Skip to content

[MAINT]: Clarify documentation of expected outputs from Inferer.infer() #229

@bruesba

Description

@bruesba

Any idea how the following error can be avoided? I'm running into it while attempting to train the XDXD model. I haven't seen it before but am using .pngs for both the images batch and that of the masks as usual.

(solaris) C:\Users\blue\Documents\solaris>C:/Users/blue/Miniconda3/envs/solaris/python.exe c:/Users/blue/Documents/solaris/xdxd_training.py
Beginning training epoch 0
C:\Users\blue\Miniconda3\envs\solaris\lib\site-packages\torch\nn\functional.py:2539: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
loss at batch 0: 9.8624849319458
Traceback (most recent call last):
File "c:/Users/blue/Documents/solaris/xdxd_training.py", line 5, in
trainer.train()
File "c:\Users\blue\Documents\solaris\solaris\nets\train.py", line 113, in train
for batch_idx, batch in enumerate(self.train_datagen):
File "C:\Users\blue\Miniconda3\envs\solaris\lib\site-packages\torch\utils\data\dataloader.py", line 560, in next
batch = self.collate_fn([self.dataset[i] for i in indices])
File "C:\Users\blue\Miniconda3\envs\solaris\lib\site-packages\torch\utils\data_utils\collate.py", line 63, in default_collate
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
File "C:\Users\blue\Miniconda3\envs\solaris\lib\site-packages\torch\utils\data_utils\collate.py", line 63, in
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
File "C:\Users\blue\Miniconda3\envs\solaris\lib\site-packages\torch\utils\data_utils\collate.py", line 70, in default_collate
raise TypeError((error_msg_fmt.format(type(batch[0]))))
TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'imageio.core.util.Array'>

The masks are in 8-bit greyscale (PIL 'L'-mode) since 3-dimensional B/W throws:

ValueError: Target size (torch.Size([1, 3, 320, 320])) must be the same as input size (torch.Size([1, 1, 320, 320]))

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions