This repository was archived by the owner on May 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsavedVignette.py
396 lines (348 loc) · 15.3 KB
/
savedVignette.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# coding: utf-8
import os
from environment import make_env
import pickle
import lzma
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.image as img
from PIL import Image, ImageDraw
import colorTest
from vector_util import valueToRGB, checkFormat
from arguments import get_args
import transformFunction
import argparse
saveFormat = '.xz'
@checkFormat(saveFormat)
def loadFromFile(filename, folder="SavedVignette"):
"""
Returns a saved plot
"""
with lzma.open(folder + "/" + filename, 'rb') as handle:
content = pickle.load(handle)
return content
class SavedVignette:
"""
Class storing a Vignette, able to draw it in 3D and 2D
Useful to serialize in order to be able to change drawing parameters
"""
def __init__(self,
D,
indicesPolicies=None,
policyDistance=None,
stepalpha=.25,
color1=colorTest.color1,
color2=colorTest.color2,
pixelWidth=10,
pixelHeight=10,
x_diff=2.,
y_diff=2.,
colors=None,
env="CartPoleContinuous-v0",
policy="normal",
title="Landscape",
maxColor=None,
minColor=None):
# Informations to show
self.env = env
self.policy = policy
self.title = title
self.maxColor = maxColor
self.minColor = minColor
# Content of the Vignette
self.lines = [] # Upper lines
self.linesLogProb = [] # log(P(A\S)) for upper lines
self.directions = D # All sampled directions
self.indicesPolicies = indicesPolicies # Index of directions that go through a policy
self.policyDistance = policyDistance # Distance of each policy along its direction
# 2D plot
self.stepalpha = stepalpha # Distance between each model along a direction
self.color1, self.color2 = color1, color2 # Min color and max color
self.pixelWidth, self.pixelHeight = pixelWidth, pixelHeight # Pixels' dimensions
self.colors = colors
# 3D plot
self.fig, self.ax = None, None
self.x_diff = x_diff # Distance between each model along a direction
self.y_diff = y_diff # Distance between each direction
@checkFormat(saveFormat)
def saveInFile(self, filename):
"""
Save the Vignette in a file
"""
with lzma.open(filename, 'wb') as handle:
pickle.dump(self, handle)
@checkFormat('.png')
def save2D(self, filename, img=None):
"""
Save the Vignette as 2D image
"""
img = self.image2D() if img is None else img
img.save(filename, format='png')
def save2Dplot(self, image, filename, img=None):
"""
Save the Vignette as 2D image with matplotlib legend
"""
img = self.plot2D(filename=image) if img is None else img
plt.savefig(filename + '.png')
plt.savefig(filename + '.pdf')
#plt.show()
@checkFormat('.pdf')
def save3D(self, filename, elevs=[30], angles=[0]):
"""
Save the Vignette as a 3D image
"""
self.plot3D()
for elev in elevs:
for angle in angles:
self.ax.view_init(elev, angle)
plt.draw()
plt.savefig(filename + '_e{}_a{}.pdf'.format(elev, angle),
format='pdf')
#plt.show()
def saveAll(self,
filename,
saveInFile=False,
save2D=False,
save3D=False,
directoryFile="SavedVignette",
directory2D="Vignette_output",
directory3D="Vignette_output",
computedImg=None,
angles3D=[0],
elevs=[0]):
"""
Centralises the saving process
"""
# Choosing max/min colors
if self.env == "CartPoleContinuous-v0":
self.maxColor = 200
self.minColor = 0
if self.env == "Pendulum-v0":
self.maxColor = -100
self.minColor = -1900
if saveInFile is True: self.saveInFile(directoryFile + '/' + filename)
if save2D is True:
self.save2D(directory2D + '/' + filename + '_2D_image',
img=computedImg)
self.save2Dplot(directory2D + '/' + filename + '_2D_image',
directory2D + '/' + filename + '_2D_plot',
img=computedImg)
if save3D is True:
self.save3D(directory3D + '/' + filename + '_3D_plot',
elevs=elevs,
angles=angles3D)
def image2D(self, color1=None, color2=None):
