-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
50 lines (34 loc) · 1.37 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from hbconfig import Config
import torch.nn as nn
import torch.optim as optim
from gan import GAN
class Model:
TRAIN_MODE = "train"
EVALUATE_MODE = "evaluate"
PREDICT_MODE = "predict"
def __init__(self, mode):
self.mode = mode
def build_fn(self):
gan = GAN()
if self.mode == self.TRAIN_MODE:
criterion = self.build_criterion()
d_optimizer, g_optimizer = self.build_optimizers(gan.discriminator, gan.generator)
return gan.train_fn(criterion, d_optimizer, g_optimizer)
elif self.mode == self.EVALUATE_MODE:
return gan.evaluate_fn()
elif self.mode == self.PREDICT_MODE:
return gan.predict_fn()
else:
raise ValueError(f"unknown mode: {self.mode}")
def build_criterion(self):
return nn.BCELoss() # Binary cross entropy
def build_optimizers(self, discriminator, generator):
d_optimizer = optim.Adam(discriminator.parameters(),
lr=Config.train.d_learning_rate,
betas=Config.train.optim_betas)
g_optimizer = optim.Adam(generator.parameters(),
lr=Config.train.g_learning_rate,
betas=Config.train.optim_betas)
return d_optimizer, g_optimizer
def build_metric(self):
pass