-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrb.py
1490 lines (1207 loc) · 45.4 KB
/
grb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
Transient Lightcurve Modelling
References:
- `Zhang and Meszaros, 2001, ApJ, 552 <https://ui.adsabs.harvard.edu/abs/2001ApJ...552L..35Z/abstract>`_
- `Gompertz et al., 2014, MNRAS, 438 <https://ui.adsabs.harvard.edu/abs/2014MNRAS.438..240G/abstract>`_
- `Sun et al., 2017, ApJ, 835:7 <https://ui.adsabs.harvard.edu/abs/2017ApJ...835....7S/abstract>`_
- `Ai et al., 2018, ApJ, 860:57 <https://ui.adsabs.harvard.edu/abs/2018ApJ...860...57A/abstract>`_
"""
__author__="GRBs: Guilet, Raynaud, Bugli"
####################################
import os,sys
import numpy as np
import matplotlib as mpl
import itertools
from scipy.integrate import odeint
#from astropy.io import fits
from astropy.table import Table
import warnings
try:
import magic
mpl.rcParams.update(mpl.rcParamsDefault)
except ImportError:
pass
###########################
### plot parameters
###########################
mpl.rcParams['text.usetex'] = True
mpl.rcParams['text.latex.preamble'] = [r"\usepackage{amsmath}"]
import matplotlib.pyplot as plt
plt.rcParams["axes.formatter.limits"] = [-2,2]
plt.rcParams["axes.labelsize"] = 'xx-large'
plt.rcParams["axes.titlesize"] = 'xx-large'
plt.rcParams["xtick.labelsize"] = 'x-large'
plt.rcParams["ytick.labelsize"] = 'x-large'
###########################################
### dictionary units
### each key must be an input parameter
###########################################
d_units = {}
d_units['t_min'] = 's'
d_units['t_max'] = 's'
d_units['t_num'] = ''
d_units['NS_B'] = 'G'
d_units['NS_mass'] = 'g'
d_units['NS_radius'] = 'cm'
d_units['NS_period'] = 's'
d_units['NS_eta_dip'] = ''
d_units['NS_critical_beta'] = ''
d_units['NS_ellipticity'] = ''
d_units['AG_T0'] = 's'
d_units['AG_Eimp'] = 'erg'
d_units['AG_alpha'] = ''
d_units['DISK_mass0'] = 'g'
d_units['DISK_radius'] = 'cm'
d_units['DISK_alpha'] = ''
d_units['DISK_aspect_ratio'] = ''
d_units['DISK_eta_prop'] = ''
d_units['EOS_Mtov'] = 'g'
d_units['EOS_alpha'] = ''
d_units['EOS_beta'] = ''
d_units['EOS_I'] = 'g cm^2'
d_units['EJECTA_mass'] = 'g'
d_units['EJECTA_opacity'] = 'cm^2/g'
d_units['EJECTA_heating_efficiency']=''
d_units['EJECTA_Gamma0'] = ''
d_units['EJECTA_co_T0'] = 's'
d_units['EJECTA_co_TSIGMA'] = 's'
d_units['EJECTA_co_Time0'] = 's'
d_units['EJECTA_co_Eint0'] = 'erg'
d_units['EJECTA_co_Volume0'] = 'cm^3'
d_units['EJECTA_radius0']= 'cm'
d_units['EJECTA_theta']= 'rad'
d_units['tag']=''
###########################################
## EOS database (Ai 2018, Table 1)
## to be completed
###########################################
EOS = {}
EOS['GM1'] = {'EOS_Mtov' :2.37,
'EOS_alpha':1.58e-10,
'EOS_beta' :-2.84,
'EOS_I' :3.33e45,
'NS_radius':12.05e5,}
EOS['Shen'] = {'EOS_Mtov' :2.18,
'EOS_alpha':4.678e-10,
'EOS_beta' :-2.738,
'EOS_I' :4.675e45,
'NS_radius':12.40e5,}
EOS['BSk21'] = {'EOS_Mtov' :2.28,
'EOS_alpha':2.81e-10,
'EOS_beta' :-2.75,
'EOS_I' :4.37e45,
'NS_radius':11.08e5,}
EOS['DD2'] = {'EOS_Mtov' :2.42,
'EOS_alpha':1.37e-10,
'EOS_beta' :-2.88,
'EOS_I' :5.43e45,
'NS_radius':11.89e5,}
EOS['DDME2'] = {'EOS_Mtov' :2.48,
'EOS_alpha':1.966e-10,
'EOS_beta' :-2.84,
'EOS_I' :5.85e45,
'NS_radius':12.09e5,}
EOS['CDDM1'] = {'EOS_Mtov' :2.21,
'EOS_alpha':3.93e-16,
'EOS_beta' :-5.0,
'EOS_I' :11.67e45,
'NS_radius':13.99e5}
###########################################
def Generate_inputs(dico):
"""
This fonctions is used to generate a grid of models
Parameters
----------
dico : dictionary
form {key: array of values to explore}
Returns
-------
list of dictionaries
"""
keys = dico.keys()
comb = tuple(itertools.product(*dico.values()))
num = len(comb)
out = [{akey: aval for akey,aval in zip(keys,vals)}
for vals in comb]
### add a tag to differentiate the models
tags = ['m'+str(i+1).rjust(len(str(num)),'0') for i in range(num)]
for i,adico in enumerate(out):
adico['tag'] = tags[i]
print ('Generating %i models'%num)
return out
###########################################
class GRB(object):
"""This class defines a transient lightcurve model. It implements a
modified version of Sun et al. 2017, with Xray emission from a
free zone and a trapped zone. The spindown luminosity of the NS
takes into account contributions from standard dipolar spindown
and the propeller model.
Main ouputs are stored in the following class members:
- LX_free --> Free zone luminosity
- LX_trap --> Trapped zone luminosity
- L_dip --> Dipolar spindown luminosity
- L_prop --> Propeller spindown luminosity
Other time-dependent quantities are available, such as
characteristic radii, torques, optical depth and temperature
of the ejecta, etc.
Time dependent variables
- Omega (neutron star angular velocity)
- Gamma (Lorentz factor)
- Radius (radius of the ejecta)
- co_Time : co-moving time
- co_Eint (ejecta internal energy)
- c_Volume (volume of the ejecta)
Notes
-----
- The code works in CGS_Gaussian units
- Methods of the form Eval_* set attributes
- Methods of the form L_* return a timeserie (1D array)
- Ejecta parameters for the trapped zone:
*_co_* = quantity defined in the co-moving frame
"""
def __init__(self,
t_min=0,
t_max=10,
t_num=200,
NS_B=1e15,
NS_mass=1.4,
NS_radius=12.4e5, # Shen EOS as default
NS_period=np.inf, # automatic determination
NS_eta_dip=0.05,
NS_critical_beta=0.27, # bar-mode instability criterion
NS_ellipticity=0.1, #NS ellipticity for the GW spindown
AG_T0=10,
AG_Eimp=-np.inf,
AG_alpha=0,
DISK_mass0=1.e-2,
DISK_radius=5.e8, # 5000 km
DISK_alpha=0.1, # disk viscosity parameter
DISK_aspect_ratio=0.3, # Aspect ratio H/R
DISK_eta_prop=0.4,
EOS_Mtov=2.18, # Msun
EOS_alpha=4.678e-10,
EOS_beta=-2.738,
EOS_I=4.37e45,
EJECTA_mass=1.e-2,
EJECTA_opacity=2,
EJECTA_heating_efficiency=0.5,
EJECTA_theta=0.,
EJECTA_Gamma0=1.,
EJECTA_co_T0=1.3, # eq. 15 Sun (2017)
EJECTA_co_TSIGMA=0.11,
EJECTA_co_Time0=1.,
EJECTA_co_Eint0=1e48,
EJECTA_co_Volume0=4./3.*np.pi*1e24,
EJECTA_radius0=1e10, #10^5 km
tag='notag',
verbose=True):
"""
Parameters
----------
t_min : float
start integration time
t_max : float
end integration time
t_num : int
number of time steps
NS_B : float
magnetar magnetic field
NS_period : float
magnetar period
NS_mass : float
magnetar mass (in units of solar mass)
NS_radius : float
magnetar radius
NS_eta_dip : float
dipole efficiency factor
DISK_mass : float
disk mass (in units of solar mass)
DISK_radius : float
disk radius
DISK_alpha : float
disk viscosity parameter
DISK_aspect_ratio : float
disk aspect ratio H/R
DISK_eta_prop : float
propeller efficiency factor
EOS_Mtov : float
maximum mass of a NS with zero spin
EOS_alpha : float
phenomenological parameter used
to compute the NS maximum mass
EOS_beta : float
similar to EOS_alpha
tag : string
verbose : boolean
print a summary when instantiating
a GRB object
Example
-------
>>> # modelling of GRB 061006 with both
>>> # propeller and dipole
>>> # see Gompertz et al (2014)
>>> import grb
>>> GRB_061006 = {}
>>> GRB_061006['AG_T0'] = 4e0
>>> GRB_061006['AG_alpha'] = 5.0
>>> GRB_061006['NS_B'] = 1.e13
>>> GRB_061006['NS_mass'] = 2.4
>>> GRB_061006['NS_eta_dip']=0.01
>>> GRB_061006['DISK_eta_prop']=0.
