-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxep-0031.xml
2293 lines (2009 loc) · 55.3 KB
/
xep-0031.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE xep SYSTEM 'xep.dtd' [
<!ENTITY % ents SYSTEM "xep.ent">
%ents;
]>
<?xml-stylesheet type='text/xsl' href='xep.xsl'?>
<xep>
<header>
<title>A Framework For Securing Jabber Conversations</title>
<abstract>
Although the value and utility of contemporary instant messaging
systems, like Jabber, are now indisputable, current security
features to protect message data are generally inadequate for
many deployments; this is particularly true in security conscious
environments like large, commercial enterprises and government
agencies. These current features suffer from issues of
scalability, usability, and supported features. Furthermore, there is a
lack of standardization.
We present a protocol to allow communities of Jabber users to
apply cryptographic protection to selected conversation data.
</abstract>
&LEGALNOTICE;
<number>0031</number>
<status>Deferred</status>
<type>Standards Track</type>
<sig>Standards</sig>
<dependencies/>
<supersedes/>
<supersededby/>
<shortname>N/A</shortname>
<author>
<firstname>Paul</firstname>
<surname>Lloyd</surname>
<email>[email protected]</email>
<jid>[email protected] (private)</jid>
</author>
<revision>
<version>0.2</version>
<date>2002-07-09</date>
<initials>PCL</initials>
<remark>
updated to reflect group consensus to incorporate XML Encryption, as well
as other group comments from Draft 0.9.
</remark>
</revision>
<revision>
<version>0.1</version>
<date>2002-05-07</date>
<initials>
PCL
</initials>
<remark>
initial version
</remark>
</revision>
</header>
<section1 topic="Introduction">
<p>
Instant messaging has clearly crossed the chasm from experimental
to mainstream in a short amount of time. It is particularly
interesting to note the extent to which the employees and
affiliates of large enterprises have adopted instant messaging as
part of their daily professional lives. IM is no longer simply
used on Friday evening to select which movie to watch; it's now
used on Monday morning to select which company to acquire.
</p>
<p>
While the benefits of IM are clear and compelling, the risks
associated with sharing sensitive information in an IM
environment are often overlooked. We need a mechanism that
permits communities of users to protect their IM conversations.
This document presents an extension protocol that can be
incorporated into the existing Jabber protocol to provide such a
mechanism. We hope that this protocol spurs both interest
and further investigation into mechanisms to protect Jabber
conversations. We also hope that the Jabber community can
accelerate the adoption of standardized security mechanisms.
</p>
<p>
In addition to its ability to protect traditional messaging data,
the proposed protocol may also serve as a foundation for securing
other data transported via other Jabber extensions.
</p>
<p>
We use the following terms throughout this document to describe
the most relevant aspects of the IM environment that we wish to
address:
</p>
<ul>
<li>
<p>
user. A user is simply any Jabber user. Users are uniquely
identified by a JID; they connect to Jabber hosts using a
Jabber node.
</p>
<p>
Users produce and consume information, and we wish to
provide them with mechanisms that can be used to protect
this information.
</p>
</li>
<li>
<p>
community. A community is a collection of users who wish to
communicate via Jabber. No restrictions or assumptions are
made about the size of communities or the geographical,
organizational, or national attributes of the members.
Communities are assumed to be dynamic and ad-hoc. Users
typically join communities by the simple act of invitation.
All members of a community are assumed to be peers.
</p>
<p>
The members of communities share information among
themselves, and we wish to provide them with mechanisms
that can permit information to only be shared by community
members.
</p>
</li>
<li>
<p>
conversation. A conversation is the set of messages
that flows among the members of a community via some
network. Conversations consist of both the actual
conversation data produced and consumed by the various
users as well as the Jabber protocol elements that
transport it. Members participate in a conversation when
they are the source or destination of this traffic.
</p>
<p>
In hostile network environments, like the Internet,
conversation data is vulnerable to a variety of well-known
attacks.
</p>
</li>
</ul>
<p>
Other Jabber and IM terms are used in a traditional, intuitive
fashion.
</p>
</section1>
<section1 topic="Requirements And Considerations">
<p>
The proposed protocol is designed to address the specific
requirements and considerations presented in this section.
