-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexample.py
88 lines (69 loc) · 2.27 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import time
from glmdenoise.utils.make_image_stack import make_image_stack
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from glmdenoise.utils.make_design_matrix import make_design
from glmdenoise.utils.gethrf import getcanonicalhrf
from glmdenoise.utils.normalisemax import normalisemax
from glmdenoise.utils.optimiseHRF import optimiseHRF
from glmdenoise.utils.make_poly_matrix import *
from glmdenoise import pyGlmdenoise as PYG
import warnings
import os
import glob
import nibabel as nib
from itertools import compress
warnings.simplefilter(action="ignore", category=FutureWarning)
def format_time(time):
return f'{int(time//60)} minutes and {time-(time//60)*60:.2f} seconds'
stimdur = 0.5
TR = 0.764
"""
Load data
"""
fmri_folder = '/home/adf/charesti/Documents/sub-01'
runs = glob.glob(os.path.join(fmri_folder, 'ses*', 'func', '*preproc*nii.gz'))
runs.sort()
eventfs = glob.glob(os.path.join(fmri_folder, 'ses*', 'func', '*_events.tsv'))
eventfs.sort()
runs = compress(runs, np.arange(len(runs)) != 1)
eventfs = compress(eventfs, np.arange(len(eventfs)) != 1)
data = []
design = []
params = {}
params['hrf'] = normalisemax(getcanonicalhrf(stimdur, TR))
params['tr'] = TR
params['numforhrf'] = 50
params['hrfthresh'] = 0.5
params['hrffitmask'] = 1
params['R2thresh'] = 0
params['hrfmodel'] = 'optimise' # 'assume'
params['extra_regressors'] = False
for i, (run, event) in enumerate(zip(runs, eventfs)):
print('run {}'.format(i))
y = nib.load(run).get_data().astype(np.float32)
dims = y.shape
y = np.moveaxis(y, -1, 0)
y = y.reshape([y.shape[0], -1])
n_volumes = y.shape[0]
# Load onsets and item presented
onsets = pd.read_csv(event, sep='\t')["onset"].values
items = pd.read_csv(event, sep='\t')["item"].values
n_events = len(onsets)
# Create design matrix
events = pd.DataFrame()
events["duration"] = [stimdur] * n_events
events["onset"] = onsets
events["trial_type"] = items
# pass in the events data frame. the convolving of the HRF now
# happens internally
design.append(events)
data.append(y)
gd = PYG.GLMdenoise(design, data, params, n_jobs=2)
start = time.time()
gd.fit()
fit_dur = format_time(time.time()-start)
print('Fit took {}!'.format(fit_dur)
gd.plot_figures()