|
| 1 | +/* |
| 2 | +** @data -> Multidimensional array inputs and outputs |
| 3 | +** @hiddenNeurons -> Hidden neuron number |
| 4 | +** @outputNeurons -> Output neuron number |
| 5 | +** @error -> Training process will be stop if the error lower than this number |
| 6 | +** @epoch -> Number of iterations |
| 7 | +** @learningRate -> Learning rate |
| 8 | +** @useAdaptiveLearningRate -> If you don't use adaptive learning rate mechanism you can set this value as false (default => true) |
| 9 | +** If you don't set momentum and weight decay values network automatically ignore these processes |
| 10 | +*/ |
| 11 | +function Network(data, hiddenNeurons, outputNeurons, error, epoch, learningRate, useAdaptiveLearningRate=true){ |
| 12 | + this.trainingData = data; |
| 13 | + this.inputNeurons = data[0].length - outputNeurons; |
| 14 | + this.hiddenNeurons = hiddenNeurons; |
| 15 | + this.outputNeurons = outputNeurons; |
| 16 | + this.error = error; |
| 17 | + this.epoch = epoch; |
| 18 | + this.learningRate = learningRate; |
| 19 | + this.testData; |
| 20 | + this.trainingError = null; |
| 21 | + this.testError = null; |
| 22 | + this.weightDecay = 0; |
| 23 | + this.momentum = 0; |
| 24 | + this.adaptiveLearningRateA = 0.001; |
| 25 | + this.adaptiveLearningRateB = 0.001; |
| 26 | + this.useAdaptiveLearningRate = useAdaptiveLearningRate; |
| 27 | +} |
| 28 | + |
| 29 | +Network.prototype.init = function(){ |
| 30 | + var inputNeuronCount = this.inputNeurons; |
| 31 | + var hiddenNeuronCount = this.hiddenNeurons; |
| 32 | + var outputNeuronCount = this.outputNeurons; |
| 33 | + |
| 34 | + this.inputNeurons = []; |
| 35 | + this.hiddenNeurons = []; |
| 36 | + this.outputNeurons = []; |
| 37 | + |
| 38 | + for(var i = 0; i < inputNeuronCount; i++){ |
| 39 | + var neuron = new Neuron(); |
| 40 | + neuron.initNeuron(hiddenNeuronCount); |
| 41 | + this.inputNeurons.push(neuron); |
| 42 | + } |
| 43 | + |
| 44 | + var biasNeuron = new Neuron(); |
| 45 | + biasNeuron.initNeuron(hiddenNeuronCount); |
| 46 | + biasNeuron.setOutput(1); |
| 47 | + this.inputNeurons.push(biasNeuron); |
| 48 | + |
| 49 | + for(var i = 0; i < hiddenNeuronCount; i++){ |
| 50 | + var neuron = new Neuron(); |
| 51 | + neuron.initNeuron(outputNeuronCount); |
| 52 | + this.hiddenNeurons.push(neuron); |
| 53 | + } |
| 54 | + |
| 55 | + biasNeuron = new Neuron(); |
| 56 | + biasNeuron.initNeuron(outputNeuronCount); |
| 57 | + biasNeuron.setOutput(1); |
| 58 | + this.hiddenNeurons.push(biasNeuron); |
| 59 | + |
| 60 | + for(var i = 0; i < outputNeuronCount; i++){ |
| 61 | + var neuron = new Neuron(); |
| 62 | + this.outputNeurons.push(neuron); |
| 63 | + } |
| 64 | +}; |
| 65 | + |
| 66 | +Network.prototype.train = function(){ |
| 67 | + var prevError = 0; |
| 68 | + for(var i = 0; i < this.epoch; i++){ |
| 69 | + |
| 70 | + this.shuffleArray(this.trainingData); |
| 71 | + var totalError = 0; |
| 72 | + for(var j = 0; j < this.trainingData.length; j++){ |
| 73 | + |
| 74 | + this.feedForward(this.trainingData[j]); |
| 75 | + totalError += this.calculateError(); |
| 76 | + this.backPropagation(); |
| 77 | + |
| 78 | + } |
| 79 | + totalError = totalError / this.trainingData.length; |
| 80 | + this.trainingError = totalError; |
| 81 | + |
| 82 | + /* |
| 83 | + * -> Adaptive Learning Rate Start |
| 84 | + */ |
| 85 | + if(this.useAdaptiveLearningRate){ |
| 86 | + if(prevError < totalError){ |
| 87 | + this.learningRate -= this.learningRate * this.adaptiveLearningRateB; |
