg_roughness_values = torch.zeros_like(points[..., 0:1]).float().cuda()
sg_specular_reflection_values = torch.zeros_like(points).float().cuda()
ret = {}
if differentiable_surface_points.shape[0] > 0:
view_dirs = -ray_dirs[surface_mask] # ----> camera
ret = self.get_rbg_value(differentiable_surface_points, view_dirs, multi_ray_data_shape=multi_ray_data_shape)
if multi_ray_per_pix and self.fast_multi_ray:
masked_num = view_dirs.shape[0]
for key in [
'idr_rgb',
'sg_rgb',
'sg_specular_rgb',
'sg_diffuse_rgb',
'sg_diffuse_albedo',
]:
ret[key] = self.mean_pixel(ret[key], masked_num, R)
if self.envmap_material_network.roughness_mlp:
ret['sg_roughness'] = self.mean_pixel(ret['sg_roughness'], masked_num, R)
if self.envmap_material_network.specular_mlp:
ret['sg_specular_reflectance'] = self.mean_pixel(ret['sg_specular_reflectance'], masked_num, R)
if ret['sg_blending_weights']:
ret['sg_blending_weights'] = self.mean_pixel(ret['sg_blending_weights'], masked_num, R)
idr_rgb_values[surface_mask] = ret['idr_rgb']
sg_rgb_values[surface_mask] = ret['sg_rgb']
normal_values[surface_mask] = ret['normals']
sg_diffuse_rgb_values[surface_mask] = ret['sg_diffuse_rgb']
sg_diffuse_albedo_values[surface_mask] = ret['sg_diffuse_albedo']
sg_specular_rgb_values[surface_mask] = ret['sg_specular_rgb']
sg_roughness = ret['sg_roughness']
sg_blending_weights = ret['sg_blending_weights']
if not self.envmap_material_network.roughness_mlp:
# sg_roughness [K, 1]
if sg_blending_weights is not None:
# sg_blending_weights [..., K]
sg_roughness = (sg_roughness.unsqueeze(0) * sg_blending_weights.unsqueeze(-1)).sum(-2) # [..., 1]
sg_roughness_values[surface_mask] = sg_roughness
sg_specular_reflectance = ret['sg_specular_reflectance']
if not self.envmap_material_network.specular_mlp:
if sg_blending_weights is not None:
sg_specular_reflectance = (sg_specular_reflectance.unsqueeze(0) * sg_blending_weights.unsqueeze(-1)).sum(-2) # [..., 3]
sg_specular_reflection_values[surface_mask] = sg_specular_reflectance
background_mask = ~surface_mask
if self.render_background and background_mask.any():
light_dir = ray_dirs[background_mask] # [..., 3], original point (camera) ---> envmap sphere
background_rgb = self.get_background_rgb(light_dir) # [..., 3]
sg_rgb_values[background_mask] = background_rgb
output = {
'points': points,
'idr_rgb_values': idr_rgb_values,
'sg_rgb_values': sg_rgb_values,
'normal_values': normal_values,
'sdf_output': sdf_output,
'network_object_mask': network_object_mask,
'object_mask': object_mask,
'grad_theta': grad_theta,
'sg_diffuse_rgb_values': sg_diffuse_rgb_values,
'sg_diffuse_albedo_values': sg_diffuse_albedo_values,
'sg_specular_rgb_values': sg_specular_rgb_values,
'sg_roughness_values': sg_roughness_values,
'sg_specular_reflection_values': sg_specular_reflection_values,
'secondary_points': ret.get('secondary_points', None),
'secondary_mask': ret.get('secondary_mask', None),
'secondary_dir': ret.get('secondary_dir', None),
}
if multi_ray_per_pix and not self.fast_multi_ray:
for key in [
'idr_rgb_values',
'sg_rgb_values',
'network_object_mask',
'object_mask',
'sg_diffuse_rgb_values',
'sg_diffuse_albedo_values',
'sg_specular_rgb_values',
'sdf_output',
'points',
'sg_roughness_values',
'sg_specular_reflection_values'
]:
output[key] = self.mean_pixel(output[key], B * S, R)
output['normal_values'] = self.mean_pixel(output['normal_values'], B * S, R, vector=True)
