-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_prep.py
3950 lines (3950 loc) · 520 KB
/
data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"attachments": {
"image.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAT4AAADLCAYAAAD3EP8uAAAgAElEQVR4Ae2diX8cxZXH9z/ZTcgCy2EbCBtOcyfBBAgQwBwBwhWy7HIlAUIgkEA4AmuOEAghgRxsLEvWYeuwZcuyfFu2ZcunfF+yLZ/TPT330f3286txy+NRV3XPaKSZ6X7z+cxnZnpmuruqX337Vb3rX/51eoj4yX3AMsAyECQZ+JcgNZbbyoObZYBlADLA4GONlzV+loHAyQCDj4U+cELPWh9rfQw+Bh+Dj2UgcDLA4GOhD5zQs8bHGh+Dj8HH4GMZCJwMMPhY6AMn9KzxscbH4GPwMfhYBgInAww+FvrACT1rfKzxMfgYfAw+loHAyQCDj4U+cELPGh9rfAw+Bh+Dj2UgcDLA4GOhD5zQs8bHGh+Dj8HH4GMZCJwMMPhY6AMn9KzxscbH4GPwVRx8/zY9RF/j61Dx6xCkGwKDjwdcRQfc16eH6OoWne6bF6bz6kMECAZpAHJbK3O9GXw80CoGmjPqQnRrh04DJzIUz1j0+aYEXdKosfbHMjnmMsngYyEbcyFz0mrOmRGih7sM2hrKkGmReKazFvUeStPtHWGCJuj0P97G/VIOGWDw8QAbd8B8oy5E988L06BhkmmS0PaOxEzKngRgz2CKLpqp8bSXZXPMZJPBx8I1ZsLldGeGEeO62TqtO5rT9KDlNWxP0uMLIzRoZAUIk1mLPuyP03/MYO3GqQ952+jlgsHH4Bs38AF6V8/Sqe9IRgAukbFoxvYknV+fW9eb2mnQpuMZAgwBv2lrYww/ls8xkU8GHwvWmAhWoVZyVl2IvtcWpsUH0pQ1iQ5FTHp7dZwmNpy6ewOMVzRp1LQzKeAXTVv0Wm+UzmFr77hco8Jr5ufPDD4G35gPqjPrQvTM4igdjJgCesfjJj3WbUitt1jfm7cvRRnTIiNl0d+3JOiyJrb2+hlE4902Bh+Db0zBB7+8a2fpdCCSJTwwjf39+rgUevYAuKJZo8Mxc9ji+9nGBJ3Na35jeq3svg/CK4OPwTemgwlT2RnbEkJ7gwa3cihNlzRprseEO8svV0QpnDLJIqJjcZMemm+wmwvLq6vseAE3g48FqSyC5CRsZ80I0Yfr4pSCsSJjUcfulLDoOv3WaRumyO+ujVEsbVHWsmiPnqWb2nT6et2pdUGn//E27h83GWDwMfjKDj5Mb8+tD9FrvTEBPIDv0w1xgtNysTG5Z9eF6NHuCO0NZ4Wf35bjGfrBHIMAVTfh5u+5j2QywOBj8JUdIBc3akLTCyVMMcVt2QmXldIHIUD6QJdBQ1H4+Vl0MJKlZxZHCCFvMsHm7dw3Khlg8DH4ygqPf68L0QvLohRJWcIwMRjJ0pS28KijMDDt/XR9Qvj3WRbR5uMZuryJoztUg5u/k8OfwcfgKxv4oJnd2KqLaSnib+Gg/PLKaNk0s281acL5OWNZlDYtgqUX02ce4NwHxcoAg4/BVzZwTG7RqXcoLdbiommTPtsYJ2iAxQql7PcA6w2tunCChrEETzg4QxuU/Ye3c984yQCDj8E3amgASFjDw1oerK9Y2/vfvhhdMNPdbcVJKFXbYBzBFHcWjmVadCJh0iMLIgQjiOp//B33T74MMPgYfKMGBpIJPNptCOfkjEnUtCNJ59aP3frb10T4m04n4jkHZ2iZlzXpdAZfy1Ffy3w4+Pk9g48Hy6gGC1JM3dYRpnVH08KYsT2UoWtm6UW7rRQ7yHDcd/piYh0R7jLNu5J0VYs+qrYUew78+9rVIhl8DL6SYYFp5wPzDdoWyoppJ6IrfjjfGLUF1ytQkLwAKa0QEYJn++4UTRqD6bXX8+Hf1Q4IGXwMvpLAh3W9K1t04VYCCy5Sx7+xOkbfGOf+vKxZow3HMgJ8iAN+ty/Gzs3jfA1qEfgMPhaSosEH6E1oCFHr7pSY3sK6WrctWZHceTiXOzvDQuuE1qcnTXp4gUFnsptL0de1FgFW6jkz+Bh8RQ8QrK893m0IdxLAZt2RDF1TwfU1wO++ToMORU2RAWb1UJoub9THbcpd6uDj/1VuaszgY/AVBT6EiV03S6clB3PGjG2hjIBOpcPHYFmetjYuIjvgOP2PgQRd6iELDMOncvCpZN8z+Bh8nsEHzeo7rTqtOJQWa2rhlEU/6ZEnFB1vwYbf4MLBlPAlhKX3z5vinMOP5dtRvhl8LBiOguEErYn1IeoeTBFiZWFI+Hh9rGzhaE7HK2UbwIykpzC4xDIWPdHDyQxK6Ue//4fBx+DzBD6Ehb29JjbsOoLaGeeNIuPKWA6sJxdF6OhJ52bk8ENVN2irY3lM3ndt9S+DjweEJyDAeLFTy2lSx2ImPbEw4ul/lQDChPoQ/WlDgiJIYGoS/b4/zlZelvPT5JXBxwJxmkA4gQpW3Gl9cUqZlkg39XE/qqOVPw7X6dilbpvcrNPCQSRMsES2GEyBWeurLa2s1Gvv5X8MPgafEnyAxR1zwsI/DqmgvtySqAkHYZz3Te1hOhIzRbaY2buSNKkhxDU7WN6FvDP4WBCk4EPBn6tPppoyTaK1RzKE0o9e7qjV8BuE1L20IirieVGgHE7W32ysnfOvhj706zkw+Bh8UpBhreyLjQkRjgb3kJeWR2tuunjxTI02HcsIKy/C6p5bHOViRSzzxOBjIXAEH7Slx7ojYqoI1xDAw0tZyGrTENCO11fFcinriWjxgVRNaa3V1p9+OR8GH4PPEXyY0q4/lhE+e/G0Jay4gEgtCj7W9pYdTIu2QHNF1uZabUst9n81njODr0YH81gKE8LPPlgXH/bZ+2prgs6q4QzHMHTc2hGmoViu6tvBiElIkz+Wfcj7ru6bJIOPwXcaAACJm9t1OhozRXRG71CGrp5V+5AAzKfONeiAkcsdWL89yeFsAZZ9Bl+AL76TVgKfvY/Xx4X/GxKLPt0TLWvBIKdjjtc2aK1fDaAuCNHhmEk3toZPg/54nQcfp/LaIIOPwTc8+KHtXdGs0fZQLkKjdXeSLmgYu9oZlQDAPZ1hUQwJ6bTeXxunczlv3/D1r8T1qNQxGXwMvmHBRyr3d9bERBp5LWHSLR2jLwReKcGWHRflLv+5NSE02kHDpPs7japLtCA7d95ePk2RwcfgE+DDFPeuOWE6FDEF+D7dECds8+Ngm9yi0aGTGVw2Hc8VR/JjO7lNcvll8DH4BNyQwWTTsdwUd9DI+rpiGQwd763NWa0Rhve3gYRv1jEZdnLY5fcNg4/BJ+rRwskXmYvhrDxze5KQhipfUPz0HmuZU9rDdCJhCd++feGsKFLupzZyW9Tyy+Bj8NGkBo2WHMilkjdOOisDDn4ePMgluGB/SkzrAfznlrBTs5+vd2HbGHw+H+CFF7zwMyIYUBs3ls7VpkWC0XMCYul8fKFBx+Om0PoWDaYJscmF/cOf/dknDL6Agw9FeuwykSjN+FgVJxgtN4QA+C83JwhhbAD/vfMM3xp0yt13tb4/Bl+AwYe0U1c2axRK5LQ9aD2oq1HrQu31/DGdR2bp/UbOqPPnTQmaVM9pq7z2Xy3/jsEXYPCdXZfLV4f07Egn/6P51VMxbbwGFTTev2xOkGlZJOpztOicwCAAY4LBF4CL7AQRaDuXNmrUOwSjBpJ0Juj8AGl7dp+gH24WFt6c/yKSlU5oCI7Wa/dD0F4ZfAEF39kzQvTqyigZqVwdjQe6jJpLMlquwYq1vq59ubKZSM7w4HwjMNP9cvVhre2HwRdQ8KH4Tv/RXGbi/mOZQFs0ofU9vywqkpVmTKJ/bEn42o+x1iA1FufL4Asg+ODC8vTiyMmBbgnLZtATc367Vc+5thDRhmNZztLs83HB4PP5BXa6WyIq44vNCNQnAb9HunlqByOHWO80ibSkRVPaaj8HodO152259VsGXwDBh8X7HVpumrtDywbGYdlt0L+xOiYKK8HY82pvjH36fDw2GHw+vrhOAx3rWffMMwjB+XDchStH0Ke5dj+hlObgyawtQYpgsdsfpFcGX8DAh3x0gJ1lEYWTpghXC5LAq9qKvnl/ba4iWzRt0bU+SLmvam+Qv2PwBQx8WMtaeSiXkABWXS66c7rP3r1zDToUhU8f0X/1RFgb9un4YPD59MLK7uYosI00TMmsRV8NJAhZl2W/DeL2K5s0Wn04V4ryvbW8zudXGWDwBQh8WN+7q9OgSMoSVdSe6okQ4nX9KtyltAuO3bghIC8hnJpruaxmKe0Pyn8YfAEa+IDcr1bGxKDeeCxDlzT6q5BQOQYtDD3PL48Kw8+ecJa+1chJC8rRr9W2DwZfkMB30rAB/705e5KE9T5ogdUmlJU+n3vmhUUo3/FEzp+PtWL/yQiDL0ADH8WDZu9KEUorfr4pQV/3cXr50cDz+tk6HY2bwqdvameYlwN8OEYYfD68qLJBf259iFYNpYUP3y9XRlnTk1x7pKXfrWdFZMuziyN8g5D0k0zOamE7g8+HF1UmeFiv2qVnKZmx6IddHKYm6yeE9C07mBYuLdPYsuvLGySDL0Dgu6pZp1AiN4VDlIJs4Ad9O9b0UGkOvnyw8MKxOeh94rf2M/gCBL7rZumEiATUl7hwJlsrZYMZBp+/bkmItdDGHUl2afHhGGHw+fCiygb0t2frwnE5nLICmW1Z1i9O2/+wIVdwvH13is4KSNU5p37w6zYGX4DAd/ucsDBsHImZdB4PZuX09a2+GKWzFi0cTNF59ezv6DcAMvgCBD6UT0RWlgORLIPP5bq/tioqwLfsUJomNjD4GHwuAuO3DvJTe+6cm9P4jsVNgsuGn9pW7ra8uy4m1vgWHUjR+azx+U5WWOMLEMhvbc+BDwWGGHxq8H+yMbfGh3hdXhZQ91W5bzrjsT8GX4DAd/0sXUQjwKp70Uz/CXO5Bky+VbdlZ5ILD/lwjDD4fHhRZQC4slkjGDYSGYtQZU32u6Bv//fpIWrdnSRUXENtEoT6Bb1P/NZ+Bl+AwPfNmRptC2VE5pHHFkZ4MEuuPdxX+g5nhAPzW6s5J5/foIf2MPgkwu/Hi411PSTZhGX35V6O1ZVdY/TTnpOxus8tidLXWOPz3U2SwRcg8CH0qm13LjvLx+vjdEaA2i6DnNP2yc06HY7lQvvgAsTFmPw31WfwBWjwIwZ12tq4yDqyYD875jpBD4aNB7oMEdp3KJqla7jgkO+0PVx3Bl+AwIdB/Vi3IcLW9hlZunNOmBORFlz/M+pC9F5fzoev73Caaw4X9I/TzaIWtzH4fHphZcI4uUWjw1GT4mmLPumPcwB+wfW/sEGjeXtTovwmkrVyZhb/TXNZ4ysQehks/LQd6ebXwGJpkSgzeXkzZ2nJv77fbwvTDi1Lpkn0FAwbAZSR/P7w63vW+AIm2NBgvtySqyKG3Hw/nM8JSe3BjWnub3tjIm0X0nchBb39Hb/6S/Nj8AUMfNBg7uoMC18+ZB9B3jnWanKD+poWnfYbWVGFDllZoB0z8PzZBwy+gIEPAxmxp2sOp8UAHzSyhCLjQR/gsHh/0B8Xhh8UY3pmCdcc9rNMMPgCCD74772yMipqb0Dre6cvFvhKYljrhNMyColjje+yJr4ZMPgCCAc/X3S0bUqbTgOh3EDvO5IhVGDze5tl7YObz1OLI5TIWpSxiOq2c7p5WV/5ZTtrfAGFOsKy3uuLC0ddLWHS3Z3B9enDWt6sXUkyLYuOJ0x6oifC/o0+HxcMPp9fYNkdGloO1vbm7UtR1rJozp4Uofyk7PfYjinytbN0QpaXas9YAphBq/1Wkzp7MtrxUJdB4VQua81H6xKB1n5V199P3zH4Ago+G2S3doTJODnop2+TD3qAckq7TgeMrFgLe2lFtCqde3GelzZr9M+tSZGCq3t/SuqkDWv2lc06rT+aFn6NzTuTdBEbepQ3P7/Aj8EXYPBBiM8+Oc2zLBLT3icXOU/zAJSpnWGRyw+/PZGw6LaO6pseQ9MD9FJZiywi4ayNNjoN2PPrQzR9AHn3LJGgdWqnUfWarFM7eJvz9VX1C4Mv4OCDG8eDXQbpSVMAoPdwWkwPnYTm/IYQzdiWEJAALPqPZui2OeGq0PygvU1oCNH7a3PrligGDp+8H3YZjhbrr9eF6KXlUVFgHVEsSNrARYWKB4iTnNTCNgZfwMEHIUXizS83x4edmr/cnBCaoJMAT2jQ6GdLorRbz4oMxfAD/GR9nC5p0hwB47SPcm87sy5EU1rD1LEnKVx0oO3BT/GeTsMx9RYgiSn+wUjOqo2s1HdwwgZHrbjc16pa9sfgY/AJgQe4GnckxVQWNTl+tixKCOFyElRoSze26bRqKC20RGh/O7QM/c+iiChUjmmx0//KvQ3nccNsnaZvS4p1SsTXQnP933UxUVNEFpFyWbNGq046cIeTFv1mVYywr3KfH++vevuUwTdOg7QWBsGkhhB9tjEu6snCxeXZJRHpNBZwu7hREyFvKFeZNS0R4zp/b4oeWWDQxIbQmGmA35geosktOk1bF6e94aw4NuCLtPpPLJSfM64BzhnTWkxvoa3+dElUaLy1cH34HMsHUgYfg29Y00GKdbiqbDmeGY5guK/TkFpFAT+kcXqkK0JbT2Dqa4npL0A4d2+K7pxjCA2wHJmecayz60KEuiFPdEdo9VBGaKeItIhnLFo4mKbb2uXrjfj/mTNC9M6amHBURvp9vEfNXAZK+YBSK33J4GPwnTbwYeyApmcbOwZOZOnhBQZBy5IJNabE17fq1L47Jf4HR2BUKDseNwkuMg8tMOjyZl34x+G3gJBsX/nbcS6wyP5noyam1piSIjkoQAcNE/DaEcrSyyujNLE+pEy2MGmmRi+viNLBaE47XX4oTZdyWJqn65B/TfzynsHncRD65YJ7aQdSV724LCogBtcVAOz5Ze5+e3AlgUEBa4X7wlkR8A+NLJmxxJR05aE01W1L0ltrYgS3mfvnG8KogPVCrNXd0h6mu+ca9KMFBr24PEqfbogT/PCgTWrJHLDgbA3wbTyWoddXRUVMLQCpatcVzTrN2ZMUoAQwAT1MlVX/4e/UfVrr/cPgcxk0tX6BSz1/wA8Vxg5EsiKyw0hZNG1tzFOqJmhp0KbgJjNzR5Iw9YV2Br86gBBT4mTWEn6D2K+WtCiUsEhPWoTPyA6N3wNyAC/W4wC7Tccz9OaaGN3aoQtHYzfgQbP8bqsuLLw4Jvaz9GCarmToBR76DD4Gn3QQIJwLyThbduYcggGr1t0poaXJnILzQQur6ll1IREK91h3hN5bG6OZ25PUO5QWGVAGI6ZIg38iYQr4HY2bNBQ1CfVAALn5+1L02cYEPbc0Sje364T4Yi9TZRx3UoNGP10aoYORnKYI15UP+2MCyF6n2vlt4ff+0gAZfAw+Kfgw2GHwQAxv1760KLCNNFa79Cw9v1RtPc0HBUADdxEYF86ZEaKJ9Rp9Z7ZO98416OH5Bj25MEJP90Toxwsi9OA8g+7sCNOljZowPGD6DADLXFPyj4P3OBbKQ365KUEAKTRMaJTwPcS+vO6ncL/8mcGnHCgsIP4SEFxPwALJCTqR0ODkFBTT1082xIVVtxQNyoYhNDiADVNrvAKQblNYmYzh//fNN2jtkYxwrQH0oE2+sDzKiQf4Bn8at1jjY4E4TSBkUAGoEBIG37ldWnY4ymPz8Qx9sC4uQtcQQTHeGhUgCasvLM912xIUTuUsvlgThBGjWkLqZP3K2yujKDD4GHyewGcPUGhmk5s1+nWvHbYG1xWLTsRNsRaI4kXn1Bc3PbX37fUVcAVkkVnlzdUxAnwTmdx5AHhIsfVkT0T4/I03iL22gX9XGeDZ/c7gY/AVBT5bcDCtvH6WLhIVpE0atthG0ya17k7SLW1h4YNXyjTYPobTK6bCcDp+dnFEWJxtazEsxoDe79bEaAJ8+jgEraTr6tTnftzG4GPwlTxAAD9EeqB+R89gihD3iqwoSBIA1xRYbz9eHxchbFe36CL7CTRGwAuamP0EHO2nvQ1TWKz/ISU+XGOQVAAOyPAR3BrKClcYaJowtsBnEJZnZE6G5Ze1vMpqU7UASgYfg69k8NkCDpCdOyMk0tcjy8tOLTs89YRGBgdmuJNsOZERRcwBr9/3x+mdNXF6rTdKP18WFS4rSG6K6Ix3+2L0xeaEcGfZcCxDe8JZkSEZ+xLPrCUgu/hAil5ZERVW3EqsL9rt59faAy2Dj8E3avDZAx9aG+JyL2wI0ffbw/Rqb5Tm708J3zwU6IYmKByJzZwjM6yueMKxGE/7s9hm5hydATpMYaFBYi0PxdARUnfDLF24xpR7Km23hV9rD2bFXDMGH4OvbOBzEjxoYrC63jvfoKeXROj11TH6y6YEzd6VFFlSEMbWdzhD645kaM1QRlhi5+1NCgvtR/1xemFZhB7pNmhKay7Wt1RXF6dz423+hpvq+jL4GHxjCr5C4cP6G7KsnFefc1C+oEETYITD8oUzNbEOCOMFHJ2xhsgaXXDhVCg75fzM4GPwjSv4bOG1jRmqV/u3/MrwK7cMMPgYfBUBX7kFmffHcCxGBhh8