-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA1_Part3.py
292 lines (215 loc) · 10.9 KB
/
A1_Part3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
"""IDL_A1_Task3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1pC_VXrlExDhU7nJUhg4OxsMUQ3Ef-vp3
# Assignment 1, Task 3
---
Authors: Chloe Tap, Evan Meltz, Giulia Rivetti (Group 36)
"""
from google.colab import drive
drive.mount('/content/drive')
"""The dataset that we have used, *Cat Faces 64x64*, can be downloaded at the following link:
https://www.kaggle.com/datasets/spandan2/cats-faces-64x64-for-generative-models/download?datasetVersionNumber=1
"""
# Import necessary libraries
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from google.colab import drive
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import zipfile
import io
from PIL import Image
from google.colab import drive
import cv2 # OpenCV library
from tensorflow.keras.layers import Dense, Flatten, Conv2D, Conv2DTranspose, Reshape
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import BatchNormalization
# Extract and preprocess all images from a zip file
def extract_and_preprocess_images(zip_path, target_size=(32, 32)):
image_list = []
with zipfile.ZipFile(zip_path, 'r') as archive:
for file_info in archive.infolist():
with archive.open(file_info) as file:
image = Image.open(file)
image = np.array(image)
# Resize the image to the target size (64x64)
image = cv2.resize(image, target_size)
image_list.append(image)
return np.array(image_list)
# We will use this function to display the output of our models throughout this notebook
def grid_plot(images, epoch='', name='', n=3, save=False, scale=False):
if scale:
images = (images + 1) / 2.0
for index in range(n * n):
plt.subplot(n, n, 1 + index)
plt.axis('off')
plt.imshow(images[index])
fig = plt.gcf()
fig.suptitle(name + ' '+ str(epoch), fontsize=14)
if save:
filename = 'results/generated_plot_e%03d_f.png' % (epoch+1)
plt.savefig(filename)
plt.close()
plt.show()
zip_path = '/content/drive/MyDrive/IDL files/archive (4).zip'
# Extract and preprocess all images from the zip file
custom_dataset = extract_and_preprocess_images(zip_path)
custom_dataset = custom_dataset / 255.0
grid_plot(custom_dataset, name='Custom Dataset (32x32x3)')
"""## Convolutional and deconvolutional networks"""
from tensorflow.keras.layers import Dense, Flatten, Conv2D, Conv2DTranspose, Reshape
out_dim = 42
def build_conv_net(in_shape, out_shape, n_downsampling_layers=3, filters=128, out_activation='sigmoid'):
"""
Build a basic convolutional network
"""
model = tf.keras.Sequential()
default_args=dict(kernel_size=(3,3), strides=(2,2), padding='same', activation='relu')
model.add(Conv2D(input_shape=in_shape, **default_args, filters=filters))
for _ in range(n_downsampling_layers):
model.add(Conv2D(**default_args, filters=filters))
model.add(Flatten())
model.add(Dense(out_shape, activation=out_activation) )
model.summary()
return model
def build_deconv_net(latent_dim, n_upsampling_layers=3, filters=128, activation_out='sigmoid'):
"""
Build a deconvolutional network for decoding/upscaling latent vectors
When building the deconvolutional architecture, usually it is best to use the same layer sizes that
were used in the downsampling network and the Conv2DTranspose layers are used instead of Conv2D layers.
Using identical layers and hyperparameters ensures that the dimensionality of our output matches the
shape of our input images.
"""
model = tf.keras.Sequential()
model.add(Dense(4 * 4 * 32, input_dim=latent_dim))
model.add(Reshape((4, 4, 32))) # This matches the output size of the downsampling architecture
default_args=dict(kernel_size=(3,3), strides=(2,2), padding='same', activation='relu')
for i in range(n_upsampling_layers):
model.add(Conv2DTranspose(**default_args, filters=filters))
# This last convolutional layer converts back to 3 channel RGB image
model.add(Conv2D(filters=3, kernel_size=(3,3), activation=activation_out, padding='same'))
model.summary()
return model
"""## Convolutional Autoencoder (CAE)"""
def build_convolutional_autoencoder(data_shape, latent_dim, filters=128):
encoder = build_conv_net(in_shape=data_shape, out_shape=latent_dim, filters=filters)
decoder = build_deconv_net(latent_dim, activation_out='sigmoid', filters=filters)
# We connect encoder and decoder into a single model
autoencoder = tf.keras.Sequential([encoder, decoder])
# Binary crossentropy loss - pairwise comparison between input and output pixels
autoencoder.compile(loss='binary_crossentropy', optimizer='adam')
return autoencoder
# Defining the model dimensions and building it
image_size = custom_dataset.shape[1:]
latent_dim = 512
num_filters = 128
cae = build_convolutional_autoencoder(image_size, latent_dim, num_filters)
for epoch in range(20):
print('\nEpoch: ', epoch)
