-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdctQuantConversions.c
251 lines (214 loc) · 8.47 KB
/
dctQuantConversions.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
* Filename: dctQuantConversions
*
* Description: This function takes in a 2D array of component video float
* structs and reduces the information held by these float structs
* by applying the discrete cosine transform and quantizing the Pb
* and Pr values of 2 x 2 blocks. The inverse of these operations
* are also included within this file.
*/
#include "dctQuantConversions.h"
#include <math.h>
#define A2 A2Methods_Array2
// TODO: pass methods to all helper functions from compress
//
// TODO: rename this struct and place in header file
// TODO: what types are a, b, c, and d? a needs to be 9 bits, the rest: 5 bits
float discreteCosineTransform(char coefficient, float y1, float y2, float y3, float y4);
unsigned quantizeColorDifference(float chroma);
unsigned quantizeAcoefficient(float coeff);
signed quantizeBCDcoefficients(float coeff);
float dequantizeColorDifference(unsigned index);
float dequantizeAcoefficient(unsigned a);
float dequantizeBCDcoefficient(signed coeff);
float inverseDCT(int y, float a, float b, float c, float d);
extern A2 expand(A2 quantArray);
extern A2 reduce(A2 componentArray, int height, int width)
{
assert(componentArray);
assert(height > 0);
assert(width > 0);
int blockSize = 2;
A2Methods_T methods = array2_methods_plain;
A2 quantMap = methods->new(((methods->width(componentArray)) / blockSize),
((methods->height(componentArray)) / blockSize),
sizeof(struct quantizedValues));
for(int row = 0; row < height; row+=2)
{
for(int col = 0; col < width; col+=2)
{
ybr_float ybrTemp1 = (ybr_float) methods->at(componentArray, col, row);
ybr_float ybrTemp2 = (ybr_float) methods->at(componentArray, col + 1, row);
ybr_float ybrTemp3 = (ybr_float) methods->at(componentArray, col, row + 1);
ybr_float ybrTemp4 = (ybr_float) methods->at(componentArray, col + 1, row + 1 );
reducedValues reducedTemp;
reducedTemp.avgPb = (ybrTemp1->Pb + ybrTemp2->Pb + ybrTemp3->Pb + ybrTemp4->Pb) / 4.0;
reducedTemp.avgPr = (ybrTemp1->Pr + ybrTemp2->Pr + ybrTemp3->Pr + ybrTemp4->Pr) / 4.0;
float y1 = ybrTemp1->y;
float y2 = ybrTemp2->y;
float y3 = ybrTemp3->y;
float y4 = ybrTemp4->y;
reducedTemp.a = discreteCosineTransform('a', y1, y2, y3, y4);
reducedTemp.b = discreteCosineTransform('b', y1, y2, y3, y4);
reducedTemp.c = discreteCosineTransform('c', y1, y2, y3, y4);
reducedTemp.d = discreteCosineTransform('d', y1, y2, y3, y4);
quantizedValues quantTemp = (quantizedValues) methods->at(quantMap,(col / blockSize),(row / blockSize));
quantTemp->avgPb = quantizeColorDifference(reducedTemp.avgPb);
quantTemp->avgPr = quantizeColorDifference(reducedTemp.avgPr);
quantTemp->a = quantizeAcoefficient(reducedTemp.a);
quantTemp->b = quantizeBCDcoefficients(reducedTemp.b);
quantTemp->c = quantizeBCDcoefficients(reducedTemp.c);
quantTemp->d = quantizeBCDcoefficients(reducedTemp.d);
//if(count++ < -1)
//{
//printf("NOTPASSEDIN COMPRESS QUANTTEMP VALUES [%i, %i] -- A: %u, B: %i, C: %i, D: %i, avgPb: %u, avgPr: %u\n", col, row, quantTemp->a, quantTemp->b, quantTemp->c, quantTemp->d, quantTemp->avgPr, quantTemp->avgPr);
//}
}
}
return quantMap;
}
float discreteCosineTransform(char coefficient, float y1, float y2, float y3, float y4)
{
float computedCoefficient;
switch(coefficient)
{
case 'a':
computedCoefficient = (y4 + y3 + y2 + y1) / 4.0;
