-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlin_reg.py
188 lines (154 loc) · 6.64 KB
/
lin_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
from pathlib import Path
import numpy as np
import pandas as pd
from pandas import DataFrame as df
from sklearn.linear_model import LinearRegression # linear regression
currentDir = Path(os.getcwd())
file = currentDir / "TRAIN_DATA.csv"
data = pd.read_csv(open(file))
pd.options.mode.chained_assignment = None
def DailyExtract(date):
raw = data[data['TRADEDATE'] == date].reset_index(drop=True)
midprice = (raw['BID']+raw['ASK'])/2
raw['midprice'] = midprice
length = len(midprice)
raw['BidAskSpd'] = raw['ASK'] - raw['BID']
## compute ten days mid-price change
TenDPriceChg = midprice.rolling(20).mean()[20:].reset_index(drop=True) \
- midprice[:length-20].reset_index(drop=True)
raw['TenDPriceChg'] = TenDPriceChg
# compute Volume Order Imbalance (VOI)
## compute BidVolDelta
BidPriceChg = raw[['BID']].diff()
raw['BidPriceChg'] = BidPriceChg['BID']
BidVolChg = raw[['BIDSIZE']].diff()
raw['BidVolChg'] = BidVolChg['BIDSIZE']
raw['BidVolDelta'] = 0
raw['BidVolDelta'][raw['BidPriceChg'] > 0 ] = raw[raw['BidPriceChg'] >0 ]['BIDSIZE']
raw['BidVolDelta'][raw['BidPriceChg'] == 0] = raw[raw['BidPriceChg'] == 0]['BidVolChg']
## compute AskVolDelta
AskPriceChg = raw[['ASK']].diff()
raw['AskPriceChg'] = AskPriceChg['ASK']
AskVolChg = raw[['ASKSIZE']].diff()
raw['AskVolChg'] = AskVolChg['ASKSIZE']
raw['AskVolDelta'] = 0
raw['AskVolDelta'][raw['AskPriceChg'] < 0] = raw[raw['AskPriceChg'] < 0]['ASKSIZE']
raw['AskVolDelta'][raw['AskPriceChg'] == 0] = raw[raw['AskPriceChg'] == 0]['AskVolChg']
## compute VOI
raw['VOI'] = raw['BidVolDelta'] - raw['AskVolDelta']
# compute the mid-price basis (MPB)
## compute the average traded price
TradeAtBid = raw[['BIDVOLUME']].diff()
raw['TradeAtBid'] = TradeAtBid['BIDVOLUME']
TradeAtAsk = raw[['ASKVOLUME']].diff()
raw['TradeAtAsk'] = TradeAtAsk['ASKVOLUME']
raw['TradeValue'] = raw['BID'] * raw['TradeAtBid'] + raw['ASK'] * raw['TradeAtAsk']
raw['AvgTradePrice'] = np.where( raw['TradeValue']!=0,
raw['TradeValue']/(raw['TradeAtBid']+ raw['TradeAtAsk']), np.nan)
raw['AvgTradePrice'].iloc[0] = raw['midprice'].iloc[0]
raw[['AvgTradePrice']] = raw[['AvgTradePrice']].fillna(method='ffill')
## compute MPB
raw['MPB'] = raw['AvgTradePrice'] - midprice.rolling(2).mean()
raw['MPB'][0] = 0
# lag by L
L = 5
namelist = []
for _ in range(L):
name = "VOI" + str(i + 1)
namelist.append(name)
raw[name] = raw['VOI'][i + 1:].reset_index(drop=True)
raw[name] = raw[name] / raw['BidAskSpd']
name = "BIDASKIMBALANCE" + str(i + 1)
namelist.append(name)
raw[name] = raw['BIDASKIMBALANCE'][i + 1:].reset_index(drop=True)
raw[name] = raw[name] / raw['BidAskSpd']
# scaled by bid ask spread
raw['VOI'] = raw['VOI'] / raw['BidAskSpd']
raw['BIDASKIMBALANCE'] = raw['BIDASKIMBALANCE'] / raw['BidAskSpd']
