-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbsp_optional.m
302 lines (259 loc) · 15.1 KB
/
bsp_optional.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
function varargout=bsp_imana(what,varargin)
% Optional and exploratory steps for processing Pontine7T data
% Define the data basedirectory
if isdir('/Volumes/diedrichsen_data$/data')
workdir='/Volumes/diedrichsen_data$/data';
elseif isdir('/srv/diedrichsen/data')
workdir='/srv/diedrichsen/data';
else
fprintf('Workdir not found. Mount or connect to server and try again.');
end
baseDir=(sprintf('%s/Cerebellum/Pontine7T',workdir));
imagingDir ='imaging_data';
imagingDirRaw ='imaging_data_raw';
anatomicalDir ='anatomicals';
suitDir ='suit';
regDir ='RegionOfInterest';
fmapDir ='fieldmaps';
% Load Participant information (make sure you have Dataframe/util in your
% path
pinfo = dload(fullfile(baseDir,'participants.tsv'));
subj_name = pinfo.participant_id;
good_subj = find(pinfo.good)'; % Indices of all good subjects
%========================================================================================================================
% GLM INFO
numDummys = 3; % per run
numTRs = 328; % per run (includes dummies)
run = {'01','02','03','04','05','06','07','08','09','10','11','12','13','14','15','16'};
runB = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]; % Behavioural labelling of runs
sess = [1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2]; % session number
%========================================================================================================================
switch(what)
case 'ANAT:bet' % Brain extraction for anatomical.nii
% Run bash script /srv/diedrichsen/shell/optiBET.sh
% Edit command variable to set path to optiBET.sh script
% In order to use coregistration, an optimal brain extraction needs to be performed. optiBET usually gives best results.
% Command needs bias-corrected anatomical image as input (manatomical.nii). Bias-correction can be performed either with SPM or FSL (FAST)
% Command produces:
% manatomical_optiBET_brain.nii.gz (brain-extracted file)
% manatomical_optiBET_brain_mask.nii.gz
% example: bsp_imana('ANAT:bet',1)
sn=varargin{1}; % subjNum
for s=sn
img = fullfile(baseDir,anatomicalDir,subj_name{s},'manatomical.nii');
command = sprintf('bash /srv/diedrichsen/shell/optiBET.sh -i %s', img)
system(command)
in = fullfile(baseDir,anatomicalDir,subj_name{s},'manatomical_optiBET_brain.nii.gz');
out = fullfile(baseDir,anatomicalDir,subj_name{s},'manatomical_brain.nii.gz');
copy_command = sprintf('cp %s %s', in, out)
system(copy_command)
fprintf('optiBET completed for %s \n',subj_name{s})
fprintf('Check the output of optiBET using FSLeyes or some other visualization software.')
end
case 'ANAT:biascorrect_tse' % Bias correct TSE
% example: bsp_imana('ANAT:biascorrect_tse',1)
% In order to coregister the TSE image to the anatomical optimally, the TSE image needs to be bias-corrected. This particular TSE image has a strong bias field, which is why we opt for the fsl bias correction within fsl_anat that can set to be strong.
% Command produces:
% tse.anat/T2_biascorr.nii.gz (bias-corrected TSE image)
% tse.anat/T2_biascorr_brain.nii.gz (brain-extracted bias-corrected TSE image)
% additional files in tse.anat folder that can be deleted
sn=varargin{1}; %subjNum
for s=sn
in_tse = fullfile(baseDir,anatomicalDir,subj_name{s},'tse.nii');
out_tse = fullfile(baseDir,anatomicalDir,subj_name{s},'tse');
command_bias = sprintf('fsl_anat --nononlinreg --strongbias --nocrop --noreg --nosubcortseg --noseg --clobber -t T2 -i %s -o %s', in_tse, out_tse)
system(command_bias)
fprintf('tse bias correction completed for %s \n',subj_name{s})
fprintf('Check the results in FSLeyes or some other visualization software.')
end
case 'ANAT:coregister_tse' % Coregister TSE to anatomical
% example: bsp_imana('ANAT:coregister_tse',1)
% Coregister TSE to anatomical using mutual information (used for later comparison of coregistration of functional data to anatomical data with and without the use of fieldmaps)
% Command produces:
% tse_to_anatomical_mi.mat (transformation matrix)
% tse_to_anatomical_mi.nii.gz (coregistered TSE image)
sn=varargin{1}; % subjNum
for s=sn
in_tse = fullfile(baseDir,anatomicalDir,subj_name{s},'tse.anat','T2_biascorr.nii.gz');
in_ref = fullfile(baseDir,anatomicalDir,subj_name{s},'manatomical.nii');
out_mat = fullfile(baseDir,anatomicalDir,subj_name{s},'tse_to_anatomical_mi.mat');
out_tse = fullfile(baseDir,anatomicalDir,subj_name{s},'tse_to_anatomical_mi');
command_mask = sprintf('flirt -in %s -ref %s -usesqform -searchrx -45 45 -searchry -45 45 -searchrz -45 45 -dof 6 -cost mutualinfo -omat %s -out %s', in_tse, in_ref, out_mat, out_tse)
system(command_mask)
fprintf('tse coregistration completed for %s \n',subj_name{s})
fprintf('Check the results in FSLeyes or some other visualization software.')
end
case 'FUNC:create_mean_epis' % Calculate mean EPIs for runs: NOT NEEDED [?]