DD4GH8tA4GSAwcdCHzihL0Yz4N/6U5Nk8DH4GHwsA4GTAQYfC33ghJ61OH9qccVcVwYfg4/BxzIQOBlg8LHQB07oi9EM+Lf+1A4ZfAw+Bh/LQOBkgMHHQh84oWctzp9aXDHXlcHH4GPwsQwETgYYfCz0gRP6YjQD/q0/tUMGn0fwIab04kaNbmrXR/X8bluYbmjV6apZOl3SpIk8dl5KJqoGIM7tgpkaTfFwbte36iL4X7U/p+9wDDtJqOoVv3P6v2qbyObc6t6vaN/5DSP3j/NBJTgv7R/t9cv/P46Hfle1zem7s2aEaEpb2JMc4RioA8xZaUZed6e+9bqNwedxoCLZ5hurY3Q0li35eTiapQOGKRJ1Ig1T974U/W1zgn6xNErIUIzyh8hQXCw8AI4fLzRoKGK6ntv6oxm6pLG4wYrzua5Fp++3hV2f17foRWdAvrxJo/4jGddzPxTJ0g/mhEeA5hvTQ/Tb3qin9o/m+hX+dyiSpWeWREecj2rwAWAoiI56v4X7c/oMmZm/N8VV4jyOU1Xf53/H4PPYoYDLtHWx05Jl5ifOLOZ91rIITzt1Ouq+Imvxgv0persvJoroQAvMv1Cq99B4bu7QCQW/3c4DRYGum6173jeOi5x6HbuTosYFMimrnl37UqLWhup8C7+7YbYuykC6nXs4ZRIgWfh/XJvfrY55ar/bMYr5HolVkS+w8HxUn3EDfWVlTGSS9nIslPM0UiZ9t624a6Y6B/4uRAy+IsD3fn+cxuqBYjkWMhGbFh2OZenD/jhd3qx51p6Q7BNahNsDgxWV0IoRfhTvORw1xfm57f943KQLHKajquPd32WI2hmqfaNvkIH5/PqRNwRoye+tycFEtY9yf4cb14vLi9P4zp4Rorl7Up76EucLuTBNErMNaLaqfuTvvPcPg8+jMEGrGEvwFQ5KDCrUm/jVihhNahip5RQKOYryLD2YKtzNiM/YLzSOwv+rPn+vLadNjtiZwwaA9fY5Yc/AxtQPtTYAfNUD4GvdnRKp7QvPtVbAB838to6wKI6kbu3Inli4v3hNurCf+PMpMDL4qhR8EH3TskTRns69KVHMWyW4GPxfbk6Iqe7IYXNqCwCDQj6qfRV+B60GwPTywBT+pZVRsVZZuB+nz7ih/HFT3FUDwuFRhMhp/bNWwIc13I/XxcU19dKX+b8Zipp0zSz3G6BTH/O2U8Cz+4LBV8XgswUfxbJRwBsag33hCl/x3RurYqJoj/0/p1cAZM7epKPmVLhPfIZG9unGhFiTdNpf4Tbg8fNNCWGocdpf4TZYOKHJuT0A3v/uidQ0+LB0sfRg2vNNJL9PIAMPdhlKGSjsW/4sHy8MPgVM8gVnvKe6+UKPad7WExm6ZpZ6gfvxhYZY4M//b+F77Gvd0YwwWOS3z+k9tCsYNtr3pFw1yfzjdOxJipoaTvss3AYtqO9wOv/vju8jKcvRoov91YrGd8fcMB2Lm643J6cOwHV7c3WM3Vo8jtdCOSv8zODz2JGVBB8GAjSe/9uaUE4hp7TpdDSuNnBAIzuRMGmig5GgUDigRWJ9ccvxjOtUNH+wbg1l6GKP/m0wnAAGbg8UDYffY+E54nMtgA+a81trYuI6AmLFPvCXUizmTv3F29iq6ziQnATDK/iwuP9OX0zUlEVd2fwnimV/tD5O/7c1SQv2pYQWh2LbXgYCfqMlTfrJQkPqgDyxISSKdruNK0ybbm4f6Q9X2G641Nw713CFaeEgBsgemme4aifQKG/0aDhZdjBNZ0lcfIoBHwxGHXtSZXm27U7S/R4t5Dj3JQfSwkpb2F9eP8OyfkWzM/wLrx1/lk9z0Tes8ZVZ44tlLLqiSaczZ4RGPLGehbKJE+o1QlnF78zW6bMN3he7UVx7WygrjRbA/uEL6AZS+Pv9eKG7/xmA8tveGBkpN5SePnRRPPzNVTEpqOxB+bW6ED3cHfG05lW3LSnVdr2CD614e01M9P3Ehlwpy9G84jqiVKbdHtXrhQ2aUrPFNYPsqK4dtP575xXniqQ6pyB/x+ArM/gw6FEj1otQYfqDWrK/64t5svTBMBFPW/TgAsNxkR/7+3KLuyECA+hXve7+Z4D09IEkQYst5gFA/3MA63xqKABYv1gRVa4f4siAwZtrYlKDTDHg+/Uq+X68XLNSfgPNduo89forrOG4aeHayB6wyL/VF/ckW6WcZ5D+w+CrIPhsQTtvRoj+tiXh7sR70pkVvwXk7P/nvz6/zF2DwgD6K/bhoq1MbtFozZGMq49d4UDF2F01lKarXYwx0FD/vCmhnP4BerbTtZMrC9pe7eDDtfrD+rgS8HrSokcXGAQjjuyBvsCUHwan/GvO74vvDwafBCCFwuR1ja8YjS//GNfN0mnzMXcjAoR/7ZG0NCxsSqu7szHABIdYaHQymODc7pobJkRi4JjFPPD7ozGT7pyrXkc8r14TC/aqfQPSOAdEpuT3V/77agcfLNdrDu4qyNsAABJfSURBVKvX92Bpv6xJow1HMy6ANOnaFrV1P79v+L0zFBl8VQI+DN6neiKu00owaNDIShe5EdK138iqtSgiGjiRpUubNCn4AMTnl0Zdz8cJWgAfjDY/XxaV7h8DEjAbOJFx2sXwNkybvxpICEjLBnG1gw/WdpXlGjciWOyhAf99QK35p7MWPe/Sr7J+4u2nIMjgqxLwQSivakGwvrt6BQ3oJknQOhbb4STrpqUNGqaw2MqcogG+j9fHKevuaTIMKfsNWoD/fdQfl06ncdzb2sMi8YH9P6dXTHMf6YoIKMgGbrWDD47XqnVSaLW2g/qvVkaV672AJJY6YCVWaeuyvuLtOfgx+KoIfJc1aiIQ3wkA+dswnZZNIwGUfwwkXIF1PGHSC0sj0rVCrEs17UhKnW0BVtVgxgCt356UrkfBVebpnqjwKcxvW/57ABRT5iubNFJlq6l28GF9D3CTPXA9H+rKWWthtUUGHdmNC9tXHEoLP0kG3ykNrligM/iqCHzfnKkR4nLdHpjuIEpDdrFfWu4+RcVU9E8bE1IwIYsI1p1kAxDWRyy0y75HGxCRgXVEp/PEutdH6+JiSixrL/a9cigtMrKoBnk1gw/t7B1KS9ftgMMDkdyyA/oJyw/oVxUocTN4ojsi9ed06m/edrocMviqCHyIkmjcmZRxYHg7oIP1N5kwIztKOCnXGrAj7KN7f0pqNACEQwnTca0QgxXfvd6rjg3GlBzuOk7niWzW7btTyhhgKElY84K/n9M+7G3VDD7kPoTjuUzfQxvhxoL1PbQHRrQP1saU1l1cu7ptiaLTf9n9xa/swKwcUPkCMtZWXRzr/HqNvtqaGAac7A0E/+UVcvBd2awrtQzsF9rU3rApnKjz22m/v7szLJ3KYrBCG7y9I6xcj8JU+Pa5Yce1KCQfhTO2YgYotB5orzLXHftcqxl8yGwDDV32QB8h0sduCzTb77WFab8hX1zFtcNNBenr7f/xq/rmWNg/rPFVkcYH8P1twBv4XlspBx/iX7/aklQ6w2IowmdMtlYIx2IA1umBzXP2pOiKJo0Ox+QDFNO155Y6Z5URWmlKHakAKNznISSsWsGHm+WM7Vgnde5H9G08g8SwpwAG8EEOMD1W/E3clH5aZNr7wsEf5M8MPh+CDyB4vTeqnC6JQZe26KlFzqFrn26UL8hnTBKOx5iao4aH7IGB+0F/fETEBQwwTyyMCG1RNbih1XhJuV6N4APAJjWEaNNxuV8e2r7PyAr/vXwIwUH5n9tgoJIDE1ZzROnIrPL5++P3I7VBBp8PwXfG9BDdgUy/RlbGJLEdMbuoI1I4MAASrP/Jxh3+9/OlUbEuNWtXUqmZzN2bGmFAwfn9djUyleRSq8tOcuB4hpB4ofD8Cj8XA77XV8XE+eAcSnm6Tbvtc4MV+qeLI8qbDzTq3/fHHXMXPrtE7QIDaKJOC6J+7GPyq/e+YPD5EHw5bUOjlYfU0yWAp2lncoTWACfo3XrWEWgYcMgSgikywDFtLWpdyNBFtD2UHWHZBajgsKvS9rBHGD/wW7cB7RV82GcuO0tS7Bv7L/YJFx9UxHM7J5SdhD8lHLBlD2RVnjon7LiGiSwsKDKkeiDLjmypwu38gv49g8+n4IMbRcN2udaGAYUxufxQegRcrhGO1M6DDuv0G4/nkqICsNBMoAHKHsgPWJhKCa4y0CjdHp9siHty2SgGfDhVTBNLfYaTFt3iIaXX9zt0gpO4gnu05nCG0Nfox0IQwQ0IyWdVNwdojK/1OqfjL9wffz69jxl8DkLnJCTjZdUth3ED5w9t7L218nU6QAeDEpodIJnf5qnzwtIpGgbb/H0pggEF/4HD7ZGY3F0DKa1gyMjf/7kzQiK5qQp8ODeEvHmZWhYDPtUxvXwXSVt0a8fp7clvm/3+Z0ujBMdkGbiwfeaOJCEtlhP4MFVu35NUghN9BCdxyKZ9XH711hcMPp+CDwPgkQXuZRsxOAszGwsXDImqgt+/vTo2rCVCYxEB+BKlD6B8ZvHpMbsXzcQ0TvKHk/SBC8jN7c7aUOHgrjbwweDQuCOpnOaiX15ZEVVCCzVU8DvZA99sDWWlvpiF/cSfT0GRwedj8F3epBM0FNUDERz5dXahYX2xSZ7TD1PXm1pz63sYSNDekLNPNkAxbhGyZVsfod3At08V7obzxfrXBA+GDZxDtYEPYN8ekltz0T6kobqjQBMuBBOy47hdP7gk3cPJSYvWeBl8PgYfprDrXVJdQbPKT0qK/3QPOmdxxvQMjsvIPGxPzwCdZxbJrZf4D8Lw7GLYAODPlkWVvm0AQzH1JaoNfDA4wD9P9sA320IZ18iLbzVqwnIrmy5j//ARRNlNL0sChWAN8mcGn4/Bh0SjzTvV7ibwFfvjxsQwyBBitvGYsxsMtLe23SmRUt8GH16vnSVPuyRgeSQj4m0x0HBO09bFpSFcNiz+sDE+PJ12G6DVBr5XV8HSrQAfbgb7ToWpydqHtbslB9UGKhwF5TntkDfZvnj7qWku+oLB52Pw4QK/36/O/Iui5S07T9XZRWqsAxGJRde0RKoqe9pqDyZUVIObiNMDAxMV0hB8j99jME/fpo5OgeX1BQ+havbxxxV8KbVxA5oXbjZq5+Oc/x4MUHYbnF7RzyIzt/PlGO5uuAzZxian/fC2kf3M4HMRPltoas2qa583igrJ1t8wcqCR9R3OCI0B2tsP5srjbzEt/q+ekZEeCLGq3y6HWSx9qqobohKQVkn1gHvMbXOcY3ztduW/FgM+JFc4GCn9uSOUpZsUMbIoIoX1SdX0FNfj+aUR+narrnx+p1UXtXThryfXH0m4E8Fy7gbS/D4L+nsGn8/B9+3ZOulJtcoAjQzZkAEQZPeVgRIWXSfnXSQ/faVXXjQI076nFueAiUiMvWHnqbQNwwMI4yqijKJX8AEedpU1hJOV8oRzN44nA8ePFhjKxA32zQbGHawDuj1xE1DMmkWX4fsPJREgsvMM+nYGn8/Bh/RSKAiueiDx5c0dOp07Q6PPUfzHQb3Ath1adnitLn/gQNO4qzMszUKCaR+yOUOj/G6rLjKLqM5n+cG0a4W2/OMXA76xrLKGqennGxPSG4eqzaP9DrkP/1OSAiy/r/h97qbF4PM5+BAl0TOoLnSDkpUPdBmi3uw8SSJUgG8JKnwVODvbAwmFcqIS3zxoJLN3pcT6HhyeMfWVPXAc+MAVU0msWsCHc158wNkiLmtvubajpsfdPN2VauK2nNqvDL4qAx8K67g9MBVV5eOzLy5esTaJfTppcfZxMBVFiqNLFMV/AC+kWMrfd/57xKbu0p2nsDg23GBQVe1/FqnXHHEuH6yLF+WeUS3gA/xFjLPdseP4inXAD9fGpdX38q8Vv2errnQgFwrHeBg3EL5UjgzM+ecOK+MvlsvX7TA24QuGLCFT5xoizMppvGK6iswm+fvOf4/Y0i5J/C30O2Qhvr5Fp/fXqq3M4ZRJP3EwoOQfq/B9NYAP0/gHu9TarFO/lmsb+hhGKmR8Luwf/jxyTZY1virS+C5q0EQcrNtggFYEa60XgcaARDZl5LaTaX3YDl8wFPeWGTagUTygSAqKGwNqeMiOgQiR3/RGheuM7DdoN9YRUY7RS9vs31QD+DDN/cSlqJDbdR3t94jy+O9FkeEoGbt/+JXBV9SAyheY8dD44Knfr0jsaQ8MWAK9hikBfPDN26lnpRXTsN/VQ2kR5SGzIJ5IINW5HEhY2H9lhbwGB2A9f2+KVigKFAGI+B4hX/l97/a+GsAHN5aFiHixL1IFXpFxBuGBkFW3Pgv696zxVZHGd3WzLjKduI0ZzWNqJFu44YKBEDCZNofjIceeKFAkOfiecFasAdr7dHp9pNuQVk3DVPlQ1CTsR6bx4fw+31j8OlU1gO/aFqShcl7jlHRp2TejXxfsS43If+h0rYK+jcFXJeDD4P3Nyphr8D5Gy34jOyLHnUqQUXz6haVRKZSwTwwaGZDwPUoeullab2zTRR1cpxGNfSMiQwVf+AnePdc5MaeqfZUGH47/6Ya48tqh/YciJq0aSpf8VC1X2H2O38BIpeov/o6NG54FZKynuje3h4Vjrwo+NqAweAAzrwKMc7+8SVPmzbMHjtMrpm9/3ZJQFvXGuVzQEKKBE2qfQaf929uQar4UX7RKgw9O3dBmVdcOGu+ve2PCD/K8+pDwUyzmFVr7XzYja47dW86vuLE8uUheKN6rzPj9d6zxVYHGhwgCpEDHOpjqgW8h+B9vKM7dA+t8SB+1CP586kM4Hh6nhdjZwhjdwsEBGCMTSynHwIHrtiVFhbHC/bp9rjT4YDWHtqp6YF0WzttubVF9/0SPOts1jo++b9henB+k6ph+/Y7BV2HwQRv75fKocppkDygINUKYHu2ODGdT8SKYAB+KcqMqlwtb7UOd9gog3zffPXYWYPxii7tWctrOT35A295YExuRDdpL+yoJPrT5HwNJSik6FkhE4aeJJ7NWe2mT028Q24vU926PzcczdO4oj+V0fD9tY/BVAHwA0YQGjW5q04WzLkLGvGhJmMbA3aMwY7JXgUR9Bky5in1AW5nsocAOzgPHUK3jyY6N/zy+MKKMg5W1s5Lgg/8ilh5UU1Bc23lIQ1XE8oRTW5GBxS3OGf2LRAzw54OcOe2Ht/Ean2fB8LrGhwwmKKmIsouFz9ZdSWFdRfWzrSeyhDAjaFNeoIffHI2ZdE+nURIcIOwwHLhlPnYCE2CLqbKXAYOQtFKOgVT0pQ7WSoIPdX9Rc0T1ABSRHMFtqcCtf9FOyJTbAze3ny8t7Sbidg5++Z41Po93Ra/gA6CgVEHYnZ74Dk/8zgvwbCGHRgTLIYS/VOG7slkXKZPsfXp9bdmV9KytIDcfojSKfSCRQrH+e3Y/VAp8ANnzyyLS5Ax2H8D5e2qne4Eiuz2yV0ThvLgC2avtPctfEe+MTNmyfQV9O4OvzOCTi2Lp3wCQmE7ZyTxLFVpYBnuH1AkL8s8S4wuDDGtvqPrl5bhIXY/QqWJm1Ghfx55UyXGmlQIf3HtQKc2trYhhRhyvl/5z+w3W+VRJHuzrBy0dtVFGq2W6nU+tfs/gqwHwYer4aLcxaiEGIKC9edU08Tss2sOa6HUAQTNu3qlOl24PTvsVx/nTptIjDioFPiRd2CTJPG23Da/I2IK1wHJAAskgYChxe8DK/HRP1LOmXo5zq6V9MPiqGHxIC49UT4iBLcfAQd48JCPwCj5oMkbKpFs81JHNF3rU1HBzzckfuJjGo9SiV7jmHwvvKwE+GA5g8HFL8op2frk5Maolivz2Qg56PITGYZ1v+rakSLaa/39+n7sBMfiqEHyYYkLLQ5jZQ12GZ8OCm1BjsD7Z474mZUMJg2f14XRR2ZBxDkhPj3Utr4/RlkisBPig2aL+sJsFG98jcUC5qqDh5vVRf5wyJinjgnFzy8VXj35t0U2uavF7Bl8VgU9MLbMWIZvus0sihIpn5XRJwL6QaADuDl4e0No+2xAvKhsyBsGNre6RDPnHRw2MK4pINV840CoBPli55+5xT0qgJUyRrr+c1/HhBUYurlpxb8FXgO4bq2PDpT0L+y3Inxl8FQQfQIfpJFxgcHfermXp3TUxEV4my3Q8WmG9uFGjwYj7GhHABBeTF5dGXGN0C88JEIMRxW3RH8fAAN1wLDuqqfx4gw8Qu7RR8+RTN3DCOV1/YZ8V8/nGtrCQFS/WXZQD5dKTI9dXGXwewQerJpxzUZin1Ccyk8DaBs/6dUcytPRgmmZuT9Jbq2N077ywKPiDVPGlrnV5GTzYf+eelKc2QPOcOscoepoG6/EfN8RFRma3voJD7vSto1sDw7Tz1RVR2qVllO3CseDfNtppJ67PI10GbTymPh7a/vctibKDBzOB+m1Jke3ZrX979qc4isNhjDP4HDrFCSAQduRcu6ZFL/mJvHhwa7hoZkgEq2Oh2i3jidO5jGYb2oHsHV7acUWTVtKgxTEwONFet+MgwB++f6Nt04UNGl3d4t6uCQ0j7/7FHhvtm9Sg0VXN7seDbyJ+X+wxVL8/1b/ux5/crHF+Pof+Z/A5dIpK6Pi78g5i7k/uz0rIAIOPwVdWbaQSQszHZHgWKwMMPgYfg49lIHAywOBjoQ+c0BerHfDv/adRMvgYfAw+loHAyQCDj4U+cELPGpz/NLhirymDj8HH4GMZCJwMMPhY6AMn9MVqB/x7/2mIDD4GH4OPZSBwMsDgY6EPnNCzBuc/Da7Ya8rgY/Ax+FgGAicDDD4W+sAJfbHaAf/efxri/wNqhNXbNF1EKgAAAABJRU5ErkJggg=="