# Note that (X=y) when training autoencoders!
# In this case we only care about qualitative performance, we don't split into train/test sets
cae.fit(x=custom_dataset, y=custom_dataset, epochs=1, batch_size=64)
samples = custom_dataset[:9]
reconstructed = cae.predict(samples)
grid_plot(samples, epoch, name='Original', n=3, save=False)
grid_plot(reconstructed, epoch, name='Reconstructed', n=3, save=False)
"""## Variational Autoencoder (VAE)"""
class Sampling(tf.keras.layers.Layer):
"""
Custom layer for the variational autoencoder
It takes two vectors as input - one for means and other for variances of the latent variables described by a multimodal gaussian
Its output is a latent vector randomly sampled from this distribution
"""
def call(self, inputs):
z_mean, z_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_var) * epsilon
def build_vae(data_shape, latent_dim, filters=128):
# Building the encoder - starts with a simple downsampling convolutional network
encoder = build_conv_net(data_shape, latent_dim*2, filters=filters)
# Adding special sampling layer that uses the reparametrization trick
z_mean = Dense(latent_dim)(encoder.output)
z_var = Dense(latent_dim)(encoder.output)
z = Sampling()([z_mean, z_var])
# Connecting the two encoder parts
encoder = tf.keras.Model(inputs=encoder.input, outputs=z)
# Defining the decoder which is a regular upsampling deconvolutional network
decoder = build_deconv_net(latent_dim, activation_out='sigmoid', filters=filters)
vae = tf.keras.Model(inputs=encoder.input, outputs=decoder(z))
# Adding the special loss term
kl_loss = -0.5 * tf.reduce_sum(z_var - tf.square(z_mean) - tf.exp(z_var) + 1)
vae.add_loss(kl_loss/tf.cast(tf.keras.backend.prod(data_shape), tf.float32))
vae.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), loss='binary_crossentropy')
return encoder, decoder, vae
# Training the VAE model
latent_dim = 32
encoder, decoder, vae = build_vae(custom_dataset.shape[1:], latent_dim, filters=128)
# Generate random vectors that we will use to sample our latent space
for epoch in range(20):
latent_vectors = np.random.randn(9, latent_dim)
vae.fit(x=custom_dataset, y=custom_dataset, epochs=1, batch_size=8)
images = decoder(latent_vectors)
grid_plot(images, epoch, name='VAE generated images (randomly sampled from the latent space)', n=3, save=False)
"""## Generative Adversarial Network (GAN)"""
from tensorflow.keras.optimizers.legacy import Adam
def build_gan(data_shape, latent_dim, filters=128, lr=0.0002, beta_1=0.5):
optimizer = Adam(learning_rate=lr, beta_1=beta_1)
# Usually thew GAN generator has tanh activation function in the output layer
generator = build_deconv_net(latent_dim, activation_out='tanh', filters=filters)
# Build and compile the discriminator
discriminator = build_conv_net(in_shape=data_shape, out_shape=1, filters=filters) # Single output for binary classification
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
# End-to-end GAN model for training the generator
discriminator.trainable = False
true_fake_prediction = discriminator(generator.output)
GAN = tf.keras.Model(inputs=generator.input, outputs=true_fake_prediction)
GAN = tf.keras.models.Sequential([generator, discriminator])
GAN.compile(loss='binary_crossentropy', optimizer=optimizer)
return discriminator, generator, GAN
def run_generator(generator, n_samples=100):
"""
Run the generator model and generate n samples of synthetic images using random latent vectors
"""
latent_dim = generator.layers[0].input_shape[-1]
generator_input = np.random.randn(n_samples, latent_dim)
return generator.predict(generator_input)
def get_batch(generator, dataset, batch_size=64):
"""
Gets a single batch of samples (X) and labels (y) for the training the discriminator.
One half from the real dataset (labeled as 1s), the other created by the generator model (labeled as 0s).
"""
batch_size //= 2 # Split evenly among fake and real samples
fake_data = run_generator(generator, n_samples=batch_size)
real_data = dataset[np.random.randint(0, dataset.shape[0], batch_size)]
X = np.concatenate([fake_data, real_data], axis=0)
y = np.concatenate([np.zeros([batch_size, 1]), np.ones([batch_size, 1])], axis=0)
return X, y
def train_gan(generator, discriminator, gan, dataset, latent_dim, n_epochs=20, batch_size=64):
batches_per_epoch = int(dataset.shape[0] / batch_size / 2)
for epoch in range(n_epochs):
for batch in tqdm(range(batches_per_epoch), position=0, leave=True):
# 1) Train discriminator both on real and synthesized images
X, y = get_batch(generator, dataset, batch_size=batch_size)
discriminator_loss = discriminator.train_on_batch(X, y)
# 2) Train generator (note that now the label of synthetic images is reversed to 1)
X_gan = np.random.randn(batch_size, latent_dim)
y_gan = np.ones([batch_size, 1])
generator_loss = gan.train_on_batch(X_gan, y_gan)
noise = np.random.randn(16, latent_dim)
images = generator.predict(noise)
grid_plot(images, epoch, name='GAN generated images', n=3, save=False, scale=True)
## Build and train the model (need around 10 epochs to start seeing some results)
tf.keras.utils.disable_interactive_logging()
latent_dim = 256
discriminator, generator, gan = build_gan(custom_dataset.shape[1:], latent_dim, filters=128)
dataset_scaled = extract_and_preprocess_images(zip_path)
dataset_scaled = dataset_scaled/256
train_gan(generator, discriminator, gan, dataset_scaled, latent_dim, n_epochs=20)