|
| 1 | + |
| 2 | +class Graph: |
| 3 | + |
| 4 | + def __init__(self, vertices): |
| 5 | + self.V = vertices # Total number of vertices in the graph |
| 6 | + self.graph = [] # Array of edges |
| 7 | + |
| 8 | + # Add edges |
| 9 | + def add_edge(self, s, d, w): |
| 10 | + self.graph.append([s, d, w]) |
| 11 | + |
| 12 | + # Print the solution |
| 13 | + def print_solution(self, dist): |
| 14 | + print("Vertex Distance from Source") |
| 15 | + for i in range(self.V): |
| 16 | + print("{0}\t\t{1}".format(i, dist[i])) |
| 17 | + |
| 18 | + def bellman_ford(self, src): |
| 19 | + |
| 20 | + # Step 1: fill the distance array and predecessor array |
| 21 | + dist = [float("Inf")] * self.V |
| 22 | + # Mark the source vertex |
| 23 | + dist[src] = 0 |
| 24 | + |
| 25 | + # Step 2: relax edges |V| - 1 times |
| 26 | + for _ in range(self.V - 1): |
| 27 | + for s, d, w in self.graph: |
| 28 | + if dist[s] != float("Inf") and dist[s] + w < dist[d]: |
| 29 | + dist[d] = dist[s] + w |
| 30 | + |
| 31 | + # Step 3: detect negative cycle |
| 32 | + # if value changes then we have a negative cycle in the graph |
| 33 | + # and we cannot find the shortest distances |
| 34 | + for s, d, w in self.graph: |
| 35 | + if dist[s] != float("Inf") and dist[s] + w < dist[d]: |
| 36 | + print("Graph contains negative weight cycle") |
| 37 | + return |
| 38 | + |
| 39 | + # No negative weight cycle found! |
| 40 | + # Print the distance and predecessor array |
| 41 | + self.print_solution(dist) |
| 42 | + |
| 43 | + |
| 44 | +g = Graph(5) |
| 45 | +g.add_edge(0, 1, 5) |
| 46 | +g.add_edge(0, 2, 4) |
| 47 | +g.add_edge(1, 3, 3) |
| 48 | +g.add_edge(2, 1, 6) |
| 49 | +g.add_edge(3, 2, 2) |
| 50 | + |
| 51 | +g.bellman_ford(0) |
0 commit comments