raw['MPB'] = raw['MPB'] / raw['BidAskSpd']
namelist = ['TRADEDATE', 'TIME', 'BidAskSpd', 'BIDASKIMBALANCE', 'VOI', 'MPB', 'TenDPriceChg'] + namelist
output = raw[namelist]
output = output[ output['BidAskSpd'] >= 0.00001]
output = output.dropna()
return output
datelist = sorted(list(set(data['TRADEDATE'])))
train_range = 20
train_ac = []
test_ac = []
for j in range(len(datelist)-train_range):
traindata = df([])
for i in range(train_range):
dataset = DailyExtract(datelist[i+j])
traindata = traindata.append(dataset)
traindata.reset_index(drop=True, inplace=True)
row = traindata[traindata['TRADEDATE'] < datelist[j+ train_range - 1]].shape[0]
X = traindata.iloc[:, 2:]
X = X.drop(['TenDPriceChg', 'BidAskSpd'], axis=1)
input_x = X.reindex(sorted(X.columns), axis=1)
input_x['intercept'] = 1
y = traindata['TenDPriceChg']
X_train, X_test, y_train, y_test = input_x.iloc[:row, ], input_x.iloc[row:, ], y.iloc[:row], y.iloc[row:]
# print('X_train.shape={}\n y_train.shape ={}\n X_test.shape={}\n, y_test.shape={}'.format(X_train.shape,
# y_train.shape,
# X_test.shape,
# y_test.shape))
linreg = LinearRegression()
model = linreg.fit(X_train, y_train)
# training set predictions
y_pred = linreg.predict(X_train)
positive = 0
negative = 0
stable = 0
for i in range(len(y_pred)):
if y_pred[i] >= 0.01 and y_train.values[i] > 0:
positive += 1
elif y_pred[i] <= -0.01 and y_train.values[i] < 0:
negative += 1
elif abs(y_pred[i]) < 0.01 and y_train.values[i] < 0:
stable += 1
accuracy = (positive + negative + stable) / len(y_pred)
train_ac.append(accuracy)
# calculate RMSE by hand
print("Training Accuracy:", accuracy)
'''
ROC curve
plt.figure()
plt.plot(range(len(y_pred)), y_pred, 'b', label="predict")
plt.plot(range(len(y_pred)), y_train, 'r', label="train")
plt.legend(loc="upper right")
plt.xlabel("the number of sales")
plt.ylabel('value of sales')
plt.show()
'''
y_pred = linreg.predict(X_test)
positive = 0
negative = 0
stable = 0
for i in range(len(y_pred)):
if y_pred[i] >= 0.01 and y_test.values[i] > 0:
positive += 1
elif y_pred[i] <= -0.01 and y_test.values[i] < 0:
negative += 1
elif abs(y_pred[i]) < 0.01 and y_test.values[i] < 0:
stable += 1
accuracy = (positive + negative + stable) / len(y_pred)
test_ac.append(accuracy)
# calculate RMSE by hand
print("Testing Accuracy out of sample:", accuracy)
'''
ROC curve
plt.figure()
plt.plot(range(len(y_pred)), y_pred, 'b', label="predict")
plt.plot(range(len(y_pred)), y_test, 'r', label="test")
plt.legend(loc="upper right") # 显示图中的标签
plt.xlabel("the number of sales")
plt.ylabel('value of sales')
plt.show()
'''
# train_ac = df(train_ac)
# test_ac = df(test_ac)
# savepath = Path(os.getcwd())/"PreData/LinearRegress/" / "{}d-train_acc.csv".format(train_range)
# train_ac.to_csv(savepath)
# savepath = Path(os.getcwd())/"PreData/LinearRegress/" / "{}d-test_acc.csv".format(train_range)
# test_ac.to_csv(savepath)