// printf("computed Coefficient A:%f\n", computedCoefficient);
break;
case 'b':
computedCoefficient = (y4 + y3 - y2 - y1) / 4.0;
// printf("computed Coefficient B:%f\n", computedCoefficient);
break;
case 'c':
computedCoefficient = (y4 - y3 + y2 - y1) / 4.0;
// printf("computed Coefficient C:%f\n", computedCoefficient);
break;
case 'd':
computedCoefficient = (y4 - y3 - y2 + y1) / 4.0;
// printf("computed Coefficient D:%f\n", computedCoefficient);
break;
default:
fprintf(stderr, "Incorrect Coefficient\n");
exit(EXIT_FAILURE);
break;
}
return computedCoefficient;
}
unsigned quantizeColorDifference(float chroma)
{
if(chroma > 0.5)
{
chroma = 0.5;
}
else if(chroma < -0.5)
{
chroma = -0.5;
}
return Arith_index_of_chroma(chroma);
}
unsigned quantizeAcoefficient(float coeff)
{
// 2^9 - 1 = 511, based on number of bits used to hold 'a'
return roundf(coeff * 511.0);
}
signed quantizeBCDcoefficients(float coeff)
{
if(coeff > 0.3)
{
coeff = 0.3;
}
else if (coeff < -0.3)
{
coeff = -0.3;
}
return roundf(coeff * 50.0);
}
extern A2 expand(A2 quantArray)
{
assert(quantArray);
int height = Array2_height(quantArray);
int width = Array2_width(quantArray);
A2Methods_T methods = array2_methods_plain;
A2 YBRmap = methods->new((width * 2) , (height * 2), sizeof(struct ybr_float));
for(int row = 0; row < height; row ++)
{
for(int col = 0; col < width; col ++)
{
quantizedValues incomingValues = methods->at(quantArray, col, row);
reducedValues reducedTemp;
reducedTemp.a = dequantizeAcoefficient(incomingValues->a);
reducedTemp.b = dequantizeBCDcoefficient(incomingValues->b);
reducedTemp.c = dequantizeBCDcoefficient(incomingValues->c);
reducedTemp.d = dequantizeBCDcoefficient(incomingValues->d);
reducedTemp.avgPb = dequantizeColorDifference(incomingValues->avgPb);
reducedTemp.avgPr = dequantizeColorDifference(incomingValues->avgPr);
ybr_float ybrTemp1 = (ybr_float) methods->at(YBRmap, (col * 2), (row * 2));
ybr_float ybrTemp2 = (ybr_float) methods->at(YBRmap, (1 + col * 2), (row * 2));
ybr_float ybrTemp3 = (ybr_float) methods->at(YBRmap, (col * 2), (1 + row * 2));
ybr_float ybrTemp4 = (ybr_float) methods->at(YBRmap, (1 + col * 2), (1 + row * 2));
ybrTemp1->y = inverseDCT(1, reducedTemp.a,
reducedTemp.b,
reducedTemp.c,
reducedTemp.d);
ybrTemp2->y = inverseDCT(2, reducedTemp.a,
reducedTemp.b,
reducedTemp.c,
reducedTemp.d);
ybrTemp3->y = inverseDCT(3, reducedTemp.a,
reducedTemp.b,
reducedTemp.c,
reducedTemp.d);
ybrTemp4->y = inverseDCT(4, reducedTemp.a,
reducedTemp.b,
reducedTemp.c,
reducedTemp.d);
ybrTemp1->Pb = reducedTemp.avgPb;
ybrTemp1->Pr = reducedTemp.avgPr;
ybrTemp2->Pb = reducedTemp.avgPb;
ybrTemp2->Pr = reducedTemp.avgPr;
ybrTemp3->Pb = reducedTemp.avgPb;
ybrTemp3->Pr = reducedTemp.avgPr;
ybrTemp4->Pb = reducedTemp.avgPb;
ybrTemp4->Pr = reducedTemp.avgPr;
}
}
return YBRmap;
}
float dequantizeColorDifference(unsigned index)
{
return Arith_chroma_of_index(index);
}
float dequantizeAcoefficient(unsigned a)
{
return (a / 511.0);
}
float dequantizeBCDcoefficient(signed coeff)
{
return (coeff / 50.0);
}
float inverseDCT(int y, float a, float b, float c, float d)
{
float luminanceValue;
switch(y)
{
case 1:
luminanceValue = a - b - c + d;
break;
case 2:
luminanceValue = a - b + c - d;
break;
case 3:
luminanceValue = a + b - c - d;
break;
case 4:
luminanceValue = a + b + c + d;
break;
default:
fprintf(stderr, "Incorrect Y value chosen\n");
exit(EXIT_FAILURE);
break;
}
return luminanceValue;
}
#undef A2