-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
509 lines (382 loc) · 17.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Optional, Any, Tuple
import numpy as np
import torch.nn as nn
from torch.autograd import Function
import torch
class ContrastiveLearningViewGenerator(object):
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform, n_views=2):
self.base_transform = base_transform
self.n_views = n_views
def __call__(self, x):
if not isinstance(self.base_transform, list):
return [self.base_transform(x) for i in range(self.n_views)]
else:
return [self.base_transform[i](x) for i in range(self.n_views)]
class SupConLoss(torch.nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR
From: https://github.com/HobbitLong/SupContrast"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
def info_nce_logits(features, n_views=2, temperature=1.0, device='cuda'):
b_ = 0.5 * int(features.size(0))
labels = torch.cat([torch.arange(b_) for i in range(n_views)], dim=0)
labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float()
labels = labels.to(device)
features = F.normalize(features, dim=1)
similarity_matrix = torch.matmul(features, features.T)
# discard the main diagonal from both: labels and similarities matrix
mask = torch.eye(labels.shape[0], dtype=torch.bool).to(device)
labels = labels[~mask].view(labels.shape[0], -1)
similarity_matrix = similarity_matrix[~mask].view(similarity_matrix.shape[0], -1)
# select and combine multiple positives
positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1)
# select only the negatives the negatives
negatives = similarity_matrix[~labels.bool()].view(similarity_matrix.shape[0], -1)
logits = torch.cat([positives, negatives], dim=1)
labels = torch.zeros(logits.shape[0], dtype=torch.long).to(device)
logits = logits / temperature
return logits, labels
def get_params_groups(model):
regularized = []
not_regularized = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# we do not regularize biases nor Norm parameters
if name.endswith(".bias") or len(param.shape) == 1:
not_regularized.append(param)
else:
regularized.append(param)
return [{'params': regularized}, {'params': not_regularized, 'weight_decay': 0.}]
class DistillLoss(nn.Module):
def __init__(self, warmup_teacher_temp_epochs, nepochs,
ncrops=2, warmup_teacher_temp=0.07, teacher_temp=0.04,
student_temp=0.1):
super().__init__()
self.student_temp = student_temp
self.ncrops = ncrops
self.teacher_temp_schedule = np.concatenate((
np.linspace(warmup_teacher_temp,
teacher_temp, warmup_teacher_temp_epochs),
np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
))
def forward(self, student_output, teacher_output, epoch):
"""
Cross-entropy between softmax outputs of the teacher and student networks.
"""
student_out = student_output / self.student_temp
student_out = student_out.chunk(self.ncrops)
# teacher centering and sharpening
temp = self.teacher_temp_schedule[epoch]
teacher_out = F.softmax(teacher_output / temp, dim=-1)
teacher_out = teacher_out.detach().chunk(2)
total_loss = 0
n_loss_terms = 0
for iq, q in enumerate(teacher_out):
for v in range(len(student_out)):
if v == iq:
# we skip cases where student and teacher operate on the same view
continue
loss = torch.sum(-q * F.log_softmax(student_out[v], dim=-1), dim=-1)
total_loss += loss.mean()
n_loss_terms += 1
total_loss /= n_loss_terms
return total_loss
def shift_log(x, offset=1e-6):
"""
First shift, then calculate log for numerical stability.
"""
return torch.log(torch.clamp(x + offset, max=1.))
class WorstCaseEstimationLoss(nn.Module):
def __init__(self, eta_prime):
super(WorstCaseEstimationLoss, self).__init__()
self.eta_prime = eta_prime
def forward(self, y_l, y_l_adv, y_u, y_u_adv):
_, prediction_l = y_l.max(dim=1)
loss_l = self.eta_prime * F.cross_entropy(y_l_adv, prediction_l)
_, prediction_u = y_u.max(dim=1)
loss_u = F.nll_loss(shift_log(1. - F.softmax(y_u_adv, dim=1)), prediction_u)
return loss_l + loss_u
class GradientReverseFunction(Function):
@staticmethod
def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor:
ctx.coeff = coeff
output = input * 1.0
return output
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]:
return grad_output.neg() * ctx.coeff, None
class GradientReverseLayer(nn.Module):
def __init__(self):
super(GradientReverseLayer, self).__init__()
def forward(self, *input):
return GradientReverseFunction.apply(*input)
class WarmStartGradientReverseLayer(nn.Module):
"""
Gradient reversal layer that can be warm started.
