-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpreprocess.py
55 lines (44 loc) · 1.65 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd
import os
# 提示用户输入文件夹路径
folder_name = './futures_NQ'
if not os.path.exists(folder_name):
os.makedirs(folder_name)
print(f'文件夹 {folder_name} is creat')
# 定义列名
day_col_names = ['timestamp', 'open', 'high', 'low', 'close', 'volume', 'open interest']
interday_col_names = ['timestamp', 'open', 'high', 'low', 'close', 'volume']
# 文件列表
file_list = [
'NQ_1day_continuous_adjusted.txt',
'NQ_1hour_continuous_adjusted.txt',
'NQ_30min_continuous_adjusted.txt',
'NQ_5min_continuous_adjusted.txt',
'NQ_1min_continuous_adjusted.txt'
]
for file_name in file_list:
if '1day' in file_name:
col_names = day_col_names
else:
col_names = interday_col_names
# 读取数据文件
data = pd.read_csv(f'{folder_name}/{file_name}', names=col_names)
# 构建保存文件名,根据时间间隔命名
time_interval = file_name.split('_')[1].replace('continuous', '').replace('adjusted', '').replace('.csv', '').replace('.txt', '')
save_file_name = f'{folder_name}/NQ_{time_interval}_sample.csv'
# 将数据保存为新的CSV文件
data.to_csv(save_file_name, index=False)
print('convert '+save_file_name+' success')
# 创建一个15分钟间隔的CSV文件
data = pd.read_csv(f'{folder_name}/NQ_1min_sample.csv', parse_dates=['timestamp'])
data.set_index('timestamp', inplace=True)
ohlc_15min = data.resample('15T').agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum',
})
ohlc_15min = ohlc_15min.dropna()
# 保存15分钟间隔的CSV文件
ohlc_15min.to_csv(f'{folder_name}/NQ_15min_sample.csv')