| 88 | + }else{ |
| 89 | + this.learningRate += this.adaptiveLearningRateA; |
| 90 | + } |
| 91 | + } |
| 92 | + prevError = totalError; |
| 93 | + /* |
| 94 | + * -> Adaptive Learning Rate End |
| 95 | + */ |
| 96 | + // We add weight sum to error for prevent the weight increasing so much |
| 97 | + totalError += (this.weightDecay/2) * this.getSumOfWeightSquares(); |
| 98 | + if(totalError < this.error) |
| 99 | + break; |
| 100 | + } |
| 101 | +}; |
| 102 | + |
| 103 | +Network.prototype.test = function(){ |
| 104 | + var totalError = 0; |
| 105 | + for(var i = 0; i < this.testData.length; i++){ |
| 106 | + |
| 107 | + this.feedForward(this.testData[i]); |
| 108 | + totalError += this.calculateError(); |
| 109 | + |
| 110 | + } |
| 111 | + this.testError = totalError / this.testData.length; |
| 112 | +}; |
| 113 | + |
| 114 | +Network.prototype.backPropagation = function(){ |
| 115 | + for(var i = 0; i < this.outputNeurons.length; i++){ |
| 116 | + |
| 117 | + var outputError = this.outputNeurons[i].getError(); |
| 118 | + |
| 119 | + for(var j = 0; j < this.hiddenNeurons.length; j++){ |
| 120 | + var accumulateOutputError = 0; |
| 121 | + if(i != 0){ |
| 122 | + accumulateOutputError = this.hiddenNeurons[j].getError(); |
| 123 | + } |
| 124 | + var weight = this.hiddenNeurons[j].getWeight(i); |
| 125 | + this.hiddenNeurons[j].setError(accumulateOutputError + (outputError * weight)); |
| 126 | + |
| 127 | + var delta = this.learningRate * outputError * this.hiddenNeurons[j].getOutput(); |
| 128 | + var prevDelta = this.hiddenNeurons[j].getPrevDelta(i); |
| 129 | + var newWeight = weight + delta; |
| 130 | + if(this.useWeightDecay) newWeight -= this.weightDecay * weight; |
| 131 | + if(this.useMomentum) newWeight += this.momentum * prevDelta; |
| 132 | + this.hiddenNeurons[j].setWeight(i, newWeight); |
| 133 | + this.hiddenNeurons[j].setPrevDelta(i, delta); |
| 134 | + } |
| 135 | + } |
| 136 | + |
| 137 | + for(var i = 0; i < this.hiddenNeurons.length-1; i++){ // Because of bias |
| 138 | + |
| 139 | + var accumulatedError = this.hiddenNeurons[i].getError(); |
| 140 | + var derivative = this.hiddenNeurons[i].getOutput() * (1 - this.hiddenNeurons[i].getOutput()); |
| 141 | + |
| 142 | + for(var j = 0; j < this.inputNeurons.length; j++){ |
| 143 | + var delta = this.learningRate * accumulatedError * derivative * this.inputNeurons[j].getOutput(); |
| 144 | + |
| 145 | + var weight = this.inputNeurons[j].getWeight(i); |
| 146 | + var prevDelta = this.inputNeurons[j].getPrevDelta(i); |
| 147 | + |
| 148 | + var newWeight = weight + delta; |
| 149 | + if(this.useWeightDecay) newWeight -= this.weightDecay * weight; |
| 150 | + if(this.useMomentum) newWeight += this.momentum * prevDelta; |
| 151 | + |
| 152 | + this.inputNeurons[j].setWeight(i, newWeight); |
| 153 | + this.inputNeurons[j].setPrevDelta(i, delta); |
| 154 | + } |
| 155 | + } |
| 156 | +}; |
| 157 | + |
| 158 | +Network.prototype.calculateError = function(){ |
| 159 | + var totalError = 0; |
| 160 | + for(var i = 0; i < this.outputNeurons.length; i++){ |
| 161 | + var error = this.outputNeurons[i].getActual() - this.outputNeurons[i].getOutput(); |
| 162 | + this.outputNeurons[i].setError(error); |
| 163 | + totalError += Math.pow(error, 2); |
| 164 | + } |
| 165 | + return totalError; |
| 166 | +}; |
| 167 | + |
| 168 | +Network.prototype.feedForward = function(array){ |
| 169 | + this.setOutputs(array); |
| 170 | + |
| 171 | + for(var i = 0; i < this.hiddenNeurons.length-1; i++){ // Because of bias |