</p>
<section2 topic="Security Requirements">
<section3 topic="Data Protection Requirements">
<p>
A secure IM system must permit conversation participants to
preserve the following properties of their conversation data:
</p>
<ul>
<li>
<p>
confidentiality. Conversation data must only be disclosed
to authorized recipients
</p>
</li>
<li>
<p>
integrity. Conversation data must not be altered
</p>
</li>
<li>
<p>
data origin authentication. Recipients must be able to
determine the identity of the sender and trust that the
message did, in fact, come from the sender. It is important
to note that this requirement does not include the
requirement of a durable digital signature on conversation
data.
</p>
</li>
<li>
<p>
replay protection. Recipients must be able to detect and
ignore duplicate conversation data.
</p>
</li>
</ul>
<p>
These are established, traditional goals of information security
applied to the conversation data. In the IM environment, these
goals protect against these attacks:
</p>
<ul>
<li>
<p>
eavesdropping, snooping, etc.
</p>
</li>
<li>
<p>
masquerading as a conversation participant
</p>
</li>
<li>
<p>
forging messages
</p>
</li>
</ul>
<p>
Preserving the availability of conversation data is not addressed
by this protocol.
</p>
<p>
Preserving the anonymity of conversation participants is an
interesting topic which we defer for future exploration.
</p>
<p>
Finally, note that this protocol does not concern any authentication
between a Jabber node and a Jabber host.
</p>
</section3>
<section3 topic="Data Classification Requirements">
<p>
A secure IM system must support a data classification feature through the use
of security labeling. Conversation participants must be
able to associate a security label with each piece of
conversation data. This label may be used to specify a data
classification level for the conversation data.
</p>
</section3>
<section3 topic="The End To End Requirement">
<p>
It is easy to imagine Jabber systems in which the servers play
active, fundamental roles in the protection of conversation
data. Such systems could offer many advantages, like:
</p>
<ul>
<li>
<p>
allowing the servers to function as credential issuing
authorities,
</p>
</li>
<li>
<p>
allowing the servers to function as policy enforcement
points.
</p>
</li>
</ul>
<p>
Unfortunately, such systems have significant disadvantages when
one considers the nature of instant messaging:
</p>
<ul>
<li>
<p>
Many servers may be untrusted, public servers.
</p>
</li>
<li>
<p>
In many conversation communities, decisions of trust and
membership can only be adequately defined by the members
themselves.
</p>
</li>
<li>
<p>
In many conversation communities, membership in the
community changes in real time based upon the dynamics of
the conversation.
</p>
</li>
<li>
<p>
In many conversation communities, the data classifaction of
the conversation changes in real time based upon the
dynamics of the conversation.
</p>
</li>
</ul>
<p>
Furthermore, the widespread use of gateways to external IM
systems is a further complication.
</p>
<p>
Based on this analysis, we propose that security be entirely
controlled in an end to end fashion by the conversation
participants themselves via their user agent software.
</p>
</section3>
<section3 topic="Trust Issues">
<p>
We believe that, ultimately, trust decisions are in the hands of
the conversation participants. A security protocol and
appropriate conforming user agents must provide a mechanism for them to make
informed decisions.
</p>
</section3>
<section3 topic="Cryptosystem Design Considerations">
<p>
One of the accepted axioms of security is that people must avoid
the temptation to start from scratch and produce new, untested
algorithms and protocols. History has demonstrated that such
approaches are likely to contain flaws and that considerable time
and effort are required to identify and address all of these
flaws. Any new security protocol should be based on existing,
established algorithms and protocols.
</p>
</section3>
</section2>
<section2 topic="Environmental Considerations">
<p>
Any new IM security protocol must integrate smoothly into the
existing IM environment, and it must also recognize the nature of
the transactions performed by conversation participants. These
considerations are especially important:
</p>
<ul>
<li>
<p>
dynamic communities. The members of a community are defined
in near real time by the existing members.
</p>
</li>
<li>
<p>
dynamic conversations. Conversations may involve any
possible subset of the entire set of community members.
</p>
</li>
</ul>
<p>
Addressing these considerations becomes especially crucial when
selecting a conference keying mechanism.
</p>
</section2>
<section2 topic="Usability Requirements">
<p>
Given the requirement to place the responsibility for the
protection of conversation data in the hands of the participants,
it is imperative to address some fundamental usability issues:
</p>
<ul>
<li>
<p>
First, overall ease of use is a requirement. For protocol
purposes, one implication is that some form of
authentication via passphrases is necessary. While we
recognize that this can have appalling consequences,
especially when we realize that a passphrase may be shared
by all of the community members, we also recognize the
utility.