>>> mod = grb.GRB(**GRB_061006,**grb.EOS['DD2'])
>>> mod.PlotLuminosity(mod.time)
>>> mod.PlotRadii(mod.time)
>>> # display the available EOS
>>> grb.EOS.keys()
"""
super(GRB, self).__init__()
############################
### save control parameters
############################
self.parameters = locals()
### remove useless parameters
del self.parameters['verbose']
del self.parameters['self']
if sys.version_info.major==3:
del self.parameters['__class__']
#################################
### astrophysical constants (CGS)
#################################
self.lightspeed = 299792458e2 # cm/s
self.Msun = 1.98855e33 # g
### gravitational constant
self.gravconst = 6.67259e-8 # cm^3 g^-1 s^-2
self.hPlanck = 6.6260755e-27
self.kBoltzmann = 1.380658e-16
self.radiation_const = 7.5646e-15
self.Ev_to_Hz = 1.602176565e-12/self.hPlanck
##########################
## define integration time
##########################
self.time = np.logspace(t_min,t_max,t_num)
self.time_units = 's'
##############################
## automatic attribute setting
##############################
for key,val in self.parameters.items():
setattr(self,key,val)
key2 = key+'_units'
setattr(self,key2,d_units[key])
#####################
## rescaling masses !
#####################
self.NS_mass *= self.Msun
self.DISK_mass0 *= self.Msun
self.EOS_Mtov *= self.Msun
self.EJECTA_mass *= self.Msun
######################
## derived quantities
######################
## uncomment to use
## Gompertz's definition
#self.Eval_MomentOfInertia()
######################
self.Eval_Omega0(verbose)
self.Eval_T_em()
self.Eval_L_em0()
#self.Eval_Tc()
self.Eval_magnetic_moment()
self.Eval_OmegaKep()
self.Eval_viscous_time()
self.Eval_Mdot0()
self.Eval_critical_angular_velocity()
######################
## fine tuning
######################
#print ('Fine tuning ON...')