# debug watcher
debug.watch_value(output['sg_rgb_values'], "sg_rgb_values")
debug.watch_gradiant(output['sg_rgb_values'], "sg_rgb_values")
return output
def forward_with_point(self, input):
# fetch data
points = input["points"] # NxRx3
ray_dirs = input["ray_dirs"] # NxRx3 camera ---> point
# reshape
N, R, _ = points.shape
points = points.reshape(-1, 3)
ray_dirs = ray_dirs.reshape(-1, 3)
# render
view_dirs = -ray_dirs # Nx3 point ---> camera
state_freeze_geo = self.state_freeze_geo
self.state_freeze_geo = True
ret = self.get_rbg_value(points, view_dirs)
self.state_freeze_geo = state_freeze_geo
# fetch data and handle multi rays
idr_rgb_values = self.mean_pixel(ret['idr_rgb'], N, R) # Nx3
sg_rgb_values = self.mean_pixel(ret['sg_rgb'], N, R) # Nx3
return {
'idr_rgb_values': idr_rgb_values,
'sg_rgb_values': sg_rgb_values,
}
def get_rbg_value(self, points, view_dirs, multi_ray_data_shape=None):
feature_vectors = None
if self.feature_vector_size > 0:
output = self.implicit_network(points)
feature_vectors = output[:, 1:]
with torch.enable_grad():
g = self.implicit_network.gradient(points, self.state_freeze_geo or not self.training)
normals = g[:, 0, :]
normals = normals / (torch.norm(normals, dim=-1, keepdim=True) + 1e-6) # ----> camera
view_dirs = view_dirs / (torch.norm(view_dirs, dim=-1, keepdim=True) + 1e-6) # ----> camera
if self.correct_normal:
normals = self.envmap_material_network.correct_normal(normals, points)
ret = { 'normals': normals, }
### model inference
idr_rgb = self.rendering_network(points, normals, view_dirs, feature_vectors)
sg_envmap_material = self.envmap_material_network(points, feature_vectors, normals)
if self.fast_multi_ray and multi_ray_data_shape:
B, S, R, D = multi_ray_data_shape
masked_num = idr_rgb.shape[0]
idr_rgb = idr_rgb.reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
points = points.reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
normals = normals.reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
view_dirs = view_dirs.reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
sg_envmap_material['sg_diffuse_albedo'] = sg_envmap_material['sg_diffuse_albedo'].reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
if self.envmap_material_network.specular_mlp and not self.envmap_material_network.fix_specular_albedo:
sg_envmap_material['sg_specular_reflectance'] = sg_envmap_material['sg_specular_reflectance'].reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
elif self.envmap_material_network.specular_mlp and self.envmap_material_network.fix_specular_albedo:
assert sg_envmap_material['sg_specular_reflectance'].shape[0] == 1
sg_envmap_material['sg_specular_reflectance'] = sg_envmap_material['sg_specular_reflectance'][0].reshape(1, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
if self.envmap_material_network.roughness_mlp:
sg_envmap_material['sg_roughness'] = sg_envmap_material[
'sg_roughness'].reshape(masked_num, 1, 1).expand(masked_num, R, 1).reshape(masked_num * R, 1)
if sg_envmap_material['sg_blending_weights']:
sg_envmap_material['sg_blending_weights'] = sg_envmap_material['sg_blending_weights'].reshape(masked_num, 1, 3).expand(masked_num, R, 3).reshape(masked_num*R, 3)
### idr renderer
ret['idr_rgb'] = idr_rgb
### sg renderer
if self.render_type in ["path_tracing_shadow", "path_tracing_diff_shadow", "pt_render_diff_shadow_indirect", "pt_render_diff_shadow_indirect_mlp",
