-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathapp.py
199 lines (157 loc) · 6.58 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from io import BytesIO
from pathlib import Path
from typing import List
from openai import AsyncAssistantEventHandler, AsyncOpenAI, OpenAI
from literalai.helper import utc_now
import chainlit as cl
from chainlit.config import config
from chainlit.element import Element
async_openai_client = AsyncOpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
sync_openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
assistant = sync_openai_client.beta.assistants.retrieve(
os.environ.get("OPENAI_ASSISTANT_ID")
)
config.ui.name = assistant.name
class EventHandler(AsyncAssistantEventHandler):
def __init__(self, assistant_name: str) -> None:
super().__init__()
self.current_message: cl.Message = None
self.current_step: cl.Step = None
self.current_tool_call = None
self.assistant_name = assistant_name
async def on_text_created(self, text) -> None:
self.current_message = await cl.Message(author=self.assistant_name, content="").send()
async def on_text_delta(self, delta, snapshot):
await self.current_message.stream_token(delta.value)
async def on_text_done(self, text):
await self.current_message.update()
async def on_tool_call_created(self, tool_call):
self.current_tool_call = tool_call.id
self.current_step = cl.Step(name=tool_call.type, type="tool")
self.current_step.language = "python"
self.current_step.created_at = utc_now()
await self.current_step.send()
async def on_tool_call_delta(self, delta, snapshot):
if snapshot.id != self.current_tool_call:
self.current_tool_call = snapshot.id
self.current_step = cl.Step(name=delta.type, type="tool")
self.current_step.language = "python"
self.current_step.start = utc_now()
await self.current_step.send()
if delta.type == "code_interpreter":
if delta.code_interpreter.outputs:
for output in delta.code_interpreter.outputs:
if output.type == "logs":
error_step = cl.Step(
name=delta.type,
type="tool"
)
error_step.is_error = True
error_step.output = output.logs
error_step.language = "markdown"
error_step.start = self.current_step.start
error_step.end = utc_now()
await error_step.send()
else:
if delta.code_interpreter.input:
await self.current_step.stream_token(delta.code_interpreter.input)
async def on_tool_call_done(self, tool_call):
self.current_step.end = utc_now()
await self.current_step.update()
async def on_image_file_done(self, image_file):
image_id = image_file.file_id
response = await async_openai_client.files.with_raw_response.content(image_id)
image_element = cl.Image(
name=image_id,
content=response.content,
display="inline",
size="large"
)
if not self.current_message.elements:
self.current_message.elements = []
self.current_message.elements.append(image_element)
await self.current_message.update()
@cl.step(type="tool")
async def speech_to_text(audio_file):
response = await async_openai_client.audio.transcriptions.create(
model="whisper-1", file=audio_file
)
return response.text
async def upload_files(files: List[Element]):
file_ids = []
for file in files:
uploaded_file = await async_openai_client.files.create(
file=Path(file.path), purpose="assistants"
)
file_ids.append(uploaded_file.id)
return file_ids
async def process_files(files: List[Element]):
# Upload files if any and get file_ids
file_ids = []
if len(files) > 0:
file_ids = await upload_files(files)
return [
{
"file_id": file_id,
"tools": [{"type": "code_interpreter"}, {"type": "file_search"}],
}
for file_id in file_ids
]
@cl.on_chat_start
async def start_chat():
# Create a Thread
thread = await async_openai_client.beta.threads.create()
# Store thread ID in user session for later use
cl.user_session.set("thread_id", thread.id)
await cl.Avatar(name=assistant.name, path="./public/logo.png").send()
await cl.Message(content=f"Hello, I'm {assistant.name}!", disable_feedback=True).send()
@cl.on_message
async def main(message: cl.Message):
thread_id = cl.user_session.get("thread_id")
attachments = await process_files(message.elements)
# Add a Message to the Thread
oai_message = await async_openai_client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=message.content,
attachments=attachments,
)
# Create and Stream a Run
async with async_openai_client.beta.threads.runs.stream(
thread_id=thread_id,
assistant_id=assistant.id,
event_handler=EventHandler(assistant_name=assistant.name),
) as stream:
await stream.until_done()
@cl.on_audio_chunk
async def on_audio_chunk(chunk: cl.AudioChunk):
if chunk.isStart:
buffer = BytesIO()
# This is required for whisper to recognize the file type
buffer.name = f"input_audio.{chunk.mimeType.split('/')[1]}"
# Initialize the session for a new audio stream
cl.user_session.set("audio_buffer", buffer)
cl.user_session.set("audio_mime_type", chunk.mimeType)
# Write the chunks to a buffer and transcribe the whole audio at the end
cl.user_session.get("audio_buffer").write(chunk.data)
@cl.on_audio_end
async def on_audio_end(elements: list[Element]):
# Get the audio buffer from the session
audio_buffer: BytesIO = cl.user_session.get("audio_buffer")
audio_buffer.seek(0) # Move the file pointer to the beginning
audio_file = audio_buffer.read()
audio_mime_type: str = cl.user_session.get("audio_mime_type")
input_audio_el = cl.Audio(
mime=audio_mime_type, content=audio_file, name=audio_buffer.name
)
await cl.Message(
author="You",
type="user_message",
content="",
elements=[input_audio_el, *elements],
).send()
whisper_input = (audio_buffer.name, audio_file, audio_mime_type)
transcription = await speech_to_text(whisper_input)
msg = cl.Message(author="You", content=transcription, elements=elements)
await main(message=msg)