Skip to content
This repository was archived by the owner on Mar 8, 2025. It is now read-only.

Commit 622ebb7

Browse files
committed
refactor
1 parent 77c9fbb commit 622ebb7

File tree

2 files changed

+13
-4
lines changed

2 files changed

+13
-4
lines changed

Incompleteness/Arith/First.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,8 @@ lemma re_iff_sigma1 {P : ℕ → Prop} : RePred P ↔ 𝚺₁-Predicate P := by
1818

1919
variable (T : Theory ℒₒᵣ) [𝐑₀ ≼ T] [Sigma1Sound T] [T.Delta1Definable]
2020

21-
theorem incomplete : ¬System.Complete T := by
21+
/-- Gödel's First Incompleteness Theorem-/
22+
theorem goedel_first_incompleteness : ¬System.Complete T := by
2223
let D : ℕ → Prop := fun n : ℕ ↦ ∃ p : SyntacticSemiformula ℒₒᵣ 1, n = ⌜p⌝ ∧ T ⊢! ∼p/[⌜p⌝]
2324
have D_re : RePred D := by
2425
have : 𝚺₁-Predicate fun p : ℕ ↦

Incompleteness/Arith/Second.lean

Lines changed: 11 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -138,6 +138,8 @@ end
138138

139139
section
140140

141+
variable (T)
142+
141143
variable [T.Delta1Definable]
142144

143145
open LO.System LO.System.FiniteContext
@@ -179,11 +181,17 @@ lemma consistent_iff_goedel : T ⊢! ↑𝗖𝗼𝗻 ⭤ ↑𝗚 := by
179181
simpa [provable₀_iff] using contra₁'! (deduct'! this)
180182

181183
/-- Gödel's Second Incompleteness Theorem-/
182-
theorem consistent_unprovable [System.Consistent T] : T ⊬ ↑𝗖𝗼𝗻 := fun h ↦
183-
goedel_unprovable <| and_left! consistent_iff_goedel ⨀ h
184+
theorem goedel_second_incompleteness [System.Consistent T] : T ⊬ ↑𝗖𝗼𝗻 := fun h ↦
185+
goedel_unprovable T <| and_left! (consistent_iff_goedel T) ⨀ h
184186

185187
theorem inconsistent_unprovable [ℕ ⊧ₘ* T] : T ⊬ ∼↑𝗖𝗼𝗻 := fun h ↦
186-
not_goedel_unprovable <| contra₀'! (and_right! (consistent_iff_goedel (T := T))) ⨀ h
188+
not_goedel_unprovable T <| contra₀'! (and_right! (consistent_iff_goedel T)) ⨀ h
189+
190+
theorem inconsistent_undecidable [ℕ ⊧ₘ* T] : System.Undecidable T ↑𝗖𝗼𝗻 := by
191+
haveI : Consistent T := Sound.consistent_of_satisfiable ⟨_, (inferInstance : ℕ ⊧ₘ* T)⟩
192+
constructor
193+
· exact goedel_second_incompleteness T
194+
· exact inconsistent_unprovable T
187195

188196
end
189197

0 commit comments

Comments
 (0)