"pt_render_diff_shadow_indirect_blend", "pt_render_diff_shadow2_indirect_blend", "pt_render_indirect_mlp", "pt_render_indirect_mlp_memsave",
"pt_render_shadow_indirect_mlp_envmap", "pt_render_shadow_indirect_mlp_envmap_memsave"]:
sg_ret = self.rgb_render(lgtSGs=sg_envmap_material['sg_lgtSGs'],
specular_reflectance=sg_envmap_material['sg_specular_reflectance'],
roughness=sg_envmap_material['sg_roughness'],
diffuse_albedo=sg_envmap_material['sg_diffuse_albedo'],
normal=normals, viewdirs=view_dirs,
blending_weights=sg_envmap_material['sg_blending_weights'],
points=points,
model=self)
else:
sg_ret = self.rgb_render(lgtSGs=sg_envmap_material['sg_lgtSGs'],
specular_reflectance=sg_envmap_material['sg_specular_reflectance'],
roughness=sg_envmap_material['sg_roughness'],
diffuse_albedo=sg_envmap_material['sg_diffuse_albedo'],
normal=normals, viewdirs=view_dirs,
blending_weights=sg_envmap_material['sg_blending_weights'])
ret.update(sg_ret)
ret.update({
'sg_roughness': sg_envmap_material['sg_roughness'],
'sg_specular_reflectance': sg_envmap_material['sg_specular_reflectance'],
'sg_blending_weights': sg_envmap_material['sg_blending_weights']
})
return ret
def render_sg_rgb(self, mask, normals, view_dirs, diffuse_albedo):
normals = normals / (torch.norm(normals, dim=-1, keepdim=True) + 1e-6) # ----> camera
view_dirs = view_dirs / (torch.norm(view_dirs, dim=-1, keepdim=True) + 1e-6) # ----> camera
### sg renderer
sg_envmap_material = self.envmap_material_network(points=None)
### split
split_size = 20000
normals_split = torch.split(normals, split_size, dim=0)
view_dirs_split = torch.split(view_dirs, split_size, dim=0)
diffuse_albedo_split = torch.split(diffuse_albedo, split_size, dim=0)
merged_ret = {}
for i in range(len(normals_split)):
sg_ret = render_with_sg(lgtSGs=sg_envmap_material['sg_lgtSGs'],
specular_reflectance=sg_envmap_material['sg_specular_reflectance'],
roughness=sg_envmap_material['sg_roughness'],
diffuse_albedo=diffuse_albedo_split[i],
normal=normals_split[i], viewdirs=view_dirs_split[i],
blending_weights=sg_envmap_material['sg_blending_weights'])
if i == 0:
for x in sorted(sg_ret.keys()):
merged_ret[x] = [sg_ret[x].detach(), ]
else:
for x in sorted(sg_ret.keys()):
merged_ret[x].append(sg_ret[x].detach())
for x in sorted(merged_ret.keys()):
merged_ret[x] = torch.cat(merged_ret[x], dim=0)
sg_ret = merged_ret
### maskout
for x in sorted(sg_ret.keys()):
sg_ret[x][~mask] = 1.
output = {
'sg_rgb_values': sg_ret['sg_rgb'],
'sg_diffuse_rgb_values': sg_ret['sg_diffuse_rgb'],
'sg_diffuse_albedo_values': diffuse_albedo,
'sg_specular_rgb_values': sg_ret['sg_specular_rgb'],
'sg_roughness': sg_envmap_material['sg_roughness'],
'sg_specular_reflectance': sg_envmap_material['sg_specular_reflectance'],
'sg_blending_weights': sg_envmap_material['sg_blending_weights']
}
return output
def get_background_rgb(self, light_dir):
"""
light_dir: [..., 3]
"""
if self.envmap_material_network.light_type == 'sg':
lgtSGs = self.envmap_material_network.get_lgtSGs() # [M, 7]
dots_shape = list(light_dir.shape[:-1])
M = lgtSGs.shape[0]
lgtSGs = prepend_dims(lgtSGs, dots_shape) # [..., M, 7]
light_dir = light_dir.unsqueeze(-2).expand(dots_shape + [M, 3]) # [..., M, 3]
lgtSGLobes = lgtSGs[..., :3] / (torch.norm(lgtSGs[..., :3], dim=-1, keepdim=True) + 1e-8) # [..., M, 3]
lgtSGLambdas = torch.abs(lgtSGs[..., 3:4]) # [..., M, 1]
lgtSGMus = torch.abs(lgtSGs[..., -3:]) # [..., M, 3] positive values
