|
| 1 | +--- |
| 2 | +title: "Logistic PLR Models" |
| 3 | + |
| 4 | +jupyter: python3 |
| 5 | +--- |
| 6 | + |
| 7 | +```{python} |
| 8 | +#| echo: false |
| 9 | +
|
| 10 | +import numpy as np |
| 11 | +import pandas as pd |
| 12 | +from itables import init_notebook_mode |
| 13 | +import os |
| 14 | +import sys |
| 15 | +
|
| 16 | +doc_dir = os.path.abspath(os.path.join(os.getcwd(), "..")) |
| 17 | +if doc_dir not in sys.path: |
| 18 | + sys.path.append(doc_dir) |
| 19 | +
|
| 20 | +from utils.style_tables import generate_and_show_styled_table |
| 21 | +
|
| 22 | +init_notebook_mode(all_interactive=True) |
| 23 | +``` |
| 24 | + |
| 25 | +## ATE Coverage |
| 26 | + |
| 27 | +The simulations are based on the the [make_lplr_LZZ2020](https://docs.doubleml.org/stable/api/generated/doubleml.plm.datasets.make_lplr_LZZ2020.html)-DGP with $500$ observations. |
| 28 | + |
| 29 | +::: {.callout-note title="Metadata" collapse="true"} |
| 30 | + |
| 31 | +```{python} |
| 32 | +#| echo: false |
| 33 | +metadata_file = '../../results/plm/lplr_ate_metadata.csv' |
| 34 | +metadata_df = pd.read_csv(metadata_file) |
| 35 | +print(metadata_df.T.to_string(header=False)) |
| 36 | +``` |
| 37 | + |
| 38 | +::: |
| 39 | + |
| 40 | +```{python} |
| 41 | +#| echo: false |
| 42 | +
|
| 43 | +# set up data and rename columns |
| 44 | +df_coverage = pd.read_csv("../../results/plm/lplr_ate_coverage.csv", index_col=None) |
| 45 | +
|
| 46 | +if "repetition" in df_coverage.columns and df_coverage["repetition"].nunique() == 1: |
| 47 | + n_rep_coverage = df_coverage["repetition"].unique()[0] |
| 48 | +elif "n_rep" in df_coverage.columns and df_coverage["n_rep"].nunique() == 1: |
| 49 | + n_rep_coverage = df_coverage["n_rep"].unique()[0] |
| 50 | +else: |
| 51 | + n_rep_coverage = "N/A" # Fallback if n_rep cannot be determined |
| 52 | +
|
| 53 | +display_columns_coverage = ["Learner m", "Learner M", "Learner t", "Bias", "CI Length", "Coverage"] |
| 54 | +``` |
| 55 | + |
| 56 | +### Nuisance space |
| 57 | + |
| 58 | +```{python} |
| 59 | +# | echo: false |
| 60 | +
|
| 61 | +generate_and_show_styled_table( |
| 62 | + main_df=df_coverage, |
| 63 | + filters={"level": 0.95, "Score": "nuisance_space"}, |
| 64 | + display_cols=display_columns_coverage, |
| 65 | + n_rep=n_rep_coverage, |
| 66 | + level_col="level", |
| 67 | +# rename_map={"Learner g": "Learner l"}, |
| 68 | + coverage_highlight_cols=["Coverage"] |
| 69 | +) |
| 70 | +``` |
| 71 | + |
| 72 | +```{python} |
| 73 | +#| echo: false |
| 74 | +
|
| 75 | +generate_and_show_styled_table( |
| 76 | + main_df=df_coverage, |
| 77 | + filters={"level": 0.9, "Score": "nuisance_space"}, |
| 78 | + display_cols=display_columns_coverage, |
| 79 | + n_rep=n_rep_coverage, |
| 80 | + level_col="level", |
| 81 | +# rename_map={"Learner g": "Learner l"}, |
| 82 | + coverage_highlight_cols=["Coverage"] |
| 83 | +) |
| 84 | +``` |
| 85 | + |
| 86 | +### Instrument |
| 87 | + |
| 88 | + |
| 89 | +```{python} |
| 90 | +#| echo: false |
| 91 | +
|
| 92 | +generate_and_show_styled_table( |
| 93 | + main_df=df_coverage, |
| 94 | + filters={"level": 0.95, "Score": "instrument"}, |
| 95 | + display_cols=display_columns_coverage, |
| 96 | + n_rep=n_rep_coverage, |
| 97 | + level_col="level", |
| 98 | + coverage_highlight_cols=["Coverage"] |
| 99 | +) |
| 100 | +``` |
| 101 | + |
| 102 | +```{python} |
| 103 | +#| echo: false |
| 104 | +
|
| 105 | +generate_and_show_styled_table( |
| 106 | + main_df=df_coverage, |
| 107 | + filters={"level": 0.9, "Score": "instrument"}, |
| 108 | + display_cols=display_columns_coverage, |
| 109 | + n_rep=n_rep_coverage, |
| 110 | + level_col="level", |
| 111 | + coverage_highlight_cols=["Coverage"] |
| 112 | +) |
| 113 | +``` |
0 commit comments