-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxor_example.py
63 lines (48 loc) · 1.38 KB
/
xor_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from cobweb import Cobweb
import random
xor_rules = [
{
"input": [1.0, 1.0],
"output": [0.0],
},
{
"input": [1.0, 0.0],
"output": [1.0],
},
{
"input": [0.0, 0.0],
"output": [0.0],
},
{
"input": [0.0, 1.0],
"output": [1.0],
},
]
model_filename = "xor_model.json"
# Uncomment these lines to enable training
# training_data = [random.choice(xor_rules) for _ in range(80_000)]
# epoch = 5
# train_nn = Cobweb(2, 1)
# train_nn.add_layer(3)
# for _ in range(epoch):
# random.shuffle(training_data)
# for data in training_data:
# train_nn.train(data["input"], data["output"])
# train_nn.save(model_filename)
loaded_nn = Cobweb.load(model_filename)
guess = loaded_nn.predict([1.0, 1.0])
print("Should be close to 0 => {}".format(guess))
guess = loaded_nn.predict([0.0, 1.0])
print("Should be close to 1 => {}".format(guess))
guess = loaded_nn.predict([1.0, 0.0])
print("Should be close to 1 => {}".format(guess))
guess = loaded_nn.predict([0.0, 0.0])
print("Should be close to 0 => {}".format(guess))
test_data = [random.choice(xor_rules) for _ in range(1000)]
correct = 0
for data in test_data:
guess = [round(n) for n in loaded_nn.predict(data["input"])]
target = data["output"]
if guess == target:
correct += 1
print("Accuracy: {}%".format(correct / len(test_data) * 100))