Skip to content

Commit 3be0eb6

Browse files
authored
Merge pull request #1 from Code-Byte/kartik31-patch-1
Add files via upload
2 parents 42c9cce + c3b4d0c commit 3be0eb6

File tree

1 file changed

+84
-0
lines changed

1 file changed

+84
-0
lines changed

classify.py

Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
from __future__ import print_function, division
2+
from flask import Flask , redirect , url_for , request , render_template , jsonify , json
3+
import pandas as pd
4+
import os
5+
import random
6+
from collections import Counter
7+
import numpy as np
8+
import tensorflow as tf
9+
import json
10+
import sys
11+
12+
13+
14+
app = Flask(__name__)
15+
16+
17+
# @app.route("/predict" , methods=['POST'])
18+
@app.route('/' , methods=['POST'])
19+
20+
def hello():
21+
data = request.data
22+
# query = str(json_)
23+
print(data)
24+
imagePath = data
25+
modelFullPath = './output_graph.pb'
26+
labelsFullPath = './output_labels.txt'
27+
28+
29+
30+
31+
32+
def create_graph():
33+
"""Creates a graph from saved GraphDef file and returns a saver."""
34+
# Creates graph from saved graph_def.pb.
35+
with tf.gfile.FastGFile(modelFullPath, 'rb') as f:
36+
graph_def = tf.GraphDef()
37+
graph_def.ParseFromString(f.read())
38+
_ = tf.import_graph_def(graph_def, name='')
39+
def run_inference_on_image():
40+
answer = None
41+
42+
if not tf.gfile.Exists(imagePath):
43+
tf.logging.fatal('File does not exist %s', imagePath)
44+
return answer
45+
46+
image_data = tf.gfile.FastGFile(imagePath, 'rb').read()
47+
48+
# Creates graph from saved GraphDef.
49+
create_graph()
50+
51+
with tf.Session() as sess:
52+
53+
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
54+
predictions = sess.run(softmax_tensor,
55+
{'DecodeJpeg/contents:0': image_data})
56+
predictions = np.squeeze(predictions)
57+
58+
top_k = predictions.argsort()[-1:][::-1] # Getting top 5 predictions
59+
f = open(labelsFullPath, 'rb')
60+
lines = f.readlines()
61+
labels = [str(w).replace("\n", "") for w in lines]
62+
for node_id in top_k:
63+
human_string = labels[node_id]
64+
score = predictions[node_id]
65+
# return '%s (score = %.5f)' % (human_string, score)
66+
67+
answer = labels[top_k[0]]
68+
return answer
69+
answer = run_inference_on_image()
70+
return '%s' % answer
71+
72+
73+
74+
# if __name__ == '__main__':
75+
76+
77+
78+
79+
if __name__ == '__main__':
80+
# imagePath = './image1.jpg'
81+
modelFullPath = './output_graph.pb'
82+
labelsFullPath = './output_labels.txt'
83+
# app.run(debug = True)
84+
app.run('0.0.0.0' , 5000)

0 commit comments

Comments
 (0)