-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwiki.R
206 lines (160 loc) · 4.36 KB
/
wiki.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# sprobuje tenisistowy graf zrobic
getwd()
options(stringsAsFactors = FALSE)
data_set_names <- c("circuits", "constructor_results", "constructor_standings",
"constructors", "driver_standings", "drivers",
"lap_times", "pit_stops", "qualifying", "races",
"results", "seasons", "sprint_results", "status")
for (el in data_set_names ){
path <- paste("data/", el,".csv", sep = "")
assign(el, read.csv(path))
}
library(dplyr)
library(ggplot2)
najlepsi_id <- drivers %>%
filter(surname %in% c("Hamilton", "Schumacher", "Vettel", "Verstappen"))
#------------WYKRES ZWYCIÊSTW W KARIERZE----------------
# hamiltonId =1
# schumacher Id=30
# verstappen Id=830
# vettel Id=20
head(df)
# filtruje z results tylko tych kierowców co nas interesuj¹ i tylko pierwsze
# miejsca
results %>%
filter(driverId %in% c(1, 30, 830, 20) & position == 1) %>%
select(driverId, raceId) -> df
# merge z races po raceid zeby miec rok
races %>%
select(raceId, year) %>%
merge(df) -> df
# grupuje sezonami i kierowcami, zliczam
df %>%
group_by(year) %>%
count(driverId) -> df
df %>%
group_by(driverId) %>%
mutate(cumsum(n)) -> df
# okazuje sie ze numeryczne driverId sie nie spisuje X,D
df %>%
ggplot(aes(x = year, y = `cumsum(n)`, colour = driverId)) +
geom_line() +
geom_point()
#popraweczka
df$driverId <- as.character(df$driverId)
#goodgame plot
df %>%
ggplot(aes(x = year, y = `cumsum(n)`, colour = driverId)) +
geom_line() +
geom_point() +
labs(title = "liczba zwyciêzonych wyœcigów na przestrzeni kariery",
x = "sezony",
y = "sumaryczna liczba zwyciêstw") +
xlim(1990, 2022)
#------------WYKRES DLUGOSCI PITSTOPÓW----------------
head(df)
head(x)
head(y)
# merge resoults i races po raceid
races %>%
select(raceId, year) -> x
results %>%
select(raceId, driverId, constructorId) -> y
x %>%
merge(y) -> df
# filter 2021
df %>%
filter(year == 2021) %>%
select(raceId, driverId, constructorId)-> df
# merge df i constructors po constructorid
constructors %>%
select(constructorId, name) -> x
df %>%
merge(x) %>%
select(raceId, driverId, name)-> df
# merge df i pitstops po driver id
pit_stops %>%
select(raceId, driverId, milliseconds) -> y
df %>%
merge(y) %>%
select(name, milliseconds) -> df
# select name(constructor), duration
df %>%
mutate(len = milliseconds/1000) %>%
select(name, len) %>%
filter(len < 100) -> df
df %>%
ggplot(aes(x = len, y = name, fill = name)) +
geom_violin()
df %>%
ggplot(aes(x = len, y = name, fill = name)) +
geom_boxplot()
# ===========================================TORY
head(circuits)
circuits %>%
filter(name == "Circuit of the Americas") %>%
select(circuitId)
cota <- 69
circuits %>%
filter(circuitRef == "imola") %>%
select(circuitId)
imola <- 21
circuits %>%
filter(name == "Autódromo José Carlos Pace") %>%
select(circuitId)
interlagos <- 18
circuits %>%
filter(name == "Circuit Gilles Villeneuve") %>%
select(circuitId)
montreal <- 7
circuits %>%
filter(name == "Autodromo Nazionale di Monza") %>%
select(circuitId)
monza <- 14
circuits %>%
filter(name == "Red Bull Ring") %>%
select(circuitId)
redBullRing <- 70
circuits %>%
filter(name == "Silverstone Circuit") %>%
select(circuitId)
silverstone <- 9
circuits %>%
filter(name == "Circuit de Spa-Francorchamps") %>%
select(circuitId)
spa <- 13
circuits %>%
filter(circuitRef == "suzuka") %>%
select(circuitId)
suzuka <- 22
circuits %>%
filter(circuitRef == "zandvoort") %>%
select(circuitId)
zandvoort <- 39
myCircuits <- c(cota, imola, interlagos, montreal, monza, redBullRing, silverstone,
suzuka, spa, zandvoort)
hamiltonId = 1
schumacherId = 30
verstappenId = 830
vettelId = 20
myDrivers <- c(hamiltonId, schumacherId, verstappenId, vettelId)
head(races)
head(results)
myData <- full_join(races, results, by = "raceId") %>%
select(raceId, circuitId, driverId, position) %>%
filter(driverId %in% myDrivers) %>%
filter(circuitId %in% myCircuits)
head(myData)
won <- myData %>%
filter(position == 1) %>%
group_by(circuitId) %>%
count(driverId) %>%
rename(won = n)
total <- myData %>%
group_by(circuitId) %>%
count(driverId) %>%
rename(total = n)
answ <- full_join(won, total, by = c('circuitId' = 'circuitId',
'driverId' = 'driverId')) %>%
mutate(ratio = won / total)
answ