#self.AG_Eimp = self.L_em0#*self.T0
######################
## Time integration
######################
self.Time_integration(self.time)
######################
### Light curves
######################
## outputs
self.Eval_LX_free(self.time)
self.Eval_LX_trap()
self.Eval_L_pure_dipole()
######################
### Further outputs
######################
self.Eval_radii(self.time)
self.Eval_torques(self.time)
self.Eval_diagnostic_outputs(self.time)
self.Eval_T_tau(self.time) # ejecta become optically thin
self.Eval_T_col(self.time) # NS collapse
######################
### print a summary
######################
if verbose is True:
self.Info()
##########################################################
### DEFINITION OF METHODS
##########################################################
def Info(self):
"""print a summary"""
control_param = list(self.parameters.keys())
control_param.remove('tag')
control_param.remove('t_min')
control_param.remove('t_max')
control_param.remove('t_num')
derived_param = ['time_collapse','time_opacity',
'critical_period','OmegaKep',
'time_spindown','viscous_time']
### for the layout column width
lenun = max([len(getattr(self,afield+'_units'))
for afield in control_param+derived_param])
lensy = max([len(afield)
for afield in control_param+derived_param])
header = '{:-^%i}'%(lenun+lensy+2+8+1)
ligne = '{:%i} {: 8.2e} {:%i}'%(lensy,lenun)
print (header.format('Model properties'))
print (header.format('Input parameters'))
for afield in sorted(control_param):
info = ligne.format(afield,
getattr(self,afield),
getattr(self,afield+'_units'))
print (info)
print (header.format('Derived quantities'))
for afield in sorted(derived_param):
info = ligne.format(afield,
getattr(self,afield),
getattr(self,afield+'_units'))
print (info)
print(header.format('-'))
#################################################
### Evaluation of the derived constant parameters
#################################################
def Eval_MomentOfInertia(self):
"""
Set the magnetar moment of inertia
"""
#################################
### normalisation
#################################
### full sphere formula
#norm = 2./5
### Gompertz (2014)
norm = 0.35
#################################
self.EOS_I = norm * self.NS_mass*self.NS_radius**2
def Eval_magnetic_moment(self):
"""
compute the magnetar magnetic moment
"""
self.mu = self.NS_B * self.NS_radius**3
self.mu_units = "G cm^3"
def Eval_OmegaKep(self):
"""
Compute the Keplerian angular frequency at the NS surface
"""
self.OmegaKep = (self.gravconst * self.NS_mass / self.NS_radius**3)**0.5
self.OmegaKep_units = "s^-1"
def Eval_viscous_time(self):
"""
Compute the viscous timescale of the disk
.. math::
\\tau_\\alpha = \\frac{R_\\mathrm{disk}^2}{3 \\alpha c_s H}
"""
#####################################################
## Inconsistent prescription used in Gompertz 2014...
#####################################################
#self.viscous_time = self.DISK_radius**2
#self.DISK_cs = 1e7
#self.viscous_time/= (3. * self.DISK_alpha * self.DISK_cs * self.DISK_radius)
#####################################################
## More consistent definition of the viscous time....
#####################################################
H = self.DISK_radius * self.DISK_aspect_ratio
cs = H*self.OmegaKep*(self.NS_radius/self.DISK_radius)**1.5
self.viscous_time = self.DISK_radius**2 / (3. * self.DISK_alpha * cs * H)
######################
## don't forget units
######################
self.viscous_time_units = "s"
def Eval_Mdot0(self):
"""
Compute the initial mass accretion rate
(See eq (3) of King and Ritter 1998)
"""
self.Mdot0 = self.DISK_mass0/self.viscous_time
self.Mdot0_units = "g/s"
def Eval_Omega0(self,verbose):
"""
Set the neutron star initial angular frequency.
If the neutron star period is not defined (==np.inf),
it uses the critical value to avoid bar-mode instability.
see :math:`\\beta = T/|W|` parameter in
Gompertz et al. 2014, MNRAS 438, 240-250 ; eq. (10)
"""
if self.NS_period==np.inf:
self.Omega0 = np.sqrt(2*self.NS_critical_beta*self.E_bind()/self.EOS_I)
P0 = 2*np.pi/self.Omega0
if verbose:
print ('Setting Omega0 automatically\nin self.Eval_Omega0()')
print ('Initial period = %.1e s'%P0)
else:
