-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelu_lib.py
234 lines (188 loc) · 6.97 KB
/
relu_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2024, Technology Innovation Institute, Yas Island, Abu Dhabi, United Arab Emirates.
from Compiler.types import sint, sfix
from Compiler.rabbit_lib import trunc_LTZ, rabbit_sint, Mode as rabbit_mode
class Gradient:
OFF, ON = range(2)
class Mode:
SFIX, SINT = range(2)
class relu_response:
def __init__(self, x, c):
self.__x = x
self.__c = c
def get_value(self):
return self.__x
def get_gradient(self):
return self.__c
def reveal(self):
return relu_response(self.__x.reveal(), self.__c.reveal())
def __equals__(self, other):
return (self.get_value() == other.get_value()) * (self.get_gradient() == other.get_gradient())
def __ne__(self, other):
return 1 - (self.get_value() == other.get_value()) * (self.get_gradient() == other.get_gradient())
# in this case, for complex types, a register of type string would make sense.
def print_reg(self):
return self.__x * self.__c
def relu(x, gradient=Gradient.OFF):
c = 1 - rabbit_sint(x, 0, rabbit_mode.DABITS_LTZ)
result = c * x + 0
if gradient == Gradient.ON:
return relu_response(result, c)
elif gradient == Gradient.OFF:
return result
# returns RELU(x) on sfix as in pytorch
def relu_sfix(x, gradient=Gradient.OFF):
result = relu(x.v, gradient)
if gradient == Gradient.ON:
return relu_response(sfix(result.get_value()), result.get_gradient())
elif gradient == Gradient.OFF:
return sfix(result)
# X is a 2D matrix
# returns RELU(X) as in pytorch
# returns Matrices as it is the requirement
def relu_2d(X, gradient=Gradient.OFF, mode=Mode.SFIX):
rows_X = len(X)
cols_X = len(X[0])
if mode == Mode.SINT:
local_type = sint
elif mode == Mode.SFIX:
local_type = sfix
else:
raise NotImplementedError
relu_X = local_type.Matrix(rows_X, cols_X)
relu_G = sint.Matrix(rows_X, cols_X)
for i in range(rows_X):
for j in range(cols_X):
if mode == Mode.SINT:
local_result = relu(X[i][j], gradient) # comparison with 0 happens here
elif mode == Mode.SFIX:
local_result = relu_sfix(X[i][j], gradient) # comparison with 0 happens here
if gradient == Gradient.ON:
relu_X[i][j] = local_result.get_value()
relu_G[i][j] = local_result.get_gradient()
elif gradient == Gradient.OFF:
relu_X[i][j] = local_result
if gradient == Gradient.ON:
return relu_X, relu_G
elif gradient == Gradient.OFF:
return relu_X
# X is a 3D matrix
# returns RELU(X) as in pytorch
# returns Matrices as it is the requirement
def relu_3d(X, gradient=Gradient.OFF, mode=Mode.SFIX):
dimensions = len(X)
rows_X = len(X[0])
cols_X = len(X[0][0])
relu_X = []
relu_G = []
if mode == Mode.SINT:
local_type = sint
elif mode == Mode.SFIX:
local_type = sfix
else:
raise NotImplementedError
for k in range(dimensions):
Y = local_type.Matrix(rows_X, cols_X)
G = sint.Matrix(rows_X, cols_X)
for i in range(rows_X):
for j in range(cols_X):
local_result = None
if mode == Mode.SINT:
local_result = relu(X[k][i][j], gradient) # comparison with 0 happens here
elif mode == Mode.SFIX:
local_result = relu_sfix(X[k][i][j], gradient) # comparison with 0 happens here
if gradient == Gradient.ON:
Y[i][j] = local_result.get_value()
G[i][j] = local_result.get_gradient()
elif gradient == Gradient.OFF:
Y[i][j] = local_result
relu_X.append(Y)
if gradient == Gradient.ON:
relu_G.append(G)
if gradient == Gradient.ON:
return relu_X, relu_G
elif gradient == Gradient.OFF:
return relu_X
# returns RELU(x/2^{m}) on sint
# m denotes 'batch' number of truncations together
# supports vectorization
def relu_trunc(x, m, gradient=Gradient.OFF):
x_t, b = trunc_LTZ(x, m)
c = 1 - b
result = c * x_t + 0
if gradient == Gradient.ON:
return relu_response(result, c)
elif gradient == Gradient.OFF:
return result
# returns RELU(x/2^{m_t}) on sfix
# m_t denotes 'batch' number of truncations together
# supports vectorization
def relu_trunc_sfix(x, batch, gradient=Gradient.OFF):
m_t = (x.f) * batch
result = relu_trunc(x.v, m_t, gradient)
if gradient == Gradient.ON:
return relu_response(sfix(result.get_value()), result.get_gradient())
elif gradient == Gradient.OFF:
return sfix(result)
# X is a 2D matrix
# returns RELU(X/2^{m_t}) as in pytorch
# returns Matrices as it is the requirement
def relu_trunc_2d(X, batch, gradient=Gradient.OFF, mode=Mode.SFIX):
rows_X = len(X)
cols_X = len(X[0])
if mode == Mode.SINT:
local_type = sint
local_function = relu_trunc
elif mode == Mode.SFIX:
local_type = sfix
local_function = relu_trunc_sfix
else:
raise NotImplementedError
relu_X = local_type.Matrix(rows_X, cols_X)
relu_G = sint.Matrix(rows_X, cols_X)
for i in range(rows_X):
for j in range(cols_X):
local_result = local_function(X[i][j], batch, gradient) # truncation and comparison with 0 happens here
if gradient == Gradient.ON:
relu_X[i][j] = local_result.get_value()
relu_G[i][j] = local_result.get_gradient()
elif gradient == Gradient.OFF:
relu_X[i][j] = local_result
if gradient == Gradient.ON:
return relu_X, relu_G
elif gradient == Gradient.OFF:
return relu_X
# X is a 3D matrix
# returns RELU(X/2^{m_t}) as in pytorch
# returns Matrices as it is the requirement
def relu_trunc_3d(X, batch, gradient=Gradient.OFF, mode=Mode.SFIX):
dimensions = len(X)
rows_X = len(X[0])
cols_X = len(X[0][0])
relu_X = []
relu_G = []
if mode == Mode.SINT:
local_type = sint
local_function = relu_trunc
elif mode == Mode.SFIX:
local_type = sfix
local_function = relu_trunc_sfix
else:
raise NotImplementedError
for k in range(dimensions):
Y = local_type.Matrix(rows_X, cols_X)
G = sint.Matrix(rows_X, cols_X)
for i in range(rows_X):
for j in range(cols_X):
local_result = local_function(X[k][i][j], batch, gradient) # truncation and comparison with 0 happens here
if gradient == Gradient.ON:
Y[i][j] = local_result.get_value()
G[i][j] = local_result.get_gradient()
elif gradient == Gradient.OFF:
Y[i][j] = local_result
relu_X.append(Y)
if gradient == Gradient.ON:
relu_G.append(G)
if gradient == Gradient.ON:
return relu_X, relu_G
elif gradient == Gradient.OFF:
return relu_X