</p>
</li>
<li>
<p>
PKIs are well established in many large organizations, and
some communities will prefer to rely on credentials issued
from these authorities. To ensure ease of use, we must
strive to allow the use of existing PKI credentials and
trust models rather than impose closed, Jabber-specific
credentials.
</p>
</li>
<li>
<p>
Finally, performance must not be negatively impacted; this
is particularly true if we accept that most communities are
composed of human users conversing in real time. For
protocol purposes, one obvious implication is the desire to
minimize computationally expensive public key operations.
</p>
</li>
</ul>
<p>
We note that, in practice, the design and construction of user
agents will also have a major impact on ease of use.
</p>
</section2>
<section2 topic="Development And Deployment Requirements">
<p>
To successfully integrate into the existing Jabber environment,
an extension protocol for security must satisfy the following:
</p>
<ul>
<li>
<p>
It must be an optional extension of the existing Jabber protocol.
</p>
</li>
<li>
<p>
It must be transparent to existing Jabber servers.
</p>
</li>
<li>
<p>
It must function gracefully in cases where some community
members are not running a user agent that supports the
protocol.
</p>
</li>
<li>
<p>
It must make good use of XML.
</p>
</li>
<li>
<p>
It must avoid encumbered algorithms.
</p>
</li>
<li>
<p>
It must be straightforward to implement using widely
available cryptographic toolkits.
</p>
</li>
<li>
<p>
It must not require a PKI.
</p>
</li>
</ul>
<p>
Failure to accommodate these will impede or prohibit adoption of
any security protocol.
</p>
</section2>
</section1>
<section1 topic="Protocol Specification">
<section2 topic="Protocol Overview">
<p>
Ultimately, conversation data is protected by the application of
keyed cryptographic operations. One operation is used to provide
confidentiality, and a separate operation is used to provide
integrity and data origin authentication. The keys used to
parameterize these operations are called conversation keys. Each
conversation should have its own unique set of conversation keys
shared among the conversation participants.
</p>
<p>
Conversation keys are transported among the conversation
participants within a negotiated security session. A security session allows
pairs of conversation participants to securely share conversation keys
throught all participants in the conversation as required.
</p>
</section2>
<section2 topic="Definitions And Notation">
<p>
The following terms are used throughout this specification:
</p>
<ul>
<li>
<p>
initiator. The initiator is the user who requested a security session
negotiation. Initiator's are identified by their JID.
</p>
</li>
<li>
<p>
responder. The responder is the user who responded to a security session
negotiation request. Responder's are identified by their JID.
</p>
</li>
<li>
<p>
hmac. This indicates the HMAC algorithm. The notation hmac (key, value)
indicates the HMAC computation of value using key.
</p>
</li>
<li>
<p>
concatentation operator. The '|' character is used in character or octet
string expressions to indicate concatenation.
</p>
</li>
<li>
<p>
security session ID. A character string that uniquely identifies a
security session between two users. Security session IDs MUST only
consist of Letters, Digits, and these characters: '.', '+', '-',
'_', '@'. Security session IDs are case sensitive.
</p>
</li>
<li>
<p>
SS. This term indicates the security session secret that is agreed to
during a security session negotiation.
</p>
</li>
<li>
<p>
SKc. This term indicates the keying material used within a security session
to protect confidentiality. The SKc is derived from the security session secret, SS.
</p>
</li>
<li>
<p>
SKi. This term indicates the keying material used within a security session
to protect integrity and to provide authnetication. The SKi is derived from the
security session secret, SS.
</p>
</li>
<li>
<p>
conversation key ID. A character string that uniquely identifies a
conversation key shared by a community of users. Conversation key IDs MUST only
consist of Letters, Digits, and these characters: '.', '+', '-',
'_', '@'. Conversation key IDs are case sensitive. Conversation key IDs SHOULD
be generated from at least 128 random bits.
</p>
</li>
<li>
<p>
passphrase ID. A character string that uniquely identifies a
passphrase shared by a community of users. Passphrase IDs MUST only
consist of Letters, Digits, and these characters: '.', '+', '-',
'_', '@'. Passphrase IDs are case sensitive.
</p>
</li>
</ul>
</section2>
<section2 topic="XML Processing">
<p>
Since cryptographic operations are applied to data that is
transported within an XML stream, the protocol defines a set of
rules to ensure a consistent interpretation by all conversation
participants.
