This repository was archived by the owner on Mar 8, 2025. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +13
-4
lines changed Expand file tree Collapse file tree 2 files changed +13
-4
lines changed Original file line number Diff line number Diff line change @@ -18,7 +18,8 @@ lemma re_iff_sigma1 {P : ℕ → Prop} : RePred P ↔ 𝚺₁-Predicate P := by
18
18
19
19
variable (T : Theory ℒₒᵣ) [𝐑₀ ≼ T] [Sigma1Sound T] [T.Delta1Definable]
20
20
21
- theorem incomplete : ¬System.Complete T := by
21
+ /-- Gödel's First Incompleteness Theorem-/
22
+ theorem goedel_first_incompleteness : ¬System.Complete T := by
22
23
let D : ℕ → Prop := fun n : ℕ ↦ ∃ p : SyntacticSemiformula ℒₒᵣ 1 , n = ⌜p⌝ ∧ T ⊢! ∼p/[⌜p⌝]
23
24
have D_re : RePred D := by
24
25
have : 𝚺₁-Predicate fun p : ℕ ↦
Original file line number Diff line number Diff line change 138
138
139
139
section
140
140
141
+ variable (T)
142
+
141
143
variable [T.Delta1Definable]
142
144
143
145
open LO.System LO.System.FiniteContext
@@ -179,11 +181,17 @@ lemma consistent_iff_goedel : T ⊢! ↑𝗖𝗼𝗻 ⭤ ↑𝗚 := by
179
181
simpa [provable₀_iff] using contra₁'! (deduct'! this)
180
182
181
183
/-- Gödel's Second Incompleteness Theorem-/
182
- theorem consistent_unprovable [System.Consistent T] : T ⊬ ↑𝗖𝗼𝗻 := fun h ↦
183
- goedel_unprovable <| and_left! consistent_iff_goedel ⨀ h
184
+ theorem goedel_second_incompleteness [System.Consistent T] : T ⊬ ↑𝗖𝗼𝗻 := fun h ↦
185
+ goedel_unprovable T <| and_left! ( consistent_iff_goedel T) ⨀ h
184
186
185
187
theorem inconsistent_unprovable [ℕ ⊧ₘ* T] : T ⊬ ∼↑𝗖𝗼𝗻 := fun h ↦
186
- not_goedel_unprovable <| contra₀'! (and_right! (consistent_iff_goedel (T := T))) ⨀ h
188
+ not_goedel_unprovable T <| contra₀'! (and_right! (consistent_iff_goedel T)) ⨀ h
189
+
190
+ theorem inconsistent_undecidable [ℕ ⊧ₘ* T] : System.Undecidable T ↑𝗖𝗼𝗻 := by
191
+ haveI : Consistent T := Sound.consistent_of_satisfiable ⟨_, (inferInstance : ℕ ⊧ₘ* T)⟩
192
+ constructor
193
+ · exact goedel_second_incompleteness T
194
+ · exact inconsistent_unprovable T
187
195
188
196
end
189
197
You can’t perform that action at this time.
0 commit comments