self.Omega0 = 2*np.pi/self.NS_period
self.Omega0_units = "s^-1"
def Eval_Tc(self):
"""
Set the critical time Tc
eq. (5) of Zhang & Meszaros (2001)
"""
##################
### temporary fix
##################
self.q=-2 ## assume dipole injection
self.q_units = ''
prefac = (self.AG_alpha+self.q+1)
term2 = prefac*(self.AG_Eimp/(self.L_em0*self.AG_T0))**(1./prefac)
self.Tc = self.AG_T0*max(1,term2)
self.Tc_units = 's'
def Eval_T_em(self):
"""
Compute the dipole spin-down time
eq. (6) of Zhang & Meszaros (2001)
Set Attribute:
time_spindown
"""
num = 3*self.lightspeed**3*self.EOS_I
den = self.NS_B**2*self.NS_radius**6*self.Omega0**2
self.time_spindown = num/den
self.time_spindown_units = 's'
def Eval_L_em0(self):
"""
Set the plateau luminosity
eq. (8) of Zhang & Meszaros (2001)
"""
# self.L_em0 = self.Luminosity_EM(self.time)
num = self.EOS_I*self.Omega0**2
den = 2*self.time_spindown
self.L_em0 = num/den
self.L_em0_units = 'ergs/s'
def Eval_critical_angular_velocity(self):
"""
Sun, Zhang & Gao (2017)
eq. (25)
NS collapse for Omega < Omega_c (P>Pc)
Rem: assume constant NS mass
"""
num = self.NS_mass - self.EOS_Mtov
if num<0:
## then NS always stable
self.critical_period = -np.inf
self.Omega_c = -np.inf
else:
den = self.EOS_alpha * self.EOS_Mtov
self.critical_period = (num/den)**(1./self.EOS_beta)
self.Omega_c = 2*np.pi/self.critical_period
self.critical_period_units = 's'
def Eval_T_tau(self,T):
"""
Compute the time when the ejecta become optically thin
"""
where_ejecta_thin = self.tau<=1
i = np.argmax(where_ejecta_thin)
if i > 0:
self.time_opacity = T[i]
else:
self.time_opacity = -1
self.time_opacity_units = 's'
def Eval_T_col(self,T):
"""
Compute the time when the supramassive NS collapses to a BH
"""
where_NS_is_unstable = self.Omega < self.Omega_c
i = np.argmax(where_NS_is_unstable)
if i > 0:
self.time_collapse = T[i]
else:
self.time_collapse = -np.inf
self.time_collapse_units = 's'
##########################################################
### Functions computing time-dependent derived quantities:
### Characteristic radii
### Torques
### Rotational and gravitational energy
### Accretion rate
##########################################################
def LC_radius(self,Omega):
"""
Light cylinder radius (for a given NS rotation)
"""
out = self.lightspeed/Omega
return np.ascontiguousarray(out)
def Magnetospheric_radius(self,T,Omega):
"""
Magnetospheric radius
"""
Mdot = self.Accretion_rate(T)
r_lc = self.LC_radius(Omega)
out = self.mu**(4./7) * (self.gravconst*self.NS_mass)**(-1./7) * Mdot**(-2./7)
mask = out > 0.999*r_lc
out[mask] = 0.999*r_lc[mask]
return out
def Corotation_radius(self,Omega):
"""
Corotation radius (for a given NS mass and spin)
"""
out = (self.gravconst * self.NS_mass/ Omega**2)**(1./3)
return out
def E_rot(self,Omega):
"""
Rotational energy of the NS
"""
out=0.5*self.EOS_I*Omega**2
return out
def E_bind(self):
"""
Binding energy of the NS
Prescription from Lattimer and Prakash (2001)
"""
num = self.gravconst*self.NS_mass
den = self.NS_radius*self.lightspeed**2-0.5*self.gravconst*self.NS_mass
out = 0.6*self.NS_mass*self.lightspeed**2*num/den
return out
def Accretion_rate(self,T):
"""
Accretion rate on the NS
Eq. (13) from Zhang and Meszaros 2001
"""
out = self.Mdot0 * np.exp(-T / self.viscous_time)
## set a minimum value to avoid
## crashing during time integration
mdot_floor=1e-10
## check with a mask
out = np.ascontiguousarray(out)
out[out<mdot_floor] = mdot_floor
return out
def Torque_dipole(self,T,Omega):
"""
Dipole spindown torque. Eq (8) of Zhang and Meszaros 2001
"""
################################################################
## Gompertz uses the disk's alfven radius
## in the Bucciantini prescription,
## but it should actually be the alfven radius of the NS wind...
################################################################
#r_mag = self.Magnetospheric_radius(T,Omega)
#out = - 2./3. * self.mu**2 * Omega**3 / self.lightspeed**3 * (r_lc/r_mag)**3
###################################
## Eq (2) of Bucciantini et al 2006
###################################
#r_lc = self.LC_radius(Omega)
#mdot=1e-4/self.Msun #To be changed to something that makes sense...
#r_AL = (self.NS_B**2 * self.NS_radius**4 / mdot / Omega) **(1./3.)