</p>
<section3 topic="Transporting Binary Content">
<p>
Binary data, such as the result of an HMAC, is always transported
in an encoded form; the two supported encoding schemes are base64
and hex.
</p>
<p>
Senders MAY include arbitrary white space within the character
stream. Senders SHOULD NOT include any other characters outside
of the encoding set.
</p>
<p>
Receivers MUST ignore all characters not in the encoding set.
</p>
</section3>
<section3 topic="Transporting Encrypted Content">
<p>
Encrypted data, including wrapped cryptographic keys, are always
wrapped per XML Encryption.
</p>
</section3>
<section3 topic="HMAC Computation">
<p>
HMACs are computed over a specific collection of attribute values
and character data; when computing an HMAC the following rules
apply:
</p>
<ul>
<li>
<p>
All characters MUST be encoded in UTF-8.
</p>
</li>
<li>
<p>
The octets in each character MUST be processed in network
byte order.
</p>
</li>
<li>
<p>
For a given element, the attribute values that are HMACed
MUST be processed in the specified order regardless of the
order in which they appear in the element tag.
</p>
</li>
<li>
<p>
For each attribute value, the computation MUST only include
characters from the anticipated set defined in this
specification; in particular, white space MUST always be
ignored.
</p>
</li>
<li>
<p>
For character data that is represented in an encoded form,
such as base64 or hex, the computation MUST only include
valid characters from the encoding set.
</p>
</li>
</ul>
</section3>
<section3 topic="Performing Cryptographic Operations">
<p>
The following algorithm is used to encrypt a character string, such as
an XML element:
</p>
<ul>
<li>
<p>
The character string MUST be encoded in UTF-8.
</p>
</li>
<li>
<p>
The octets in each character MUST be processed in network byte order.
</p>
</li>
<li>
<p>
Appropriate cryptographic algorithm parameters, such as an
IV for a block cipher, are generated.
</p>
</li>
</ul>
</section3>
</section2>
<section2 topic="XML Namespaces">
<p>
In order to integrate smoothly with the existing Jabber protocol,
this protocol utilizes a new XML namespace, jabber:security.
</p>
</section2>
<section2 topic="Security Sessions">
<section3 topic="Overview">
<p>
A security session is a pair-wise relationship between two users
in which the users have achieved the following:
</p>
<ul>
<li>
<p>
They have mutually authenticated each other using credentials acceptable to both.
</p>
</li>
<li>
<p>
They have agreed on a set of key material known only to both.
</p>
</li>
</ul>
<p>
Security sessions are identified by a 3-tuple consisting of the following items:
</p>
<ul>
<li>
<p>
initiator. This is the JID of the user who initiated the session.
</p>
</li>
<li>
<p>
responder. This is the JID of the user who responded to the initiator's request.
</p>
</li>
<li>
<p>
sessionId. A label generated by the initiator.
</p>
</li>
</ul>
<p>
Security sessions are used to transport conversation keys between the conversation participants.
</p>
<p>
Scalabilty is an immediate, obvious concern with such an approach. We expect this
approach to be viable in practice because:
</p>
<ul>
<li>
<p>
The number of participants in typical, interactive conversations is generally on the order of 10^1.
</p>
</li>
<li>
<p>
New participants are usually invited to dynamically join a
conversation by being invited by an existing participant;
this existing participant is the only one who needs to
establish a security session with the new participant,
because this single security session can be used to
transport all of the required conversation keys.
</p>
</li>
<li>
<p>
User agents can permit the lifetime of security sessions to
last long enough to allow transport of conversation keys
for a variety of converstions.
</p>
</li>
<li>
<p>
Conversation keys can be established with a suitable lifetime.
</p>
</li>
</ul>
<p>
Other approaches, including the incorporation of more
sophisticated conference keying algorithms, are a topic for
future exploration.
</p>
</section3>
<section3 topic="Security Session Negotiation">
<p>
Security sessions are negotiated using an authenticated Diffie-Hellman key agreement
exchange. The two goals of the exchange are to perform the mutual authentication
and to agree to a secret that is know only to each.
</p>
<p>
The exchange also allows the parties to negotiate the various algorithms
and authentication mechanisms that will be used.
</p>
<p>
Once the pair agree on a shared secret, they each derive key material from the
secret; this key material is used to securely transport the conversation keys,
which are used to actually protect conversation data.