| 172 | + var input = 0; |
| 173 | + for(var j = 0; j < this.inputNeurons.length; j++){ |
| 174 | + input += this.inputNeurons[j].getOutput() * this.inputNeurons[j].getWeight(i); |
| 175 | + } |
| 176 | + this.hiddenNeurons[i].setOutput(this.sigmoid(input)); |
| 177 | + } |
| 178 | + |
| 179 | + for(var i = 0; i < this.outputNeurons.length; i++){ |
| 180 | + var input = 0; |
| 181 | + for(var j = 0; j < this.hiddenNeurons.length; j++){ |
| 182 | + input += this.hiddenNeurons[j].getOutput() * this.hiddenNeurons[j].getWeight(i); |
| 183 | + } |
| 184 | + this.outputNeurons[i].setOutput(input); |
| 185 | + } |
| 186 | +}; |
| 187 | + |
| 188 | +Network.prototype.getSumOfWeightSquares = function(){ |
| 189 | + var sum = 0; |
| 190 | + for(var i = 0; i < this.outputNeurons.length; i++){ |
| 191 | + for(var j = 0; j < this.hiddenNeurons.length; j++){ |
| 192 | + sum += Math.pow(this.hiddenNeurons[j].getWeight(i), 2); |
| 193 | + } |
| 194 | + } |
| 195 | + for(var i = 0; i < this.hiddenNeurons.length - 1; i++){ |
| 196 | + for(var j = 0; j < this.inputNeurons.length; j++){ |
| 197 | + sum += Math.pow(this.inputNeurons[j].getWeight(i), 2); |
| 198 | + } |
| 199 | + } |
| 200 | + return sum; |
| 201 | +}; |
| 202 | + |
| 203 | +Network.prototype.getRSquare = function(){ |
| 204 | + var actuals = []; |
| 205 | + var outputs = []; |
| 206 | + for(var i = 0; i < this.testData.length; i++){ |
| 207 | + this.feedForward(this.testData[i]); |
| 208 | + actuals.push(this.outputNeurons[0].getActual()); |
| 209 | + outputs.push(this.outputNeurons[0].getOutput()); |
| 210 | + } |
| 211 | + var meanActuals = 0; |
| 212 | + for(var i = 0; i < actuals.length; i++){ |
| 213 | + meanActuals += actuals[i]; |
| 214 | + } |
| 215 | + meanActuals = meanActuals / actuals.length; |
| 216 | + var sumOfSquares = 0; |
| 217 | + var sumOfSquaresOfResiduals = 0; |
| 218 | + for(var i = 0; i < actuals.length; i++){ |
| 219 | + sumOfSquares += Math.pow(actuals[i] - meanActuals, 2); |
| 220 | + sumOfSquaresOfResiduals += Math.pow(actuals[i] - outputs[i], 2); |
| 221 | + } |
| 222 | + var rSquare = 1 - sumOfSquaresOfResiduals / sumOfSquares; |
| 223 | + return [rSquare, actuals, outputs]; |
| 224 | +}; |
| 225 | + |
| 226 | +Network.prototype.setWeightDecay = function(weightDecay){ |
| 227 | + this.weightDecay = weightDecay; |
| 228 | +}; |
| 229 | + |
| 230 | +Network.prototype.setMomentum = function(momentum){ |
| 231 | + this.momentum = momentum; |
| 232 | +}; |
| 233 | + |
| 234 | +Network.prototype.setTestData = function(testData){ |
| 235 | + this.testData = testData; |
| 236 | +}; |
| 237 | + |
| 238 | +Network.prototype.sigmoid = function(value){ |
| 239 | + return 1 / (1 + Math.exp(-1 * value)); |
| 240 | +}; |
| 241 | + |
| 242 | +Network.prototype.setOutputs = function(array){ |
| 243 | + var i = 0; |
| 244 | + for(; i < this.inputNeurons.length-1; i++){ // Because of bias |
| 245 | + this.inputNeurons[i].setOutput(array[i]); |
| 246 | + } |
| 247 | + for(var j = 0; j < this.outputNeurons.length; j++){ |
| 248 | + this.outputNeurons[j].setActual(array[i]); |
| 249 | + i++; |
| 250 | + } |
| 251 | +}; |
| 252 | + |
| 253 | +Network.prototype.shuffleArray = function(array) { |
| 254 | + for (var i = array.length - 1; i > 0; i--) { |
| 255 | + var j = Math.floor(Math.random() * (i + 1)); |
| 256 | + var temp = array[i]; |
| 257 | + array[i] = array[j]; |
| 258 | + array[j] = temp; |
| 259 | + } |
| 260 | +}; |
0 commit comments