-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
68 lines (51 loc) · 1.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import tensorflow as tf
import sys
from mss import mss
from PIL import Image
import numpy as np
import os
def getImage():
with mss() as sct:
# The screen part to capture
mon = {'top': 230, 'left': 50, 'width': 950, 'height': 600}
sct.get_pixels(mon)
img = Image.frombytes('RGB', (sct.width, sct.height), sct.image)
return img
# Read in the image_data
#image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("retrained_labels_marcel.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("retrained_graph_marcel_flip.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
for file in os.listdir("cross_validation_data"):
f = open("cross_validation_data/"+file, 'rb+')
image_data = Image.open(f)
image_array = np.array(image_data)[:, :, 0:3]
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg:0': image_data})
filename = "result.csv"
with open(filename, 'a+') as f:
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
f.write("{},{}\n".format(file,label_lines[top_k[0]]))
'''
while(True):
image_data = getImage()
image_array = np.array(image_data)[:, :, 0:3]
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
if score > 0.95:
print('%s (score = %.5f)' % (human_string, score))
'''