% Calculate mean EPIs for run(s) acquired closest to fieldmaps
% example bsp_imana('FUNC:create_mean_epis',1,[8 16])
% Creates a mean epi image of the run closest to the fieldmap acquisition. This mean EPI image is later used to coregister fieldmaps to functional data.
% Command produces:
% meanrun_8.nii.gz (mean EPI image of run 8)
% meanrun_16.nii.gz (mean EPI image of run 16)
sn=varargin{1}; % subjNum
runs=varargin{2}; % runNum
subjs = length(sn);
for s=sn
for r=1:length(runs);
in_epi = fullfile(baseDir,imagingDir,subj_name{s},sprintf('run_%2.2d.nii',runs(r)));
out_meanepi = fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d.nii.gz',runs(r)));
command_meanepi = sprintf('fslmaths %s -Tmean %s', in_epi, out_meanepi)
system(command_meanepi)
fprintf('mean epi completed for run %d \n',runs(r))
out = fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d.nii',runs(r)));
command_gunzip = sprintf('gunzip -c %s > %s', out_meanepi, out)
system(command_gunzip)
fprintf('gunzip completed for run %d \n',runs(r))
command_rm = sprintf('rm %s',out_meanepi)
system(command_rm)
fprintf('gzipped file removed for run %d \n',runs(r))
end
end
case 'FMAP:average_magnitudes' % Average magnitude images for each session
% Averages the two magnitude images for each session
% example: bsp_imana('FMAP:average_magnitudes',1,1)
% Command produces:
% magnitudeavg_sess_1.nii (averaged magnitude image for session 1)
% magnitudeavg_sess_2.nii (averaged magnitude image for session 2)
sn=varargin{1}; % subjNum
sessn=varargin{2}; %sessNum
for s=sn
cd(fullfile(baseDir,fmapDir,subj_name{s},sprintf('fmap_sess_%d',sessn)));
J.input = {sprintf('magnitude1_sess_%d.nii,1',sessn)
sprintf('magnitude2_sess_%d.nii,1',sessn)};
J.output = fullfile(baseDir,fmapDir,subj_name{s},sprintf('fmap_sess_%d',sessn),sprintf('magnitudeavg_sess_%d.nii',sessn));
J.outdir = {fullfile(baseDir,fmapDir,subj_name{s})};
J.expression = '(i1+i2)/2';
J.var = struct('name', {}, 'value', {});
J.options.dmtx = 0;
J.options.mask = 0;
J.options.interp = 1;
J.options.dtype = 4;
matlabbatch{1}.spm.util.imcalc=J;
spm_jobman('run',matlabbatch);
fprintf('magnitude fieldmaps averaged for %s \n',subj_name{s})
end
case 'FUNC:run_feat_coregistration' %Run run_feat_coregistrations.sh shell script
% example: bsp_imana('FUNC:run_feat_coregistration',1,1)
% Command produces:
% run_01_func2struct.mat (transformation matrix)
% run_01_func2struct.nii.gz (coregistered functional image for visual inspection of transformation)
sn=varargin{1}; %subjNum
sessn=varargin{2}; %sessNum
for s=sn
subjID = strip(subj_name{s},'left','S')
command_feat = sprintf('bash /srv/diedrichsen/shell/run_feat_coregistration.sh %s %2.2d', subjID, sessn)
system(command_feat)
end
fprintf('feat coregistration completed for %s \n',subj_name{s})
case 'FUNC:gunzip' % Unzip .nii.gz file to .nii
% Run gunzip on the output file from epi_reg step
% example: bsp_imana('FUNC:gunzip',1,8)
% Command produces:
% meanrun_01_func2struct.nii (unzipped file)
sn=varargin{1}; % subjNum
runnum=varargin{2}; %runNum
for s=sn
in = fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d_func2highres.nii.gz',runnum));
out = fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d_func2highres.nii',runnum));
% gunzip -c file.gz > /THERE/file
command = sprintf('gunzip -c %s > %s', in, out)
system(command)
fprintf('gunzip completed for %s \n',subj_name{s})
end
case 'FUNC:coreg_meanepi' % Coregister meanrun_01 to meanrun_01_func2struct
% Need meanrun_01 in epi resolution coregistered to anatomical
% example: bsp_imana('FUNC:coreg_meanepi',1,8)
% Command produces:
% meanrun_01_func2struct.mat (transformation matrix)
