-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.R
201 lines (156 loc) · 10.2 KB
/
backend.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
library(community)
library(data.table) #to read gz file
library(tidyverse)
library(gridExtra)
filterInteractions <- function(comm_result, threshold_log10_cum_weight, threshold_frac_samples_per_condition,
threshold_log10_meanexpr_per_condition, verbose = TRUE) {
# plot the distribution of log10 cumulative interactions weight over the
# fraction of samples in which the interactions is expressed
options(repr.plot.height = 10
,repr.plot.width = 16)
# calculate log10 cumulative interactions weights
comm_result$anno_interactions$log10_cum_weight <- log10(rowSums(comm_result$weights) + 1)
# identify control samples
idx_control <- comm_result$anno_samples$case_or_control == "control"
idx_case <- comm_result$anno_samples$case_or_control == "case"
# calculate the fraction of samples expressing the interactions
comm_result$anno_interactions$frac_samples_controls <- rowSums(comm_result$weights[,idx_control] != 0) / sum(idx_control)
comm_result$anno_interactions$frac_samples_cases <- rowSums(comm_result$weights[,idx_case] != 0) / sum(idx_case)
# set thresholds
comm_result$thresholds$threshold_log10_cum_weight <- threshold_log10_cum_weight
comm_result$thresholds$threshold_frac_samples_per_condition = threshold_frac_samples_per_condition
comm_result$thresholds$threshold_log10_meanexpr_per_condition = threshold_log10_meanexpr_per_condition
cumW <- plot_cumW(df = comm_result$anno_interactions, threshold_log10_cum_weight = threshold_log10_cum_weight)
fracSamp <- plot_fracSamples(df = comm_result$anno_interactions, threshold_frac_samples_per_condition = threshold_frac_samples_per_condition)
p <- arrangeGrob(fracSamp$ydensity
,fracSamp$QC_plot
,fracSamp$blankPlot
,fracSamp$xdensity
,ncol=2
,nrow=2
,widths=c(2.5, 5.5)
,heights=c(6.5, 1.5)
)
#ggsave("./plots/above_plot2.png", plot = p, width = 10, height = 8, dpi = 300)
# arrange plots
grid.arrange(cumW
, p
, ncol=2
, widths = c(3.5,4.5)
)
#ggsave("./plots/above_plot1.png", plot = cumW, width = 10, height = 8, dpi = 300)
meanLig_vs_meanRec <- plot_meanLig_vs_meanRec(comm_result$anno_interactions, threshold_log10_meanexpr_per_condition = threshold_log10_meanexpr_per_condition)
#ggsave("./plots/meanlig-vs-meanrec.png", plot = meanLig_vs_meanRec, width = 15, height = 8, dpi = 300)
# filter interactions which did not pass the threshold in any sample
comm_result$anno_interactions$passed_log10_cum_weight_filter <- comm_result$anno_interactions$log10_cum_weight >
threshold_log10_cum_weight
comm_result$anno_interactions$passed_frac_samples_filter <- (comm_result$anno_interactions$frac_samples_controls >
threshold_frac_samples_per_condition) | (comm_result$anno_interactions$frac_samples_cases > threshold_frac_samples_per_condition)
comm_result$anno_interactions$passed_log10_meanexpr_control_filter <- (log10(comm_result$anno_interactions$mean_e_s_l_control +
1) > threshold_log10_meanexpr_per_condition) & (log10(comm_result$anno_interactions$mean_e_r_r_control +
1) > threshold_log10_meanexpr_per_condition)
comm_result$anno_interactions$passed_log10_meanexpr_case_filter <- (log10(comm_result$anno_interactions$mean_e_s_l_case +
1) > threshold_log10_meanexpr_per_condition) & (log10(comm_result$anno_interactions$mean_e_r_r_case +
1) > threshold_log10_meanexpr_per_condition)
comm_result$anno_interactions$passed_log10_meanexpr_per_condition_filter <- comm_result$anno_interactions$passed_log10_meanexpr_control_filter |
comm_result$anno_interactions$passed_log10_meanexpr_case_filter
# filter anno_interactions
comm_result$anno_interactions$passed_QC_filter <- (comm_result$anno_interactions$passed_log10_cum_weight_filter &
comm_result$anno_interactions$passed_frac_samples_filter & comm_result$anno_interactions$passed_log10_meanexpr_per_condition_filter)
samples <- names(comm_result$per_sample_anno_interactions)
if (verbose) {
cat(
sum(!(comm_result$anno_interactions$passed_log10_cum_weight_filter & comm_result$anno_interactions$passed_frac_samples_filter)),
"out of", nrow(comm_result$weights), "interactions do not pass the thresholds for log10 cumulative interactions weight >",
threshold_log10_cum_weight, "and fraction of expressing samples >", threshold_frac_samples_per_condition,
".\nAlso", sum(!comm_result$anno_interactions$passed_log10_meanexpr_per_condition_filter),
"interactions didn't pass the discrepancy filter.\nIn total,", sum(!comm_result$anno_interactions$passed_QC_filter),
"bad quality interactions will be removed and", sum(comm_result$anno_interactions$passed_QC_filter),
"good quality interactions will remain."
