-
Notifications
You must be signed in to change notification settings - Fork 0
/
二次函数.py
36 lines (28 loc) · 1015 Bytes
/
二次函数.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
###最小二乘法试验###
import numpy as np
from scipy.optimize import leastsq
###采样点(Xi,Yi)###
Xi=np.array([0,1,2,3,-1,-2,-3])
Yi=np.array([-1.21,1.9,3.2,10.3,2.2,3.71,8.7])
###需要拟合的函数func及误差error###
def func(p,x):
a,b,c=p
return a*x**2+b*x+c
def error(p,x,y,s):
return func(p,x)-y #x、y都是列表,故返回值也是个列表
#TEST
p0=[5,2,10]
#print( error(p0,Xi,Yi) )
###主函数从此开始###
s="Test the number of iteration" #试验最小二乘法函数leastsq得调用几次error函数才能找到使得均方误差之和最小的a~c
Para=leastsq(error,p0,args=(Xi,Yi,s)) #把error函数中除了p以外的参数打包到args中
a,b,c=Para[0]
###绘图,看拟合效果###
import matplotlib.pyplot as plt
plt.figure(figsize=(8,6))
plt.scatter(Xi,Yi,color="red",label="Sample Point",linewidth=3) #画样本点
x=np.linspace(-5,5,1000)
y=a*x**2+b*x+c
plt.plot(x,y,color="orange",label="Fitting Curve",linewidth=2) #画拟合曲线
plt.legend()
plt.show()