</p>
<p>
The protocol data units (PDUs) that comprise the exchange are transported
within existing Jabber protocol elements.
</p>
</section3>
<section3 topic="DTDs">
<example>
<!ELEMENT session1
(nonce, keyAgreement, algorithms, authnMethods) >
<!ATTLIST session1
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac-sha1) #REQUIRED >
<!ELEMENT nonce
(#PCDATA)* >
<!ATTLIST nonce
encoding (base64 | hex) #REQUIRED >
<!ELEMENT keyAgreement
(dh) >
<!ELEMENT dh
(publicKey) >
<!ATTLIST dh
group (modp1024 | modp2048 | modp4096 | modp8192) #REQUIRED >
<!ELEMENT publicKey
(#PCDATA)* >
<!ATTLIST publicKey
encoding (base64 | hex) #REQUIRED >
<!ELEMENT algorithms
(algorithm)+ >
<!ELEMENT algorithm
(confAlg, hmacAlg) >
<!ELEMENT confAlg EMPTY >
<!ATTLIST confAlg
cipher (3des-cbc | aes-128-cbc | aes-256-cbc) #REQUIRED >
<!ELEMENT hmacAlg EMPTY >
<!ATTLIST hmacAlg
alg (hmac-sha1 | hmac-md5) #REQUIRED>
<!ELEMENT authnMethods
(authnMethod)+ >
<!ELEMENT authnMethod
(digSig | passphrase) >
<!ELEMENT digSig
(certificate+, caCertificate*) >
<!ATTLIST digSig
alg (rsa) #REQUIRED>
<!ELEMENT certificate
(#PCDATA)* >
<!ATTLIST certificate
type (x509 | pkcs7) #REQUIRED
encoding (base64 | hex) #REQUIRED >
<!ELEMENT caCertificate
(#PCDATA)* >
<!ATTLIST caCertificate
type (x509 | pkcs7) #REQUIRED
encoding (base64 | hex) #REQUIRED >
<!ELEMENT passphrase EMPTY >
<!ATTLIST passphrase
passphraseId CDATA #REQUIRED >
<!ELEMENT session2
(nonce, keyAgreement, algorithm, authnMethod, authenticator) >
<!ATTLIST session2
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac-sha1) #REQUIRED >
<!ELEMENT authenticator
(#PCDATA)* >
<!ATTLIST authenticator
encoding (base64 | hex) #REQUIRED>
<!ELEMENT session3
(authenticator, keyTransport*) >
<!ATTLIST session3
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac-sha1) #REQUIRED >
</example>
</section3>
<section3 topic="Generating And Sending the session1 PDU">
<p>
The initiator's user agent employs the following algorithm to generate the session1 PDU:
</p>
<ul>
<li>
<p>
Appropriate values for the version, initiator, responder,
sessionId, and hmac attributes are assembled. The version of
this specification is '1.0'. The values of initiator and
responder MUST be the JIDs of the two participants,
respectively.
</p>
</li>
<li>
<p>
The nonce is prepared by first generating a string of 20
random octets (160 random bits). The octets are then
encoded into a string of 40 hex characters representing the
random string.
</p>
</li>
<li>
<p>
A Diffie-Hellman group is selected. The appropriate values
for g and p will be used to generate the initiator's public
key.
</p>
</li>
<li>
<p>
An ephemeral private key, x, is generated using g and p
for the selected group. This key MUST be generated using an
appropriate random number source. The corresponding public
key, g^x, is generated and encoded.
</p>
</li>
<li>
<p>
The desired set of confidentiality and HMAC cryptographic
algorithms is selected. The manner in which these
algorithms are selected and all related policy issues are
outside the scope of this specification.
</p>
</li>
<li>
<p>
The desired set of authentication algorithms is selected.
The manner in which these algorithms are selected and all
related policy issues are outside the scope of this
specification. When the digital signature form of
authentication is selected, the relevant end-entity
certificate and, optionally, a chain of CA certificates
representing a validation path, is assembled and encoded. A
set of trusted CA certificates MAY optionally be included
via caCertificate elements; if so, the set MUST include the
issuer of the initiator's end-entity certificate.
</p>
</li>
</ul>
<p>
These values are then used to prepare the XML session1 element;
this element is transmitted via the existing Jabber iq mechanism:
</p>
<example>
<iq from="initiator's JID" to="responder's JID" type="get" id="whatever">
<query xmlns="jabber:security:session">
<session1>...</session1>