-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentimentAnalysis.py
89 lines (69 loc) · 3.23 KB
/
sentimentAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import pandas
# Function to return sentiment files for every set of Google Play comment data
def sentiment(pathName, outputFileName, statisticFile):
# Read file i
filePath = pandas.read_csv(pathName)
# Create and name sentiment analysis file
outputFile = open('/Users/jaime/Documents/York_University/Winter_2021/Data_Vizualization/Project/Sentiment/'+'Sentiment_Score_for_'+outputFileName+".csv", 'w', encoding='utf8')
# Create an empty array
sentences = []
# Create an empty array
author = []
date = []
appName = []
appPath = []
# Loop through the csv file to find all comments written in English
for i in range(len(filePath)):
if filePath['Language'][i] == 'English' and len(str(filePath['Author'][i]))>2 and 'google' not in str(filePath['Author'][i]).lower() and 'nan' != str(filePath['Author'][i]).lower():
sentences.append(filePath['Body'][i])
author.append(filePath['Author'][i])
date.append(filePath['Date'][i])
# Get app info
appName.append(filePath['App'][1])
appPath.append(filePath['App ID'][1])
# Add column names
outputFile.write('Author, date, neg,neu,pos,compound, sentiment\n')
# Initialize VADER and write the relevant scores to the output file in csv form
analyzer = SentimentIntensityAnalyzer()
negProportion = 0
posProportion = 0
nReviews = len(sentences)
for i, sentence in enumerate(sentences):
# neutral sentiment: (compound score > -0.05) and (compound score < 0.05)
sentiment_classification = 'neutral'
sentiment_dict = analyzer.polarity_scores(str(sentence))
# sentiment compound score classification
if (sentiment_dict['compound'] >= 0.05):
sentiment_classification = 'positive'
posProportion += 1
elif(sentiment_dict['compound'] <= -0.05):
sentiment_classification = 'negative'
negProportion += 1
outputFile.write(str(author[i])+",")
outputFile.write(str(date[i])+",")
outputFile.write(str(sentiment_dict['neg'])+",")
outputFile.write(str(sentiment_dict['neu'])+",")
outputFile.write(str(sentiment_dict['pos'])+",")
outputFile.write(str(sentiment_dict['compound'])+",")
outputFile.write(str(sentiment_classification)+ ",\n")
nReviews += 1
# stats for the app
statisticFile.write(str(appName)+",")
statisticFile.write(str(appPath)+",")
statisticFile.write(str(nReviews)+",")
statisticFile.write(str(division(negProportion, nReviews))+",")
statisticFile.write(str(division((nReviews-negProportion-posProportion), nReviews))+",")
statisticFile.write(str(division(posProportion, nReviews))+",")
statisticFile.write(str(getSentiment(division(posProportion, nReviews), division(negProportion, nReviews), division((nReviews-negProportion-posProportion), nReviews))))
statisticFile.write(",\n")
# Division avoiding zero denominator
def division(n, d):
return n / d if d else 0
def getSentiment(pos, neg, neu):
if pos > neg and pos > neu:
return 'positive'
elif neg > pos and neg > neu:
return 'negative'
else:
return 'neutral'