)
}
return(comm_result)
}
input_dir <- "input_data/"
output_dir <- "computed_results/"
data("LR_database")
# # load counts
#print("load counts")
#counts <- fread(paste0(input_dir,"counts_lognorm.csv.gz"), header = TRUE)
#counts <- as.data.frame(counts)
#rownames(counts) <- counts$gene_symbol
#counts <- counts[,-1]
# load cell annotation
#print("load cell annotation")
#anno_cells <- read.table(paste0(input_dir,"anno_cells_norm.txt")
# ,sep = "\t"
# # ,row.names = 1
# ,header = TRUE
# )
# load sample annotation
print("load sample annotation")
anno_samples <- read.table(paste0(input_dir,"anno_samples_norm.txt")
,sep = "\t"
# ,row.names = 1
,header = TRUE
)
#colnames(counts) <- anno_cells$cell_ID
#rownames(anno_cells) <- anno_cells$cell_ID
threshold_celltype_size <- 6
threshold_nr_active_cells <- 6
threshold_expr <- 0.1
# Renaming the cell_ID.1 column in anno_cells to "cell_ID"
#colnames(anno_cells)[colnames(anno_cells) == "cell_ID.1"] <- "cell_ID"
counts <- read.csv(paste0(input_dir, "toy_counts.csv"), row.names = 1, check.names = FALSE)
cell_annot <- read.csv(paste0(input_dir, "toy_cell_annot.csv"), row.names = 1, check.names = FALSE)
print("calculate communication")
interactions <- calculate_communication(counts = counts
,anno_samples = anno_samples
,anno_cells = cell_annot
,threshold_celltype_size = threshold_celltype_size
,threshold_nr_active_cells = threshold_nr_active_cells
,threshold_expr = threshold_expr
,lrp_database = LR_database
)
print("calculate general statistics")
interactions <- general_stat(comm_result = interactions
,verbose = FALSE
)
threshold_log10_cum_weight <- 0.01
threshold_frac_samples_per_condition <- 0.6
threshold_log10_meanexpr_per_condition <- 0.02
interactions_df <- interactions$anno_interactions
#write.table(interactions_df, file = "interactions_QC.txt", sep = "\t", row.names = FALSE, quote = FALSE)
print("filter weak interactions")
options(repr.plot.height = 10
,repr.plot.width = 16)
interactions <- filterInteractions(comm_result = interactions
,threshold_frac_samples_per_condition = threshold_frac_samples_per_condition
,threshold_log10_cum_weight = threshold_log10_cum_weight
,threshold_log10_meanexpr_per_condition = threshold_log10_meanexpr_per_condition
)
# differential communication
threshold_log2FC <- 1
threshold_fdr <- 0.1
print("calculate differential communication")
interactions <- test_diff(comm_result = interactions
,threshold_fdr = threshold_fdr
,which_test = "t-test"
,threshold_log2FC = threshold_log2FC
)
diff_exp_interactions <- subset(interactions$anno_interactions, sign == TRUE)
#write.table(diff_exp_interactions, file = "diff_exp_interactions.txt", sep = "\t", row.names = FALSE, quote = FALSE)
# calculate interactions of the individual components
interactions <- interaction_classes(interactions
,threshold = threshold_log2FC)
#dir.create(output_dir)
#write.csv(interactions$weights,paste0(output_dir,"community_weights.csv"))
#write.csv(interactions$anno_interactions,paste0(output_dir,"community_anno_interactions.csv"))
#print("save interactions.RData")
#save(interactions, file = paste0(output_dir,"interactions.RData"))
#dir.create("visualizations/")
#write.table(interactions$thresholds, file = "visualizations/thresholds.txt", sep = "\t", row.names = FALSE, quote = FALSE)
#write.table(interactions$anno_interactions, file = "visualizations/anno_interactions.txt", sep = "\t", row.names = FALSE, quote = FALSE)
#write.table(interactions$anno_cells, file = "visualizations/anno_cells.txt", sep = "\t", row.names = FALSE, quote = FALSE)
#write.table(interactions$anno_samples, file = "visualizations/anno_samples.txt", sep = "\t", row.names = FALSE, quote = FALSE)
#write.table(interactions$weights, file = "visualizations/weights.txt", sep = "\t", row.names = FALSE, quote = FALSE)