forked from fire-keeper/BlindWatermark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
280 lines (230 loc) · 10.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
__author__ = 'Erimus'
import numpy as np
import cv2
import os
import logging as log
import re
from .watermark import watermark
from .cv2_tools import cv_text
from multiprocessing import Pool, Value, Process, Manager
# ═══════════════════════════════════════════════
# 创建输出文件夹
here = os.path.abspath(os.path.dirname(__file__))
test_folder = os.path.join(here, 'test')
plot_folder = os.path.join(test_folder, 'plot')
for _folder in [test_folder, plot_folder]:
if not os.path.exists(_folder):
os.mkdir(_folder)
# ═══════════════════════════════════════════════
SAMPLE_LIST = ['lena512', 'mini512', 'mini512i', 'noy512',
'comic.jpg', 'drama.jpg', 'manga.jpg', 'paint.jpg']
# ═══════════════════════════════════════════════
def format_filename(*, src_img, wm, wm_seed=1234, block_seed=5678, mod=24,
fmt='png', jpg_quality=80, block='auto', dwt_deep=3):
# 参数设定
here = os.path.abspath(os.path.dirname(__file__))
if not src_img.endswith('.jpg'):
src_img += '.png' # 默认png后缀
img_name = src_img[:-4]
img_file = os.path.join(here, f'pic/{src_img}')
wm_file = os.path.join(here, f'pic/wm{wm}.png')
wm_map_method = 1 # 水印映射方式
if block == 'auto':
src_shape = cv2.imread(img_file).shape[:2] # 原图短边(自动计算)
temp = watermark()
block, dwt_deep = temp.auto_block(src_shape)
# dwt_deep, block = 0, 1 # 指定
kwargs = {'wm_seed': wm_seed, 'block_seed': block_seed, 'mod': mod,
'dwt_deep': dwt_deep, 'block': block,
'wm_map_method': wm_map_method}
# 格式化输出文件名
_fmt = fmt + (f'{jpg_quality}' if fmt == 'jpg' else '')
_wms = '' if wm_seed is None else f'_wms{wm_seed}'
_blks = '' if block_seed is None else f'_blks{block_seed}'
out = (f'test/{img_name}_wm{wm}_map{wm_map_method}_dwt{dwt_deep}'
f'_block{block}_mod{mod}_{_fmt}{_wms}{_blks}')
out_img = os.path.join(here, f'{out}.{fmt}')
out_wm = os.path.join(here, f'{out}_wm.png')
return img_file, wm_file, out_img, out_wm, kwargs
def jpg_quality_mod_grid(src_img, wm, wm_seed, block_seed, jpg_limit=50):
jpg_list = list(range(jpg_limit, 101, 10))
mod_list = list(range(16, 33, 4))
# 新建画布
wm_size = 64
w = (len(mod_list) + 1) * wm_size
h = (len(jpg_list) + 1) * wm_size
plot = np.zeros((w, h, 3), np.uint8)
plot.fill(255)
cvtxt = cv_text()
fsize = wm_size / 6
for m_idx, mod in enumerate(mod_list):
x = wm_size - 4 # 当前行
y = (m_idx + 1) * wm_size
plot = cvtxt.put(plot, f'mod{mod}', x, y,
size=fsize, align=('top', 'right'))
caculated_img = None # 同一个配置只计算一次 其余直接保存为不同精度jpg
for j_idx, jpg in enumerate(jpg_list):
print(f'{mod=} | {jpg=}')
if m_idx == 0:
_x, _y = (j_idx + 1) * wm_size, wm_size - 4
plot = cvtxt.put(plot, str(jpg), _x, _y,
size=fsize, align=('bottom', 'left'))
x = int((j_idx + 1) * wm_size) # 当前列
kw = {'src_img': src_img, 'wm': wm, 'wm_seed': wm_seed,
'block_seed': block_seed, 'mod': mod,
# 'dwt_deep': 3, 'block': 1,
'fmt': 'jpg', 'jpg_quality': jpg}
img_file, wm_file, out_img, out_wm, kwargs = format_filename(**kw)
bwm = watermark(**kwargs)
if not os.path.exists(out_img):
if caculated_img is None:
caculated_img = bwm.embed(src=img_file, wm=wm_file,
output=out_img, jpg_quality=jpg)
print(f'!!! First caculated {block=} | {multiple=}')
else:
bwm.save_image(out_img, caculated_img, jpg)
if not os.path.exists(out_wm):
bwm.extract(src=out_img, output=out_wm)
wm_img = cv2.imread(out_wm)
plot[y:y + wm_size, x:x + wm_size] = wm_img
# cv2.imshow('image', plot)
# cv2.waitKey(0)
path, file = os.path.split(out_img)
info, ext = os.path.splitext(file)
info = re.sub(r'_jpg\d+', '', info)
info = re.sub(r'_mod\d+', '', info)
info = (f'{info}_mod{mod_list[0]}-{mod_list[-1]}'
f'_jpg{jpg_list[0]}-{jpg_list[-1]}.png')
# 绘制标题
brk = info[len(info) // 2:].index('_') + len(info) // 2 + 1 # 后半段第一个下划线
plot = cvtxt.put(plot, info[:brk], 64, 4,
size=fsize, align=('top', 'left'))
plot = cvtxt.put(plot, info[brk:-4], 64, int(4 + fsize * 1.5),
size=fsize, align=('top', 'left'))
plot_name = os.path.join(path, 'plot', info)
print(f'{plot_name = }')