"""
def __init__(self, alpha: Optional[float] = 1.0, lo: Optional[float] = 0.0, hi: Optional[float] = 1.,
max_iters: Optional[int] = 1000., auto_step: Optional[bool] = False):
super(WarmStartGradientReverseLayer, self).__init__()
self.alpha = alpha
self.lo = lo
self.hi = hi
self.iter_num = 0
self.max_iters = max_iters
self.auto_step = auto_step
def forward(self, input: torch.Tensor) -> torch.Tensor:
""""""
coeff = np.float64(
2.0 * (self.hi - self.lo) / (1.0 + np.exp(-self.alpha * self.iter_num / self.max_iters))
- (self.hi - self.lo) + self.lo
)
if self.auto_step:
self.step()
return GradientReverseFunction.apply(input, coeff)
def step(self):
self.iter_num += 1
class DINOHeadExtended(nn.Module):
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True,
nlayers=3, hidden_dim=2048, bottleneck_dim=256, grl_alpha=0.1):
super(DINOHeadExtended, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.hidden_dim = hidden_dim
self.bottleneck_dim = bottleneck_dim
self.use_bn = use_bn
self.norm_last_layer = norm_last_layer
# Main MLP layers
layers = [nn.Linear(in_dim, hidden_dim)]
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
for _ in range(nlayers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
self.mlp = nn.Sequential(*layers)
# Main head
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
self.last_layer.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer.weight_g.requires_grad = False
# Auxiliary head
self.grl_layer = WarmStartGradientReverseLayer(alpha=1.0, lo=0.0, hi=grl_alpha, max_iters=1000, auto_step=False)
self.aux_head = nn.Sequential(
nn.Linear(bottleneck_dim, hidden_dim),
nn.GELU(),
nn.Dropout(0.5),
nn.Linear(hidden_dim, out_dim)
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x_proj = self.mlp(x)
x_norm = F.normalize(x_proj, dim=-1, p=2)
main_logits = self.last_layer(x_norm)
reversed_features = self.grl_layer(x_proj)
aux_logits = self.aux_head(reversed_features)
return x_proj, main_logits, aux_logits
class DynamicLSR(nn.Module):
'''
Dynamic version of LSR
'''
def __init__(self, initial_e, total_steps):
super().__init__()
self.log_softmax = nn.LogSoftmax(dim=1)
self.initial_e = initial_e
self.total_steps = total_steps
self.step = 0
def _one_hot(self, labels, classes, value=1):
one_hot = torch.zeros(labels.size(0), classes, device=labels.device)
labels = labels.view(labels.size(0), -1)
one_hot.scatter_(1, labels, value)
return one_hot
def _smooth_label(self, target, length, smooth_factor, class_weights):
one_hot = self._one_hot(target, length, value=1 - smooth_factor)
smooth_value = (smooth_factor / length) * class_weights
one_hot += smooth_value
return one_hot
def update_smoothing_factor(self):
# Linear decay of the smoothing factor
e = self.initial_e * (1 - self.step / self.total_steps)
self.step += 1
return e
def adjust_weights(self, outputs, targets):
with torch.no_grad():
preds = outputs.argmax(dim=1)
correct = preds.eq(targets).float()
class_accuracy = torch.bincount(targets, weights=correct, minlength=outputs.size(1))
class_totals = torch.bincount(targets, minlength=outputs.size(1))
class_accuracy = class_accuracy / class_totals.clamp(min=1) # Prevent division by zero
class_weights = 1.0 / (class_accuracy + 1e-5) # Smooth to avoid division by zero
return class_weights / class_weights.sum()
def forward(self, x, target):
e = self.update_smoothing_factor()
class_weights = self.adjust_weights(x.detach(), target)
smoothed_target = self._smooth_label(target, x.size(1), e, class_weights)
x = self.log_softmax(x)
loss = torch.sum(-x * smoothed_target, dim=1)
return torch.mean(loss)
class WBRegularizationLoss(nn.Module):
'''
Constrain the cluster
'''
def __init__(self, num_classes, feat_dim, device):
super(WBRegularizationLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.device = device
def forward(self, features, labels):
unique_labels = torch.unique(labels)
global_mean = torch.mean(features, dim=0)
W = 0
B = 0
total_points = features.shape[0]
for label in unique_labels:
class_mask = (labels == label)
class_features = features[class_mask]
class_mean = torch.mean(class_features, dim=0)
# Intra-class variance (W)
W += torch.sum((class_features - class_mean) ** 2)
# Inter-class variance (B)
B += class_mask.sum() * torch.sum((class_mean - global_mean) ** 2)
wb_ratio = W / (B + 1e-8) #\theta
return wb_ratio
# class MaxMinRegularizationLoss(nn.Module):
# def __init__(self, num_classes, feat_dim, device):
# super(MaxMinRegularizationLoss, self).__init__()
# self.num_classes = num_classes
# self.feat_dim = feat_dim
# self.device = device
# def forward(self, features, labels):
# unique_labels = torch.unique(labels)
# max_min_loss = 0.0
# for label in unique_labels:
# class_mask = (labels == label)
# class_features = features[class_mask]
# class_center = torch.mean(class_features, dim=0, keepdim=True)
# # Calculate the distances from each point to the class center
# distances = torch.norm(class_features - class_center, p=2, dim=1)
# max_distance = torch.max(distances)
# min_distance = torch.min(distances)
# # Max-Min distance difference within the class
# max_min_loss += (max_distance - min_distance)
# return max_min_loss / len(unique_labels)
class MaxMinRegularizationLoss(nn.Module):
def __init__(self, num_classes, feat_dim, device):
super(MaxMinRegularizationLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.device = device
def forward(self, features, labels):
unique_labels = torch.unique(labels)
max_min_loss = 0.0
for label in unique_labels:
class_mask = (labels == label)
class_features = features[class_mask]
class_center = torch.mean(class_features, dim=0, keepdim=True)
# Calculate the squared distances from each point to the class center
distances = torch.sum((class_features - class_center) ** 2, dim=1)
max_distance = torch.max(distances)
min_distance = torch.min(distances)
# Max-Min squared distance difference within the class
max_min_loss += (max_distance - min_distance)
return max_min_loss / len(unique_labels)
class TotalClusteringLoss(nn.Module):
def __init__(self, num_classes, feat_dim, device, wb_weight=1.0, max_min_weight=0.1):
super(TotalClusteringLoss, self).__init__()
self.wb_loss = WBRegularizationLoss(num_classes, feat_dim, device)
self.max_min_loss = MaxMinRegularizationLoss(num_classes, feat_dim, device)
self.wb_weight = wb_weight
self.max_min_weight = max_min_weight
def forward(self, features, labels):
wb_ratio_loss = self.wb_loss(features, labels)
max_min_reg_loss = self.max_min_loss(features, labels)
total_loss = (self.wb_weight * wb_ratio_loss +
self.max_min_weight * max_min_reg_loss)
return total_loss