"""
Compute the 2D image of the Vignette
Cannot store it as PIL images are non serializable
"""
color1, color2 = self.color1 if color1 is None else color1, self.color2 if color2 is None else color2
width, height = self.pixelWidth * len(
self.lines[-1]), self.pixelHeight * (len(self.lines))
newIm = Image.new("RGB", (width, height))
newDraw = ImageDraw.Draw(newIm)
# Adding the results
y0 = 0
for l in range(len(self.lines)):
# Drawing the results
y1 = y0 + self.pixelHeight
for c in range(len(self.lines[l])):
x0 = c * self.pixelWidth
x1 = x0 + self.pixelWidth
color = valueToRGB(self.lines[l][c],
color1,
color2,
minNorm=self.minColor,
maxNorm=self.maxColor)
newDraw.rectangle([x0, y0, x1, y1], fill=color)
y0 += self.pixelHeight
# Adding the policies
if self.indicesPolicies is not None:
marginX, marginY = int(self.pixelWidth / 4), int(self.pixelHeight /
4)
for k in range(len(self.indicesPolicies)):
index, distance = self.indicesPolicies[k], round(
self.policyDistance[k] / self.stepalpha)
x0, y0 = (distance + len(self.lines[0]) //
2) * self.pixelWidth, index * self.pixelHeight
x1, y1 = x0 + self.pixelWidth, y0 + self.pixelHeight
newDraw.ellipse(
[x0 + marginX, y0 + marginY, x1 - marginX, y1 - marginY],
fill=self.colors[k])
return newIm
def plot2D(self, filename):
"""
Compute the 2D image of the Vignette in a matplotlib plot
"""
image = Image.open(filename + '.png')
width, height = image.size
plt.title(str(self.env) + " - " + str(self.policy) + "\n" + str(self.title))
plt.ylabel("Directions")
plt.xlabel("Distances to central policy")
plt.imshow(image, cmap='viridis')
plt.colorbar(label="Reward", orientation="horizontal", aspect=50)
plt.clim(self.minColor, self.maxColor)
if (height // 10) > 10:
if any(color == "#ff7f0e" for color in self.colors):
plt.plot(0, 0, "-", c="tab:orange", label="PG policies")
if any(color == "#d62728" for color in self.colors):
plt.plot(0, 0, "-", c="tab:red", label="CEM policies")
if (width // 10) < 20:
xrate = 4
elif (width // 10) < 40:
xrate = 8
else:
xrate = 16
if (width // (xrate * 10)) % 2 == 0:
xnum = (width // (xrate * 10)) + 1
else:
xnum = (width // (xrate * 10))
xlabels = np.linspace(-self.stepalpha * (width // 20),
self.stepalpha * (width // 20),
xnum)
[index_zero] = np.where(xlabels == 0)[0]
halflabels = np.around(xlabels[:(index_zero)], 2)
xlabels = list(np.abs(halflabels)) + [0] + list(np.abs(halflabels[::-1]))
plt.xticks(np.linspace(5, width - 5, xnum), xlabels)
plt.yticks(np.linspace(5, height - 5, height//10), (np.linspace(1, (height//10), height//10, dtype=int))[::-1], fontsize=3)
plt.tight_layout()
if (height // 10) > 10:
plt.legend(loc='upper center',
fancybox=True,
framealpha=0.15,
ncol=2)
def plot3D(self,
figsize=(12, 8),
title="Vignette 3D",
surfaces=True,
transparency=1,
**kwargs):
"""
Compute the 3D image of the Vignette with surfaces or not, can be shaped by an input function
"""
self.fig, self.ax = plt.figure(
title, figsize=figsize), plt.axes(projection='3d')
plt.title(str(self.env) + " - " + str(self.policy) + "\n" + str(self.title))
# Computing the intial 3D Vignette
if surfaces is True:
args = [transformFunction.transformIdentity]
# Default key word arguments
defaultWidth, defaultLineWidth, defaultCmap = 5, .01, "viridis"
if "width" not in kwargs.keys(): kwargs["width"] = defaultWidth
if "linewidth" not in kwargs.keys():
kwargs["linewidth"] = defaultLineWidth
if "cmap" not in kwargs.keys(): kwargs["cmap"] = defaultCmap
else:
args = [transformFunction.transformIdentity]
self.computeFunction(*args,
transparency=transparency,
surfaces=surfaces,
**kwargs)
plt.legend(loc='upper center', fancybox=True, framealpha=0.15, ncol=2)
def computeFunction(self,
function,
transparency=0.6,
surfaces=True,
width=0,
linewidth=0,
cmap="viridis"):
if any(color == "#ff7f0e" for color in self.colors):
