-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattn_train.py
213 lines (162 loc) · 7.1 KB
/
attn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import torch
from torch.utils.data import DataLoader
from lbipe.models import TorqueModel, AttnModel
from lbipe.losses import loss_fn_x
from lbipe.utils import pack_cut, generate_attn_dataset, combine_attn_dataset, x_by_pseudo
best_vloss_attn = 100000
tau1_scale = 0.44931670737585383
tau2_scale = 1.2213040989615254
tau3_scale = 0.6355422558900072
tau4_scale = 0.29493976426287805
def attn_train_loop(dataloader, torque_model, attn_model, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss = 0
train_loss_m = 0
train_loss_com = 0
for batch, (sample, label, torques_g, A, x) in enumerate(dataloader):
num_sample = len(sample)
# reshape
sample = torch.reshape(sample, (-1, 16))
label = torch.reshape(label, (-1, 4))
# torque model
pred = torque_model(sample)
# denorm
tau1_est = pred[:, 0] * tau1_scale
tau2_est = pred[:, 1] * tau2_scale
tau3_est = pred[:, 2] * tau3_scale
tau4_est = pred[:, 3] * tau4_scale
torques_est = torch.stack((tau1_est, tau2_est, tau3_est, tau4_est), dim=1)
# attn model
w = attn_model(sample)
# reshape
torques_est = torch.reshape(torques_est, (num_sample, -1))
w = torch.reshape(w, (num_sample, -1))
# pseudo
x_est = torch.zeros((num_sample, 4))
for i in range(num_sample):
x_est[i] = x_by_pseudo(torques_est[i] - torques_g[i], w[i], A[i])
loss, loss_m, loss_com = loss_fn_x(x_est, x)
# bp
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss_m += loss_m.item()
train_loss_com += loss_com.item()
if batch % 100 == 0:
loss, current = loss.item(), batch * num_sample
loss_m, loss_com = loss_m.item(), loss_com.item()
print(f"loss: {loss:>7f} loss_m: {loss_m:>7f} loss_com: {loss_com:>7f} [{current:>5d}/{size:>5d}]")
train_loss /= num_batches
train_loss_m /= num_batches
train_loss_com /= num_batches
print(f"Avg loss: {train_loss:>7f} loss_m: {train_loss_m:>7f} loss_com: {train_loss_com:>7f}")
def attn_val_loop(dataloader, torque_model, attn_model, file_attn):
global best_vloss_attn
num_batches = len(dataloader)
val_loss = 0
val_loss_m = 0
val_loss_com = 0
with torch.no_grad():
for sample, label, torques_g, A, x in dataloader:
num_sample = len(sample)
# reshape
sample = torch.reshape(sample, (-1, 16))
label = torch.reshape(label, (-1, 4))
# torque model
pred = torque_model(sample)
# denorm
tau1_est = pred[:, 0] * tau1_scale
tau2_est = pred[:, 1] * tau2_scale
tau3_est = pred[:, 2] * tau3_scale
tau4_est = pred[:, 3] * tau4_scale
torques_est = torch.stack((tau1_est, tau2_est, tau3_est, tau4_est), dim=1)
# attn model
w = attn_model(sample)
# reshape
torques_est = torch.reshape(torques_est, (num_sample, -1))
w = torch.reshape(w, (num_sample, -1))
# pseudo
x_est = torch.zeros((num_sample, 4))
for i in range(num_sample):
x_est[i] = x_by_pseudo(torques_est[i] - torques_g[i], w[i], A[i])
loss, loss_m, loss_com = loss_fn_x(x_est, x)
val_loss += loss.item()
val_loss_m += loss_m.item()
val_loss_com += loss_com.item()
val_loss /= num_batches
val_loss_m /= num_batches
val_loss_com /= num_batches
print(f"Avg loss: {val_loss:>7f} loss_m: {val_loss_m:>7f} loss_com: {val_loss_com:>7f}")
if val_loss < best_vloss_attn:
best_vloss_attn = val_loss
print('Save attn model!')
torch.save(attn_model.state_dict(), file_attn)
attn_model.load_state_dict(torch.load(file_attn))
def attn_model_train(class_torque, class_attn, file_torque, file_attn, sample_size, learning_rate, batch_size, epoches):
# load and cut
train_50g = np.load('data/data_train_50g.npz')
train_100g = np.load('data/data_train_100g.npz')
train_150g = np.load('data/data_train_150g.npz')
train_random_50g = np.load('data/data_train_random_50g.npz')
train_random_100g = np.load('data/data_train_random_100g.npz')
train_random_150g = np.load('data/data_train_random_150g.npz')
train_rd_50g = pack_cut(train_random_50g, np.arange(0, 9000))
train_rd_100g = pack_cut(train_random_100g, np.arange(0, 9000))
train_rd_150g = pack_cut(train_random_150g, np.arange(0, 9000))
val_50g = pack_cut(train_random_50g, np.arange(9000, 10000))
val_100g = pack_cut(train_random_100g, np.arange(9000, 10000))
val_150g = pack_cut(train_random_150g, np.arange(9000, 10000))
# dataset
train_dataset_50g = generate_attn_dataset(train_50g, sample_size=sample_size, sample_num=11536)
train_dataset_100g = generate_attn_dataset(train_100g, sample_size=sample_size, sample_num=11536)
train_dataset_150g = generate_attn_dataset(train_150g, sample_size=sample_size, sample_num=11536)
train_rd_dataset_50g = generate_attn_dataset(train_rd_50g, sample_size=sample_size, sample_num=9000)
train_rd_dataset_100g = generate_attn_dataset(train_rd_100g, sample_size=sample_size, sample_num=9000)
train_rd_dataset_150g = generate_attn_dataset(train_rd_150g, sample_size=sample_size, sample_num=9000)
train_dataset = combine_attn_dataset([
train_dataset_50g,
train_dataset_100g,
train_dataset_150g,
train_rd_dataset_50g,
train_rd_dataset_100g,
train_rd_dataset_150g
])
val_dataset_50g = generate_attn_dataset(val_50g, sample_size=sample_size, sample_num=1000)
val_dataset_100g = generate_attn_dataset(val_100g, sample_size=sample_size, sample_num=1000)
val_dataset_150g = generate_attn_dataset(val_150g, sample_size=sample_size, sample_num=1000)
val_dataset = combine_attn_dataset([
val_dataset_50g,
val_dataset_100g,
val_dataset_150g
])
# dataloader
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
# train
torque_model = class_torque()
torque_model.load_state_dict(torch.load(file_torque))
attn_model = class_attn()
optimizer = torch.optim.Adam(attn_model.parameters(), lr=learning_rate)
for t in range(epoches):
print(f"\nEpoch {t + 1}\n-------------------------------")
print('<train_loop>')
attn_train_loop(train_dataloader, torque_model, attn_model, optimizer)
print('<val_loop>')
attn_val_loop(val_dataloader, torque_model, attn_model, file_attn)
print('Done!')
def main():
attn_model_train(
class_torque=TorqueModel,
class_attn=AttnModel,
file_torque='dicts/dict_torque_new.pt',
file_attn='dicts/dict_attn_new.pt',
sample_size=64,
learning_rate=1e-4,
batch_size=32,
epoches=30
)
if __name__ == '__main__':
main()