% meanrun_01_func2struct.nii.gz (coregistered mean EPI image for visual inspection of transformation)
sn=varargin{1}; % subjNum
runnum=varargin{2} %runNum
J = [];
for s=sn
cd(fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n']));
J.ref = {fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d_func2highres.nii',runnum))};
J.source = {fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d.nii',runnum))};
J.other = {''};
J.eoptions.cos_fun = 'nmi';
J.eoptions.sep = [4 2];
J.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
J.eoptions.fwhm = [7 7];
matlabbatch{1}.spm.spatial.coreg.estimate=J;
spm_jobman('run',matlabbatch);
fprintf('mean epi coregistered for %s \n',subj_name{s})
command = sprintf('cp %s %s',fullfile(baseDir,imagingDirRaw,[subj_name{s} '-n'],sprintf('meanrun_%2.2d.nii',runnum)),fullfile(baseDir,imagingDir,subj_name{s},sprintf('rmeanrun_%2.2d.nii',runnum)))
system(command)
end
case 'SUIT:reslice' % Reslice the contrast images from first-level GLM
% example: bsm_imana('SUIT:reslice',1,4,'betas','cereb_prob_corr_grey')
% make sure that you reslice into 2mm^3 resolution
sn=2; % subjNum
glm=1; % glmNum
type='contrast'; % 'betas' or 'contrast' or 'ResMS' or 'cerebellarGrey'
mask='c_anatomical_pcereb_corr'; % 'cereb_prob_corr_grey' or 'cereb_prob_corr' or 'dentate_mask'
for s=sn
switch type
case 'betas'
glmSubjDir = fullfile(baseDir,sprintf('GLM_firstlevel_%d',glm),subj_name{s});
outDir=fullfile(baseDir,suitDir,sprintf('glm%d',glm),subj_name{s});
images='beta_0';
source=dir(fullfile(glmSubjDir,sprintf('*%s*',images))); % images to be resliced
cd(glmSubjDir);
case 'contrast'
glmSubjDir = fullfile(baseDir,sprintf('GLM_firstlevel_%d',glm),subj_name{s});
outDir=fullfile(baseDir,suitDir,sprintf('glm%d',glm),subj_name{s});
images='con';
source=dir(fullfile(glmSubjDir,sprintf('*%s*',images))); % images to be resliced
cd(glmSubjDir);
case 'ResMS'
glmSubjDir = fullfile(baseDir,sprintf('GLM_firstlevel_%d',glm),subj_name{s});
outDir=fullfile(baseDir,suitDir,sprintf('glm%d',glm),subj_name{s});
images='ResMS';
source=dir(fullfile(glmSubjDir,sprintf('*%s*',images))); % images to be resliced
cd(glmSubjDir);
case 'cerebellarGrey'
source=dir(fullfile(baseDir,suitDir,'anatomicals',subj_name{s},'c1anatomical.nii')); % image to be resliced
cd(fullfile(baseDir,suitDir,'anatomicals',subj_name{s}));
end
job.subj.affineTr = {fullfile(baseDir,suitDir,'anatomicals',subj_name{s},'Affine_c_anatomical_seg1.mat')};
job.subj.flowfield= {fullfile(baseDir,suitDir,'anatomicals',subj_name{s},'u_a_c_anatomical_seg1.nii')};
job.subj.resample = {source.name};
job.subj.mask = {fullfile(baseDir,suitDir,'anatomicals',subj_name{s},sprintf('%s.nii',mask))};
job.vox = [1 1 1];
% Replace Nans with zeros to avoid big holes in the the data
for i=1:length(source)
V=spm_vol(source(i).name);
X=spm_read_vols(V);
X(isnan(X))=0;
spm_write_vol(V,X);
end;
suit_reslice_dartel(job);
source=fullfile(glmSubjDir,'*wd*');
dircheck(fullfile(outDir));
destination=fullfile(baseDir,suitDir,sprintf('glm%d',glm),subj_name{s});
movefile(source,destination);
fprintf('%s have been resliced into suit space \n',type)
end
case 'SUIT:map_to_flat'
% Maps wdcon data to flatmap
sn = 2;
glm = 1;
vararginoptions(varargin,{'sn','glm','type','mask'});
source_dir=fullfile(baseDir,suitDir,sprintf('glm%d',glm),subj_name{sn});
source=dir(fullfile(source_dir,'wdcon*')); % images to be resliced
for i=1:length(source)
name{i} = fullfile(source_dir,source(i).name);
end;
MAP = suit_map2surf(name);
% G = surf_makeFuncGifti
set(gcf,'PaperPosition',[2 2 15 7]);
wysiwyg;
for i=1:10
subplot(2,5,i);
suit_plotflatmap(MAP(:,i),'cscale',[-1.5 1.5]);
n = source(i).name(7:end-4);
n(n=='_')=' ';
title(n);
end;
end