cv2.imwrite(plot_name, plot)
def jpg_quality_mod_grid_batch():
params = []
for src in SAMPLE_LIST:
for wm in ['64', '64i']:
params.append((src, wm, 1234, 5678, 30))
print(f'{len(params) = }')
p = Pool(len(params)) # 设置进程数
for arg in params:
p.apply_async(jpg_quality_mod_grid, arg)
p.close()
p.join()
def multiple_test(src_img, wm, dwt_deep=1):
kw = {'src_img': src_img, 'wm': wm}
img_file, wm_file, out_img, out_wm, kwargs = format_filename(**kw)
src_size = min(cv2.imread(img_file).shape[:2])
wm_size = cv2.imread(wm_file).shape[0]
wm_h, wm_w = cv2.imread(wm_file).shape[:2]
fsize = wm_size / 6
# 用deep=0,512原图,计算不同block来应对不同multiple。
jpg_list = list(range(30, 101, 10))
# 最大block
max_block = int(src_size / 2**dwt_deep / wm_size)
block_list = range(1, max_block + 1)
# 新建画布
w = (len(jpg_list) + 1) * wm_size
h = (len(block_list) + 1) * wm_size
plot = np.zeros((h, w, 3), np.uint8)
plot.fill(255)
cvtxt = cv_text()
for b_idx, block in enumerate(block_list): # 先行后列
x = wm_size - 4 # 文字右侧
y = (b_idx + 1) * wm_size # 当前行
# 计算multiple和block
multiple = src_size / 2**dwt_deep / block / wm_size
plot = cvtxt.put(plot, f'd{dwt_deep}b{block}', x, y,
size=fsize, align=('top', 'right'))
plot = cvtxt.put(plot, f'f{2**dwt_deep*block}', x, int(y + fsize * 1.5),
size=fsize, align=('top', 'right'))
plot = cvtxt.put(plot, f'm{multiple:.1f}', x, int(y + fsize * 3),
size=fsize, align=('top', 'right'))
caculated_img = None # 同一个配置只计算一次 其余直接保存为不同精度jpg
for j_idx, jpg in enumerate(jpg_list):
print(f'{block=} | {multiple=:.1f} | {jpg=}')
if b_idx == 0:
_x, _y = (j_idx + 1) * wm_size, wm_size - 4
plot = cvtxt.put(plot, str(jpg), _x, _y,
size=fsize, align=('bottom', 'left')) # 打印列名
x = (j_idx + 1) * wm_size # 当前列
kw = {'src_img': src_img, 'wm': wm,
'dwt_deep': dwt_deep, 'block': block,
'fmt': 'jpg', 'jpg_quality': jpg}
img_file, wm_file, out_img, out_wm, kwargs = format_filename(**kw)
bwm = watermark(**kwargs)
if not os.path.exists(out_img):
if caculated_img is None:
print(kw)
caculated_img = bwm.embed(src=img_file, wm=wm_file,
output=out_img, jpg_quality=jpg)
print(f'!!! First caculated {block=} | {multiple=}')
else:
bwm.save_image(out_img, caculated_img, jpg)
if not os.path.exists(out_wm):
bwm.extract(src=out_img, wm_w=wm_w, wm_h=wm_h, output=out_wm)
wm_img = cv2.imread(out_wm)
plot[y:y + wm_h, x:x + wm_w] = wm_img
# cv2.imshow('image', plot)
# cv2.waitKey(0)
path, file = os.path.split(out_img)
info, ext = os.path.splitext(file)
info = re.sub(r'_jpg\d+', '', info)
info = re.sub(r'_block\d+', '', info)
info = re.sub(r'_dwt\d+', '', info)
info = (f'{info}_multiple_test_dwt{dwt_deep}.png')
# 绘制标题
brk = info[len(info) // 2:].index('_') + len(info) // 2 + 1 # 后半段第一个下划线
plot = cvtxt.put(plot, info[:brk], 4, 4, fsize, align=('top', 'left'))
plot = cvtxt.put(plot, info[brk:-4], 4, int(4 + fsize * 1.5),
size=fsize, align=('top', 'left'))
plot_name = os.path.join(path, 'plot', info)
print(f'{plot_name = }')
cv2.imwrite(plot_name, plot)
def multiple_test_batch():
params = []
for src in SAMPLE_LIST:
for dwt_deep in range(2):
params.append((src, 64, dwt_deep))
print(f'{len(params) = }')
p = Pool(len(params)) # 设置进程数
for arg in params:
p.apply_async(multiple_test, arg)
p.close()
p.join()
def test_single_file():
jpg_quality = 50
kw = {
'src_img': 'lena512', # 原图
# 'src_img': 'mini512',
# 'src_img' :'noy512',
'wm': '32',
'wm_seed': 1234, # 水印随机种子 (0~4294967296)
'block_seed': 5678, # block随机种子 (0~4294967296)
# 'dwt_deep': 0,
# 'block': 7,
'mod': 24, # 对齐除数
'fmt': 'png', # 输出格式
'fmt': 'jpg', # 输出格式
'jpg_quality': jpg_quality, # 输出jpg质量
}
img, wm, out_img, out_wm, kwargs = format_filename(**kw)
# 加水印
bwm = watermark(**kwargs)
bwm.embed(src=img, wm=wm, output=out_img, jpg_quality=jpg_quality)
# 解水印
bwm = watermark(**kwargs)
bwm.extract(src=out_img, output=out_wm)
# ═══════════════════════════════════════════════
if __name__ == '__main__':
test_single_file()
# jpg_quality_mod_grid('comic.jpg', '64', 1234, 5678, jpg_limit=30) # 单文件
# jpg_quality_mod_grid_batch() # 所有
# multiple_test('lena512', '32') # 单文件
# multiple_test_batch()