background_rgb = sg_fn(light_dir, lgtSGLobes, lgtSGLambdas, lgtSGMus) # [..., M, 3]
background_rgb = background_rgb.sum(-2) # [..., 3]
else:
lgtMap = self.envmap_material_network.get_lgtSGs() # [M, M, 7]
W, H, _ = lgtMap.shape
dots_shape = list(light_dir.shape[:-1])
# map wi to theta, phi
w_i_light = light_dir / torch.clamp(torch.norm(light_dir, dim=-1, keepdim=True), min=1e-8) # [..., 3]
phi = torch.arccos(w_i_light[..., 2:3]) # [..., 1]
theta = torch.atan2(w_i_light[..., 1:2], w_i_light[..., 0:1]) # [..., 1] (-pi, pi]
# map to u, v
# TODO only blender coordinate
# theta[theta < 0] += 2 * torch.pi # [..., 1]
u = (1. - theta / torch.pi) / 2. # [..., 1]
v = phi / torch.pi # [..., 1]
# compute light
u_id = torch.floor(u * W).long() # [..., 1]
v_id = torch.floor(v * H).long() # [..., 1]
u_id = torch.clamp(u_id, min=0, max=W-1)
v_id = torch.clamp(v_id, min=0, max=H-1)
light = lgtMap[v_id.reshape(-1), u_id.reshape(-1), :] # [All, 3]
light = light.reshape(dots_shape + [3]) # [..., 3]
background_rgb = light
return background_rgb
def mean_pixel(self, x, bs, r, vector=False):
assert x.shape[0] == bs * r
no_dim = len(x.shape) == 1
if no_dim:
x = x[..., None]
bsr, d = x.shape
x = x.reshape(bs, r, d)
if vector:
# TODO better solution
x = x[:, 0, :] # random choose one
elif x.dtype == torch.float:
x = x.mean(1) # b*s x d
elif x.dtype == torch.bool:
x = x.all(1) # b*s x d
else:
print("[WARNING] undefined type: ", x.dtype)
exit(0)
if no_dim:
x = x[..., 0]
return x
def get_rgb_render(self, render_type: str):
if render_type == "sg":
return render_with_sg
elif render_type == "path_tracing_sg":
from model.path_tracing_render import pt_render_with_sg
return pt_render_with_sg
elif render_type == "path_tracing":
from model.path_tracing_render import pt_render
return pt_render
elif render_type == "path_tracing_shadow":
from model.path_tracing_render import pt_render_shadow
return pt_render_shadow
elif render_type == "path_tracing_diff_shadow":
from model.path_tracing_render import pt_render_diff_shadow
return pt_render_diff_shadow
elif render_type == "pt_render_diff_shadow_indirect":
from model.path_tracing_render import pt_render_diff_shadow_indirect
return pt_render_diff_shadow_indirect
elif render_type == "pt_render_diff_shadow_indirect_mlp":
from model.path_tracing_render import pt_render_diff_shadow_indirect_mlp
return pt_render_diff_shadow_indirect_mlp
elif render_type == "pt_render_indirect_mlp":
from model.path_tracing_render import pt_render_indirect_mlp
return pt_render_indirect_mlp
elif render_type == "pt_render_diff_shadow_indirect_blend":
from model.path_tracing_render import pt_render_diff_shadow_indirect_blend
return pt_render_diff_shadow_indirect_blend
elif render_type == "pt_render_diff_shadow2_indirect_blend":
from model.path_tracing_render import pt_render_diff_shadow2_indirect_blend
return pt_render_diff_shadow2_indirect_blend
elif render_type == "pt_render_indirect_mlp_memsave":
from model.path_tracing_render import pt_render_indirect_mlp_memsave
return pt_render_indirect_mlp_memsave
elif render_type == "pt_render_shadow_indirect_mlp_envmap":
from model.path_tracing_render import pt_render_shadow_indirect_mlp_envmap
return pt_render_shadow_indirect_mlp_envmap
elif render_type == "pt_render_shadow_indirect_mlp_envmap_memsave":
from model.path_tracing_render import pt_render_shadow_indirect_mlp_envmap_memsave
return pt_render_shadow_indirect_mlp_envmap_memsave