plt.plot(0, 0, "-", c="tab:orange", label="PG policies")
if any(color == "#d62728" for color in self.colors):
plt.plot(0, 0, "-", c="tab:red", label="CEM policies")
sm = plt.cm.ScalarMappable(cmap="viridis",
norm=plt.Normalize(vmin=self.minColor,
vmax=self.maxColor))
sm._A = []
plt.colorbar(sm, label="Reward", aspect=50)
# Iterate over all lines
for step in range(0, len(self.directions)):
# Vignette reads from top to bottom
height = -step
line = [self.lines[step][k] for k in range(len(self.lines[step]))]
transformedLine = function.transform(line)
# We have to iterate over all input policies at each step for an easier retrieval of parameters
if self.indicesPolicies is not None:
for k in range(len(self.indicesPolicies)):
if self.indicesPolicies[k] == step:
self.makePolicy3D(k,
height,
transformedLine,
width=width,
color=self.colors[k])
if surfaces is True:
x_line = np.linspace(-len(line) / 2, len(line) / 2, len(line))
y_line = height * width * np.ones(len(line))
X = np.array([x_line, x_line])
Y = np.array([y_line, y_line + width])
Z = np.array([transformedLine, transformedLine])
self.ax.plot_surface(self.x_diff * X,
self.y_diff * Y,
Z,
cmap=cmap,
linewidth=linewidth,
alpha=transparency,
norm=plt.Normalize(vmin=self.minColor,
vmax=self.maxColor))
else:
x_line = np.linspace(-len(line) / 2, len(line) / 2, len(line))
y_line = np.ones(len(line))
self.ax.plot3D(self.x_diff * x_line,
self.y_diff * height * y_line, transformedLine)
# Plotting user information
# Sampled policies
if self.policyDistance == []:
maxdist = 0
else:
maxdist = max(self.policyDistance)
self.ax.set_xlabel("Distances to central policy")
posits = [np.ceil(self.x_diff * step) for step in np.linspace(-len(self.lines[0])//2+1, 0, len(self.lines[0])//(len(self.lines[0])//3))] \
+ [np.floor(self.x_diff * step) for step in np.linspace(0, len(self.lines[0])//2+1, len(self.lines[0])//(len(self.lines[0])//3))]
values = list(np.ceil(np.linspace(int(max(maxdist, len(self.lines[0])//2)), 0, len(self.lines[0])//(len(self.lines[0])//3)))) \
+ list(np.ceil(np.linspace(0, int(max(maxdist, len(self.lines[0])//2)), len(self.lines[0])//(len(self.lines[0])//3))))
self.ax.set_xticks(posits)
self.ax.set_xticklabels(np.around(values, 2))
# Sampled directions
self.ax.set_ylabel("Lines")
if surfaces is True:
posits = [self.y_diff * (round(width / 2) - step * width)
for step in np.linspace(0, len(self.directions)-1, len(self.directions))]
else:
posits = [self.y_diff * (-step)
for step in np.linspace(0, len(self.directions)-1, len(self.directions))]
values = list(np.linspace(1, len(self.directions), len(self.directions), dtype=int))
self.ax.set_yticks(posits)
self.ax.set_yticklabels(values, fontsize=6)
# Reward
self.ax.set_zlabel("Reward")
def makePolicy3D(self, index, height, line, width=0, color='white'):
"""
Plot policies input points on the savedVignette's 3D plot
"""
distance = round(self.policyDistance[index] /
self.stepalpha) # Rounding error ?
dy = width if width != 0 else 1
x, y, z = self.x_diff * distance, self.y_diff * (
(height * dy) + round(width / 2)), line[round(len(line) // 2) +
distance]
self.ax.scatter(x, y, z, marker='o', color=color, s=700)
def changeColors(self, color1=None, color2=None):
self.color1 = color1 if color1 is not None else self.color1
self.color2 = color2 if color2 is not None else self.color2
if __name__ == "__main__":
args = get_args()
print(args)
directory = os.getcwd() + '/Models/'
LoadedVignette = loadFromFile(args.filename, folder=args.directoryFile)
angles3D = [20, 45, 50, 65] # angles at which to save the plot3D
elevs = [0, 30, 60]
LoadedVignette.saveAll(args.filename,
saveInFile=False,
save2D=True,
save3D=True,
directoryFile="SavedVignette",
directory2D="Vignette_output",
directory3D="Vignette_output",
computedImg=None,
angles3D=angles3D,
elevs=elevs)