#out = - 2./3. * self.mu**2 * Omega**3 / self.lightspeed**3 * (r_lc/r_AL)**3
############################################
## Standard dipole spindown, no wind or disk
############################################
out = - 1./6. * self.mu**2 * Omega**3 / self.lightspeed**3
out=np.ascontiguousarray(out)
#########################
## check NS stability
#########################
where_NS_is_unstable = Omega < self.Omega_c
if np.any(where_NS_is_unstable):
out[where_NS_is_unstable] = 0.
warnings.warn('NS collapsed')
return out
def Torque_gravwaves(self,Omega):
"""
Gravitational wave spindown torque (Zhang and Meszaros 2001)
"""
out = - 32./5. * self.gravconst * self.EOS_I**2 * self.NS_ellipticity**2 * Omega**5 / self.lightspeed**5
out=np.ascontiguousarray(out)
out[Omega<1e4]=0
return out
def Torque_accretion(self,T,Omega):
"""
Accretion torque, taking into account the propeller model
Eq (6-7) of Gompertz et al. 2014
"""
Mdot=self.Accretion_rate(T)
## Warning :
## radius of different types (array & float)
r_lc = self.LC_radius(Omega)
r_mag = self.Magnetospheric_radius(T,Omega)
r_corot = self.Corotation_radius(Omega)
fastness = (r_mag / r_corot)**1.5
## Eq. (6)
out = (1. - fastness) * (self.gravconst * self.NS_mass * r_mag)**0.5 * Mdot
## Eq. (7)
mask = r_mag<=self.NS_radius
out[mask] = ((1. - Omega/self.OmegaKep) * (self.gravconst*self.NS_mass*r_mag)**0.5 * Mdot)[mask]
###############################################
## Check for inhibition by bar-mode instability
## with beta = T/|W| parameter (Gompertz 2014)
###############################################
beta = self.E_rot(Omega)/abs(self.E_bind())
out[beta>self.NS_critical_beta] = 0.
#########################
## check NS stability
#########################
where_NS_is_unstable = Omega < self.Omega_c
if np.any(where_NS_is_unstable):
out[where_NS_is_unstable] = 0.
warnings.warn('NS collapsed')
return out
###############################################
### Functions computing the time derivatives of
### NS spin and Ejecta-related quantities:
### Omega
### co_Time
### Gamma
### co_Eint
### co_Volume
### Radius
###############################################
def Omega_dot(self,Omega,T):
"""
Time derivative of the NS spin used in the propeller model
"""
r_lc = self.LC_radius(Omega)
r_mag = self.Magnetospheric_radius(T,Omega)
r_corot = self.Corotation_radius(Omega)
Ndip = self.Torque_dipole(T,Omega)
Nacc = self.Torque_accretion(T,Omega)
Ngrav = self.Torque_gravwaves(Omega)
out = (Ndip + Nacc + Ngrav)/self.EOS_I
return np.ascontiguousarray(out)
def co_Time_dot(self,Gamma):
"""
return the derivative of the time (t')
in the co-moving reference frame
"""
out = self.Doppler_factor(Gamma)
return np.ascontiguousarray(out)
def Gamma_dot(self, T, Omega, co_Time, Gamma, co_Eint, co_Volume, Radius):
"""
Eq. (14) Sun et al. (2017)
"""
##########################
### intermediate variables
##########################
Doppler = self.Doppler_factor(Gamma)
beta = self.Beta(Gamma)
L_dip = self.Luminosity_dipole(Omega,T)
L_prop = self.Luminosity_propeller(Omega,T)
L_radio = self.Luminosity_radioactivity(co_Time,Gamma)
L_elect = self.Luminosity_electrons(co_Eint,Gamma,co_Volume,Radius)
L1 = L_dip + L_prop + L_radio - L_elect
L2 = self.EJECTA_heating_efficiency*(L_dip + L_prop) + L_radio - L_elect
##########
### output
##########
gdot = L1 - Gamma/Doppler * L2
gdot+= Gamma*Doppler * co_Eint/(3*co_Volume) * 4*np.pi*beta*self.lightspeed*Radius**2
gdot/=(self.EJECTA_mass*self.lightspeed**2 + co_Eint)
return np.ascontiguousarray(gdot)
def co_Eint_dot(self, T, Omega, co_Time, Gamma, co_Eint, co_Volume, Radius):
"""
Eq. (15) Sun et al. (2017)
"""
##########################
### intermediate variables
##########################
Doppler = self.Doppler_factor(Gamma)
beta = self.Beta(Gamma)
L_dip = self.Luminosity_dipole(Omega,T)
L_prop = self.Luminosity_propeller(Omega,T)
L_radio = self.Luminosity_radioactivity(co_Time,Gamma)
L_elect = self.Luminosity_electrons(co_Eint,Gamma,co_Volume,Radius)
L2 = self.EJECTA_heating_efficiency*(L_dip + L_prop) + L_radio- L_elect
##########
### output
##########
Edot = 1/Doppler**2 * L2 - co_Eint/(3*co_Volume) * 4*np.pi*beta*self.lightspeed*Radius**2
Edot*= Doppler
return np.ascontiguousarray(Edot)
def co_Volume_dot(self,Gamma,Radius):
vdot = self.Doppler_factor(Gamma)*4*np.pi*self.lightspeed
vdot*= Radius**2*self.Beta(Gamma)
return np.ascontiguousarray(vdot)
def Radius_dot(self,Gamma):
beta = self.Beta(Gamma)
rdot = beta*self.lightspeed/(1.-beta)
return np.ascontiguousarray(rdot)
############################################
### Methods related to the time integration:
### initial conditions, RHS, integration
############################################
def Initial_conditions(self):
IC = (self.Omega0,
self.EJECTA_co_Time0,
self.EJECTA_Gamma0,
self.EJECTA_co_Eint0,
self.EJECTA_co_Volume0,
self.EJECTA_radius0)
return IC
def Build_RHS(self, Y, T):
"""
This function computes the time derivatives
and is aimed to be passed to scipy.odeint()
This determines its signature:
Y : the unknowns
T : time
"""
####################################
## expand variables
## these will be of numpy.float type
####################################
Omega, co_Time, Gamma, co_Eint, co_Volume, Radius = Y
######################################
## compute each RHS
## the *_dot() methods return 1D array
######################################
Omega_dot = self.Omega_dot(Omega,T)
co_Time_dot = self.co_Time_dot(Gamma)
Gamma_dot = self.Gamma_dot(T, Omega, co_Time, Gamma, co_Eint, co_Volume, Radius)
co_Eint_dot = self.co_Eint_dot(T, Omega, co_Time, Gamma, co_Eint, co_Volume, Radius)
co_Volume_dot = self.co_Volume_dot(Gamma,Radius)
Radius_dot = self.Radius_dot(Gamma)
##########################################################
## repack and return
## the odeint routine expect a tuple of float/1D array
## similar to the initial conditions,
## or when we first expand the Y vector above
##
## That's the reason to enforce this type with the float()
## function !
##
## Rem: be careful to the order of the variables !
##########################################################
out = (float(Omega_dot), float(co_Time_dot),
float(Gamma_dot), float(co_Eint_dot),
float(co_Volume_dot), float(Radius_dot))
return out
def Time_integration(self,time):
"""
odeint wrapper
"""
Y0 = self.Initial_conditions()
sol = odeint(self.Build_RHS, Y0, time)
(self.Omega, self.co_Time, self.Gamma, self.co_Eint,
self.co_Volume, self.Radius) = sol.T
##################################
### Functions computing individual
### luminosity components
##################################
def Luminosity_dipole(self,Omega,T):
"""
Dipole spindown luminosity, for a general
time evolution of the NS angular velocity
"""
Ndip = self.Torque_dipole(T,Omega)
ldip = - Ndip * Omega
#ldip*= -self.NS_eta_dip
return ldip
def Luminosity_propeller(self,Omega,T):
"""
Propeller luminosity, taking into account
positive and negative torques due to the
interaction with the accretion disk
From Gompertz et al. (2014)
"""
### intermediate variables
Mdot = self.Accretion_rate(T)
Nacc = self.Torque_accretion(T,Omega)
rmag = self.Magnetospheric_radius(T,Omega)
### output