}
},
"cell_type": "markdown",
"id": "7b4770b5",
"metadata": {},
"source": [
"![image.png](attachment:image.png)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "649ebe7e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Logo color hex: #1fa7ee\n"
]
}
],
"source": [
"# import librairies needed for project\n",
"import missingno as msno\n",
"import numpy as np\n",
"import pandas as pd\n",
"import mysql.connector as connector\n",
"from mysql.connector import Error\n",
"\n",
"# import user-created functions\n",
"from functions import *\n",
"\n",
"# maximise dataframe display\n",
"pd.set_option('display.max_colwidth', None)\n",
"\n",
"# remove scientific notation format for large numbers in dataframes\n",
"pd.set_option('display.float_format', lambda x: '%.3f' % x)\n",
"\n",
"# use company logo colour in graphs\n",
"col = findColor('dwfa_blue.png')\n",
"print(\"Logo color hex:\", col)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4fe82ae6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection to DWFA database successful !\n"
]
}
],
"source": [
"# initiate connection to database\n",
"try:\n",
" connection = connector.connect(\n",
" host=\"127.0.0.1\",\n",
" port=3306,\n",
" user=\"root\",\n",
" password=\"1234\",\n",
" auth_plugin='mysql_native_password',\n",
" database=\"dwfa\",\n",
" autocommit=True)\n",
" if connection.is_connected():\n",
" print(\"Connection to DWFA database successful !\")\n",
" \n",
"except Error as e:\n",
" print(\"Error while connecting to DWFA database\", e)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8e05177e",
"metadata": {},
"outputs": [],
"source": [
"cursor = connection.cursor()"
]
},
{
"cell_type": "markdown",
"id": "815cd5a1",
"metadata": {},
"source": [
"### 1 - table countries"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b3f53f83",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>REGION (DISPLAY)</th>\n",
" <th>COUNTRY (DISPLAY)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>194</td>\n",
" <td>194</td>\n",
" </tr>\n",
" <tr>\n",
" <th>unique</th>\n",
" <td>6</td>\n",
" <td>194</td>\n",
" </tr>\n",
" <tr>\n",
" <th>top</th>\n",
" <td>Europe</td>\n",
" <td>Albania</td>\n",
" </tr>\n",
" <tr>\n",
" <th>freq</th>\n",
" <td>53</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" REGION (DISPLAY) COUNTRY (DISPLAY)\n",
"count 194 194\n",
"unique 6 194\n",
"top Europe Albania\n",
"freq 53 1"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# import file - source : \n",
"countries = pd.read_csv('countries.csv', encoding='latin_1')\n",
"countries.describe()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "815c1f34",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB/AAAAPbCAYAAABL7RN5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+T0lEQVR4nOzdZ5hV1eH/7e80iqDYQCkW7AIaNVZUbCACYkMltmhsscWCGhULsWAJFrAglmCN0Vj+KqLYsGOJUZHYey/RiIrSZs48L3zm/IYqJsoc4L6vK1ecOfvs2fsda332Wrustra2NgAAAAAAAABAgypv6AsAAAAAAAAAAAR8AAAAAAAAACgJAj4AAAAAAAAAlAABHwAAAAAAAABKgIAPAAAAAAAAACVAwAcAAAAAAACAEiDgAwAAAAAAAEAJEPABAAAAAAAAoAQI+AAAAAAAAABQAgR8AAAAAAAAACgBAj4AAAAAAAAAlAABHwAAAAAA5jO1tbUz/W8AoLQJ+AAAAAAAMJ/54osviv9dVlbWgFcCAPwUAj4AAAAAAMxHHnvssbRp0yZdu3bNcccdlzfeeCNfffVVQ18WADAHBHwAAAAAAJiPjB8/Pvvvv38+/PDDDBo0KJ07d86uu+6a+++/PxMmTGjoywMAZqOs1stvAAAAAABgnlYoFFJePu2avS+//DK33357brvtttxzzz0pKyvL7373u/Tp0yc9evRooCsFAGZHwAcAAAAAgHlYbW1t8T33/fv3z0knnZSFFlpommMuvvjiXHnllRk3blxatmyZY445Jsccc0xDXC4AMBsCPgAAAAAAzAe23377jBgxIm+88UZWXHHF1NbWpra2trgy/+mnn87NN9+cCy64ILW1tfnjH/+Ys88+u4GvGgCor7KhLwAAAAAAAPjfTJw4MRMnTkySvPnmm1lxxRVTVlaWsrKy4vb6G2ywQVZaaaUss8wy6devX/785z+noqIiAwcObOCrBwDqlP/4IQAAAAAAQClr2rRp1l133STJv/71ryQ/bK2fpLgCP0mWWGKJ/OEPf8hVV12VsrKynHXWWRk8ePBcv14AYOYEfAAAAAAAmIcVCoUkyaqrrpokeeSRR1JTU5OysrKZHl9eXp7dd989f/7zn1NWVpZhw4blsccem2vXCwDMmoAPAAAAAADzsLoV9l26dEmLFi3y+eefF6P+rFRWVmavvfbK/vvvnzfffDMjRoxI8n+r9gGAhiHgAwAAAADAPGD6uF4/0hcKhSyyyCJZeOGF88wzz+T555//0fO1atUqffv2Tbt27XLuuefmySefnOWqfQBg7hDwAQAAAACgxBUKhWJc//7775P838r7QqGQ8vLyLLHEEunevXuS5Isvvpij82655Zb5/e9/nyS56qqrMmnSJKvwAaABVTb0BQAAAAAAALNXF+t79eqVb7/9NmuvvXZWX331bLbZZll00UXTunXrJMnKK6+cJLnrrrvSs2fP1NTUpKKiYqbnrAv/Rx11VO68887cf//9+e6779KkSZO5c1MAwAwEfAAAZqluMgcAAICGd8YZZ+See+5JeXl5Hn/88SRJ06ZN07Rp03Tr1i0rrLBCWrZsmbKysnz88cdJkoqKitTW1s50a/y68V5VVVW233779O/fP7fccktxRT4AMPeV1doLBwCAer744os0adIkzZs3L/5OyAcAAGh4U6ZMySeffJL33nsvY8eOzRNPPJGPP/64GPPrW2SRRXLppZdmt912S/Lj47pPP/007du3zz777JNLL730F7sHAGD2BHwAAIqefvrpbLbZZll11VXTq1evbLXVVtlkk03SuHHjhr40AACABcr0q+ZntRV+TU1Nxo0bl6+++iojRozIJ598kvvuuy/jx4/POuusk6OPPjq/+c1vksw64tfU1CRJ9tlnnzRp0iRDhw5NVVXVL3RnAMDsCPgAABQ98MADGTVqVO699968/vrrmTp1ajbZZJOccMIJ6dixY5ZddtmGvkQAAID5Xv3Q/t1336VZs2ZJfgjt5eXlKSsrm+W2+Ely++23Z9CgQXnyySfzq1/9Kscff3z69u07w7mn9+yzz6Z169Zp27btL3BXAMCcEPABABZwM5u8+fDDD/P666/njDPOyMMPP5ymTZumS5cu6devX7p169ZAVwoAADD/qx/mt9xyy7Rs2TJbbrnlNO+ln91K+rpV+nfccUfOOuusPPPMMz8p4gMADUvABwBYgNWfGDr99NPz+9//Pq1atSp+PmXKlPz1r3/N3/72tzzwwANJkssuuywHHHBAg1wvAADAguKggw7K5ZdfnvLy8hQKhXTt2jW77LJLevXqlTZt2hSPmz7G1x/n3XnnnTnzzDOLEb9///7ZZZdd5vq9AABzziN2AAALsLpJnS222CIDBgzIxx9/XPyspqYmjRo1yt57753hw4fnhBNOSJL8/ve/z+mnn56vv/66Qa4ZAABgfjd58uR8//33SZJmzZplySWXzAMPPJCDDjoom222WW644Ya8+OKLSVKM93Vr9eq210+S7bbbLv3798/666+fV155JSeeeGL+9re/NcAdAQBzqrKhLwAAgIbXqlWrNG7cOF999VXxd3XbLpaXl6ddu3YZOHBgllhiiRxzzDEZMGBAKisri1EfAACAn0/jxo1z+umn54EHHkjTpk3zxz/+MePHj8/tt9+ep59+Ovvuu2/atm2b/fbbL3vssUfatGmTqqqq4mr8uohfVlaW7bbbLmVlZenfv39eeumltGvXrqFvDwCYDSvwAQAWYHWrMpZddtlMnjw5d999d2pra1MoFKY5ru7nfv36ZejQoUmSE088MVddddXcvWAAAIAFQKFQSOvWrdOnT5+88847+eijj3Lcccfl0UcfzRlnnJEuXbrknXfeyUknnZQdd9wxBx98cN5///1Mnjy5eI6ysrLU1NQkSXr37p3TTz89jz32WDbddNOGui0AYA6U1dbN2gIAsMCpW5Hx4IMPplu3btl1111z4403zvTY+u9VHDRoUI477rg0btw49913nwkgAACAX8D999+f7t27J0nuueee4n//5z//yb333pvzzjsvH374YT7//PO0a9cu22+/fXbcccdsueWWxXNMnTo1VVVV05y3biwIAJQeK/ABABZgdRM2yy67bCorKzNmzJh8/vnnM6zAT37YSr/u98cee2wOP/zwTJ48OZdffnn+/e9/z9XrBgAAWBB069Ythx56aJLkoYceSm1tbWpra7Poootmt912yzPPPJP99tsvFRUV+fDDD3PJJZeka9euOfzww3PbbbelUCjMEO+TiPcAUMIEfACABcDsNl0qFApp3759fv3rX+fDDz/MRx99VFxpP736Ef/AAw/MBhtskJEjR+bdd98tngsAAID/Xd04bpNNNklZWVn+8pe/5J133plma/xHHnkkZ511VmpqarLPPvvkwAMPTJJceuml2XnnndOzZ89MmTKlwe4BAPjpBHwAgPlcoVAorq6Y2Ur5srKyVFZWplOnTkmSF198sfi9mamL+6uuumr69u2b8ePHZ+DAgZkyZcoswz8AAAA/Td04rm/fvtl6663z5Zdf5uyzz853332Xqqqq3H///dlqq62SJKeddlqGDx+eYcOG5bbbbssBBxyQZs2aZe+9906jRo0a8jYAgJ+orHZ2y7EAAJhv7LLLLnn55ZfTo0ePLLXUUtliiy2y9NJLp02bNikvL8/QoUNz2GGHZa+99so111wz23PVvS9x0qRJ2WijjfLpp5/mqaeeynLLLeddigAAAD+TmpqaVFRU5N57781uu+2W5ZZbLs8//3weeeSRbLHFFkmSP/3pTznllFOm+V51dXW+/vrrLLHEEsZoADCPqWzoCwAA4Jd30kkn5a677srkyZPzyiuvJEkWWmihNG3aNGuttVY23njjTJw4MRUVFfn888+L35vVRE/dlo1NmjRJv379svfee2fEiBE57LDDTAwBAAD8TCoqKpIkHTt2zLLLLpuxY8emT58++X//7/8lmTbe18X+JKmsrMwSSyzRMBcNAPxPrMAHAFgAfP/996mqqspjjz2WTz75JHfddVc++eSTjB07Nl9//fUMx99yyy3Zaaedksw64td54403ss4666R37965/vrrbaMPAAAwnUKhMM1Y6b9ZFX/rrbdml112Kf48YMCADBgwIMm08R4AmLcJ+AAA85npJ4Kqq6tTWVk502NeeeWVfPDBBxk3blzGjBmTd955Jy+88EJatGiR4cOHZ8cdd5zpOad3xBFHZMKECbn88stNGgEAAMzCnnvumQMPPDBdunT5yRH/gw8+yF577ZXHHnssu+yyS2688cYkMx/zAQDzLgEfAGA+Un9Vx0cffZS2bdvO9LPpV3/UeeSRRzJ48ODccccdWXjhhXPNNddkhx12SDL7iP/iiy+mZcuWad269c98RwAAAPOHo446KkOGDMnyyy+fG264IRtuuOFPjvinnXZa/vSnP2XJJZfMU089lRVWWOEXvGIAoCHY3xQAYD5SF+V32mmn7LTTTrn66qvzzTffFD+rqamZ5rg6hUIhSbLpppumX79+6d27d7799tvsvffeuf3225P88N77WT37ueaaa4r3AAAAs1BdXZ1NN900m266ad5999307ds3Tz311GzHWfXVHdOvX79ssskm+eqrr3L33XcnSXGcBwDMHwR8AID5zH777Zfbb789//jHP7Lvvvtm5513zsCBAzNlypTi9vbTTxDVBf3y8vJssskmOfbYY6eJ+HfccUeS/OR3NAIAACzoamtrU1lZmd69e+e4447LxhtvnA8++OAnRfyysrIUCoU0atQoG2+8cWpqanL99denUCh4jRkAzGcEfACA+cjUqVOzzDLLpEmTJmnevHnWWmutPPXUUzn55JPTuXPnnH322XnppZemCfF1q++T/9smf+ONN54m4u+444657bbbGuKWAAAA5inTx/i68VdVVVW22mqrHH/88T854tfU1KS8vDyNGjXKMccck2bNmuWZZ57JSy+99IveCwAw95XVzsn+PAAAzDP++c9/ZtNNN01NTU1OOOGErLHGGhkwYEBefvnlJMnCCy+cU045Jeutt166dOlS/F5dvK///2PGjMmf/vSnPPjgg7nnnnvSvXv3hrotAACAklcoFIo7nL366qt57bXX8vXXX6dz585p2bJlWrRokUmTJuXBBx/M2WefnSeeeCLLLLNMbrrppmy44YbF8Vh9NTU1xVX2w4YNS4sWLfLhhx9mzTXXNEYDgPmQgA8AMB867bTTcuqpp+bAAw/MpZdemi+//DK33HJL7rnnntx5550pKyvL4osvnr59++bAAw/M8ssvn0UWWaQ4WVQ3QVRbW5vHH388TZs2zbrrrjvTySQAAACmjfeHH3547rnnnrz11ltJkvbt22frrbfOMccckxVXXHGOI379eH/66adnwIABWXvttXPjjTdm5ZVXLq7aN04DgPmHgA8AMB968MEHs9NOO2XixIl59NFHs+GGGxYnk4YNG5b7778/I0aMSHV1dVZaaaWstNJKOe2007LSSitl0UUXTTLt5FMdAR8AAGBG9cdPPXv2zKhRo9KyZcusttpq+eSTT/L2228nSXr16pULLrggK6ywQiZPnpwHH3wwZ5111kwjfk1NTSorK5MkAwcOzMknn5wkufvuu7PNNts0zI0CAL+48h8/BACAec1WW22VnXfeOdXV1RkyZEjGjx9fDO8HHXRQbr311px66qlJkjfffDOjRo1Kt27dctBBB+WWW26ZabxPrOoAAACYXv3xU9euXTNq1Kj06NEjzz//fB555JE8+eSTOe6449KmTZvcf//9ufLKKzNp0qQ0btw43bp1ywknnJCNN944H3zwQfr27ZunnnoqZWVlM433I0eOzDbbbBPr8gBg/iXgAwDMZwqFQpLkkEMOSdu2bfPPf/4zn332WcrKyjJ58uQkyX333ZcTTzwxSXLUUUelb9++KSsry9///vfsuuuu2WWXXfLll1822D0AAADMC2pra4vxvnv37hk9enR23XXXXH755WnTpk0mT56cJZZYIkceeWS22267TJo0KSNGjMj333+fJKmqqkq3bt3Sv3//bLLJJvnggw+y66675tlnn03yw7b59eN9jx49xHsAmM/ZQh8AYD41fvz47LLLLnnwwQez11575ZprrkmS3H///enevXuSZMCAARkwYECSH6L+ww8/nLPPPju33XZbdthhh4a6dAAAgHlKr169cs8992TttdfOXXfdldatW2fq1Kmpqqoqvors9ddfzyabbJIvvvgiDz30UDbbbLPiZ1OnTs0DDzyQs846K48//niWW265bLPNNrnsssuSzBjv7Y4GAPMvAR8AYD5UNwk0ZsyYdO/ePc2bN8+TTz6ZN998M1tvvXWS5E9/+lNOOeWUGb77+eefp1WrVt53DwAAMAdeeeWV7Lfffhk7dmxatmyZ/v3753e/+12qqqqKO6SVl5fno48+ynrrrZepU6fmmWeeSfv27ac5z/QRv454DwALFlvoAwDMh8rKylJbW5vVVlst3bp1y2effZb+/fvPNN7X1NQkSXEyaMkll2yYiwYAAJgHrb766jn//POz5ZZb5sMPP8xZZ52VSy65JIVCIeXl5cUt9keOHJlPP/00G2ywQVq0aDHDeaqqqtK1a9f0798/a621VpJkxIgR4j0ALGCswAcAKGE1NTWpqKj4n85x9dVXZ9999y3+fNppp+Wkk0762c4PAACwoJh+p7L6Y6qnn346p512Wu677760a9cuhx9+eI466qgkyc0335wDDzwwX3/9de6666707Nlzln9jypQpuf/++7PYYoulc+fO4j0ALGAEfACAecDvfve7HHzwwVl//fXn+Dv1J5a23377jBgxIttuu23uvPPOJOI9AADAT1G3oj5J3nvvvbRo0SKLLrpoqqurU1lZmWTaiL/MMsvk+OOPzxJLLJEjjjgiH3/8ca6++ur89re//dG/VX885/VmALBgsYU+AECJO+igg3LNNddkn332yQsvvDDH36s/2dOlS5ckyRtvvJHx48cnSXHiCQAAgNmrH++HDRuWvn37Zq211soHH3xQjPdJssEGG+SUU07J1ltvnffffz8nnnhiDjjggHz88ce57rrrivH+x9bV1Q/24j0ALFjM2gIAlLhDDjkka621Vl599dX07ds3zz///E/6fllZWQ488MB07Ngxr732WgYOHJjq6mqTQAAAAHOgfrzff//9c8ghh+T111/PCiuskFdffbV4XF2Ur4v422yzTSZMmJDx48fnN7/5TfbYY48kydSpU43HAIBZEvABAEpYoVDImmuumb/+9a9Zc80188Ybb+Q3v/nNT4r41dXVWXjhhXPYYYelefPmefLJJ/Ptt9/+glcNAAAwf6gf73v27Jnhw4dn7bXXzkMPPZR777033bp1Kx5bVlY2TcQ/8cQT07Vr11RWVuYf//hHBg8enKlTp6aqqiqFQqFB7gcAKH0CPgBAiZjZFop1E0Wrr756brjhhp8c8WtqaorbOfbo0SOTJ0/OmDFj8tlnn/28Fw8AADAfqhuT7b333hk1alR69+6dESNG5Fe/+lUqKiqSTDuWKysrK8b5jTbaKCeeeGK6deuWd999N0OGDMkll1xSfChAxAcAZqas9sdetgMAwC+u/qqO5557Lq+99lomTpyYFVdcMRtvvHExwr/88svZfffd8+KLL2bllVfOjTfemLXXXnum56ypqSlOKJ1zzjnZeOON8/7776dJkybZaaed5s6NAQAAzONuuOGG7LnnnllppZXy8MMPp02bNsUxXG1t7Y9uh//000/ntNNOy3333Zd27drliCOOyOGHH16M+HVjQQCAJKls6AsAAFjQ1Z+wOfzww3PnnXfm/fffT5K0atUqm266aa677ro0adIkHTp0yA033FCM+L/5zW9mGvHrx/szzzwzJ510UiorK/Phhx+mVatWxRUi3rsIAAAwe88++2yS5Pjjj0+bNm2K4626/68bX91///35z3/+k8UXXzzLLLNMVl999SQ/bKd/yimnJEnuu+++DB06NFOmTMkxxxwj3gMAM/CvAwCABlQ/3vfo0SMXX3xxJk2alB49eqRjx46ZOnVqbr311my99daZPHlykhQj/qy2068f7wcOHJiTTjopSXLbbbelVatWSX4I9+I9AADA7BUKhTz11FNJkkUWWSTJD1vm1427pkyZkmHDhqVPnz7ZZpttsvvuu6dXr17p3r17brrppuJ56iJ+z5498+abb+aiiy4qPrgNAFCfgA8A0EDqx/uuXbvm3nvvTY8ePfKPf/wjI0eOzF133ZWzzjorbdu2zeOPP55DDz00NTU1SWYf8evi/RlnnJGTTz45STJy5Mhsu+22qa2tjTcoAQAA/Li6sVPz5s2TJA899FCSpLKyMhUVFfn888/Tt2/fHHvssbn99tuTJMsvv3wWXnjhfPjhh9ltt91y8803F8+3wQYb5Ljjjku3bt0ybNiwLL/88nP1fgCAeUNZrRlcAIC5rv57ErfZZpvcd9992WWXXXL++eenbdu2xdUc48ePz5VXXpkBAwakffv2ueuuu6aZ5Hn55ZeL2+mvtNJKue2229KpU6ecccYZxS0aR44cmR49etg2HwAAYBbq72RW93N5eXnKyspyyy23ZNddd02SHHbYYdlqq60yduzY3HTTTXnllVfSsmXLbLHFFvntb3+bjTbaKM8++2xuuOGGXHPNNVlllVVy5513ZpVVVimee/z48Vl00UWnGRcCANQR8AEAGlDXrl0zevTorL322hkzZkwaN26cKVOmpFGjRsVjnnvuuWy++eaZMGFC7rvvvnTt2nWac9SP+Kuuumq6du2aSy65JIl4DwAA8FP07t07J554YjbccMNUV1enoqIi//nPf3LOOedk8ODBxd/V7Y628sor56yzzspGG22U1q1bJ/nhge3nn38+v/3tb/Pee+/l3nvvTefOnQV7AGCO2EIfAKCBvPvuu1lsscWSJM8//3yGDx+eJGnUqFEKhUJxQmjFFVdMq1atsvTSS2fFFVec4Tz1t9N/7bXXxHsAAID/wnHHHZeRI0eme/fuee6551JZWZkkWWKJJXLQQQdl0KBBWXzxxdOsWbNsuumm+cMf/pCnnnoqO+20UzHeFwqFlJWVZdVVV03Tpk3z3Xff5a233kpiTAYAzBkBHwCggSy//PIZMGBADjzwwCTJoYcemvPOOy9JUl5eXty+8cYbb8zbb7+dTp06ZaGFFprpO+w7dOiQv/3tb1l22WWTJHfddZd4DwAAMIdqa2uzww47pFu3bvn222/TpUuX/POf/0xZWVlqa2uzwgor5Igjjsi//vWvvPDCC3nggQdy/vnnZ7HFFis+fF1fWVlZJk2alNatW2fjjTdugDsCAOZVlQ19AQAAC4JZbZXYqVOnHHbYYamtrc0VV1yRY489NrW1tTnmmGOSJLfcckuOP/74JMkRRxyRpZZaapZ/Y/XVV8/IkSPzxRdfZLPNNhPvAQAA5lBZWVk22GCDnHnmmSkUCnnwwQez2Wab5ZFHHsmvf/3r1NTUpLy8PEsvvfQM3617+LpQKKS8/Ic1c+eff35eeuml7LLLLll88cXn6r0AAPO2stqZLeECAOBnU38S57333kuStG3btrgdY5L861//ykUXXZQrrrgiSXLJJZdkxRVXzO9+97t88sknueqqq7L33nsnmfXDANPzfkUAAICfplAo5Pnnn8/xxx+fBx98MAsttNA0Eb8u1k+v/vjr8ssvz8EHH5xFFlkko0aNygYbbDA3bwEAmMcJ+AAAv6D68X7o0KG5+uqrU1lZmbPOOiubbrppysrKipM800f8RRddNOPHj8/VV1+d3/72t0lEeQAAgP9V3bhq+vFV3c+zi/j1x3hJZvj51FNPzVlnnZWpU6dm5MiR2WabbebqvQEA877yHz8EAID/Rv2JnP322y+HHXZYXn/99Sy11FJp0qRJysvLp5ks6tSpU/7whz9k//33T5KMHz8+ffv2Lcb7qVOnivcAAAD/pelfM1ZTU5OpU6fm+++/n+b35eXlWXvttXP22Wdnq622yvfff5/NNtss//znP1NeXp5CoVA8Z3l5eT799NOceuqp6dGjR0499dS0adMmo0aNyjbbbJPa2tpYQwcA/BRW4AMA/ALqx/uePXtm1KhRWWeddXL11VdnlVVWSaNGjWb53XHjxuWiiy7KlVdemSQZNGhQjj766BnOCwAAwJypP5Z644038uCDD+b+++/Pv//97yTJNttsk06dOmW77bab5jvPPfdcTjjhhFmuxP/2229z5ZVX5uijj87CCy+c7bbbLkceeWR+/etfz/DAAADAnBDwAQB+Qfvss0+uvfbabLvtthk2bFjatGlTnOiZfrvG+u9TnH47/XPPPTf9+vVLIuIDAAD8FPXHUOeee27+9re/5fnnn5/huMaNG2e//fbLOeeck2bNmiX5YZz2/PPPzzbiv/POO7nvvvvSsWPHdOjQIYsvvvhcvT8AYP4i4AMA/Mzqwvwtt9yS3XbbLe3bt89jjz2WpZZaapbxfmbGjRuXiy++WMQHAAD4L9UfO/32t7/N9ddfn8UXXzy/+93vsu6662axxRbLuHHj8vDDD+fee+9NdXV1dtxxxwwcODCrrrpqysrKUigU8vzzz+f444+fIeIDAPzcBHwAgF/ICSeckHPOOSeXX3559t9//0ydOjVVVVXFlfa1tbUpFAoZOXJkvvzyy1RUVGTzzTfPsssuWzxH/ZX4ZWVlOf3009O/f/8GvCsAAIB5Q/1436NHj9x7773ZaKONcs0112SllVaa5thPP/00Dz74YPbdd99MnTo1PXr0yMUXX5z27dsn+eFB7brt9B944IE0bdo0jz32WNZZZ51pdlMDAPhfCfgAAD+zQqGQ2tradOnSJU8++WQuvPDCHHbYYUmS6urqVFZWZsqUKRk2bFgeeOCB3HXXXcXvLrroorn88svTs2fPLLTQQkl+iPhDhw7NsGHDkiRvvvlmVlhhhbl/YwAAAPOI+vG+a9euGT16dHbaaadcdNFFad26dTG6143R6jz66KPZeuutM2XKlPTp0yd///vfi7unTR/xk+Tpp5/OeuutN/dvEACYb9l3FQDgZ1ZWVpaKiop06NAhSfLee+9l8uTJSZLKysp8+umn2XnnnXP88ccX43379u2z7LLLZvz48fn9739fnAxKkk6dOuWggw7KvvvumzvvvFO8BwAA+BF18b579+4ZPXp0dt9991x44YVp3bp1CoVCccV8/Xhf9yD2XXfdlaqqqtx666058cQTi5+XlZVlnXXWydlnn52NNtooSfLFF1/MxbsCABYEVuADAPwP6m+VOP22iVdffXX23XffJMmxxx6b5ZdfPv/+979z44035tVXX02rVq2y1VZbZZ999snaa6+dr7/+Ov369cuIESOy9NJL5+mnn84yyyxTPN+ECRPSvHnz1P3zrW4VCAAAADM68MADc+WVV2bxxRfPiBEjstFGG2XKlClp1KjRLL9TW1ubsrKyXHLJJTnyyCOz/PLL54477kiHDh2KnxUKhTz33HOpqanJBhtsUPw9AMDPQcAHAPgZHHDAAdluu+2yzTbbpKqqqvj7/v375+yzz57h+FVXXTVnn3121l9//bRu3br4+wkTJmSzzTbLuHHjMmLEiHTv3t1kEAAAwE9QW1ubKVOm5IYbbsiQIUPy4osvZu21185f//rXrLbaatNsrz8r//rXv7LTTjvlzTffzN///vfsvPPOs/17xmwAwM+l8scPAQBgdvbdd99cffXVeeaZZ9KkSZNsvvnmxYh/5plnpkWLFrnuuuvyzjvvZOONN06nTp1yyimnZNFFF53mPHXPVVZVVaW6ujoff/xxEivtAQAA5sRXX32VxRZbLGVlZWncuHH69u2bZs2aZeDAgXn++efzm9/8JjfffHNWXnnlH434nTp1SteuXfPmm2/mX//6V3beeedZhnpjNgDg5zT7xwwBAPhRZ555ZlZbbbWMGzcuRx11VB566KFMnTq1+Plxxx2XRx99NK+//nruu+++DBo0KIsuumhqamqKx9TU1KSsrCyNGjXKxIkT065du2y22WYNcTsAAADznIcffjj77rtvqqurUygUUltbm4UWWijbbrtt+vfvnzXWWCMvvvhidtlll7zxxhspLy9PoVCY6bnqxnMtW7ZMkuID2kI9ADA3CPgAAP+D6urqLL300nn44Yezyiqr5OWXX06/fv1miPiLLbZY2rZtmySpqKiY5v8LhULxvwcNGpRx48ZlvfXWyyKLLDKX7wYAAGDedO+99+aOO+7I22+/nfLy8mJsX2ihhdK7d++fFPErK3/YuPadd95JkiyxxBJz70YAgAWegA8A8D+orKxMdXV1WrVqlUcffXSWEX92KzXqtm28/PLLM2DAgCy88MI59thjs+SSS86VewAAAJjXrbXWWkmSe+65J0mmCfM/JeLX7Y42YcKEjB07Nssvv3x23nnnuXovAMCCTcAHAJhDde+orz+5UygUUllZmalTp/5oxK9v+gmiAQMG5LDDDkuS3Hjjjdlwww1/4bsBAACYf/Ts2TMrrbRSrr766kyZMiXl5eXFMVwyZxG/pqamuDvawIEDM27cuPTp0yfNmjWb5Xb7AAA/NwEfAOBH1E361K2inzJlSmpqalJTU1NcPV9VVfWTIn55eXneeOONnHHGGenZs2dOP/30tGvXLqNGjUqPHj1SW1s7zWQTAAAAs9aoUaN07tw5Y8eOzQUXXJBkxp3Qfizi18X7YcOG5Zxzzsmqq66affbZJ02bNi2O/QAAfmlltWaGAQBmqVAoFCdqXn/99YwePTp33nlnvvrqq5SXl2e99dZL165ds+22207zvc8//zxdunTJ66+/ng4dOuT888/PFltskaqqquIxgwYNynHHHZfFF188PXv2zJFHHpl11llnhgcGAAAAmLXa2tqUlZVl7Nix2WSTTdKpU6dcccUV6dSp00yP//777zNixIiceeaZGTduXNZYY43cfvvtad++ff7yl7/k6KOPztSpU3PXXXdliy22mMt3AwAs6AR8AIBZqB/vzz333Fx77bX517/+lSQzvCfxuOOOS9++fYvvXUymjfgdO3bMeeedN0PEv+yyy7L22mtn5ZVXzmKLLTZ3bgwAAGA+U1tbm0mTJuXggw/Otddem+OPPz5nnnlmkmnHdnWmj/hrrbVW+vbtm3POOSfjx4/PiBEj0qtXr+LDAQAAc4uADwAwE/UnePbcc8/ccMMNWXzxxXPooYfmV7/6VVZcccU89thjee6553L11VcnSbbffvscfPDB2XrrrYvnmZOV+AAAAPw87rvvvuywww6ZNGlSrrrqquy9995JMtMQP33Er3PHHXekd+/edkcDABqEgA8AMJ368X6bbbbJfffdl86dO+eaa67JiiuuOMPxV1xxRf74xz/m66+/zlZbbZUTTzwxm2++eXGCaPqV+BdccEE222wzER8AAOAXcMEFF+Too49Oktx8883p06dPklmvxB85cmSOO+64vPvuu9OsvE/EewBg7hPwAQDqqT+h07Vr14wePTo77bRTLrroorRu3To1NTWpqKhIoVBIWVlZcTLn1ltvzTHHHJP33nsvu+66a84666y0b98+U6ZMSaNGjaaJ+Mstt1yGDRuW7t27N+StAgAAlLzpo/vstrSvf+wf//jHnHvuuWnWrFmGDx+eXXbZZZZ/47vvvsudd96Ztm3bpkuXLuI9ANCgyn/8EACABUfdZE+PHj0yevTo7LLLLrnkkkvSunXrFAqFVFRUFI8rKytLoVBIkvTp0ydnn312Kioq8ve//z0333xzkqRRo0aZOnVqWrVqlcceeyxt2rTJe++9lyZNmjTMDQIAAMwj6gf5u+6660ePrx/6jz322Bx44IH57rvv0rdv3wwfPnyaY+uva2vWrFn69u2bLl26FH8n3gMADcUKfACA6fTt2zc333xzWrdundtvvz3rrbdeceX9zNRfATJkyJAcddRRqaioyBNPPJH1118/SYrf//zzz/Pyyy9n8803n1u3AwAAME/baqutUllZmXvvvfcnfe+rr77KoEGDcvbZZydJDj300Oy+++7ZaKONksx8S30AgIbmXycAwAJv+ucZDzzwwLRt2zaffPJJjjnmmLz55puzjPdJplmJv++++6Zr164pFAp5/fXXi+evqKhIdXV1WrVqVYz3nqMEAACYvX/84x956KGH8sYbb+Srr74qjr3mxGKLLZYzzzwzQ4cOzdJLL51LLrkkBxxwQP74xz/m66+/TnV19S945QAA/x0BHwBY4H399dfT/LzVVlvlxhtvTJs2bfLYY49ln332yTvvvDPbc9St2lh44YXTvn371NbW5rHHHkvyf6G+srJymu/YkhEAAGD2OnXqlHXWWSf/+c9/8tVXX/2kFfN1Y7GDDjooN998c44++uh89tlnOffcc7P++uunX79+uffee/PNN9/8UpcPAPCTCfgAwAJt9OjR6dmzZz7//PNpVnJsvPHGuemmm9KmTZuMGTMme+21149G/LrVG7/+9a+TJEsvvXSS2JIRAADgv9SkSZO0bds233zzTZ566qkkmeNV+PV3S9t4440zaNCgPPfccznxxBPTqlWrDB06NL17985ll12W77///he7BwCAn8JsMgCwQLv//vvz1FNPZeLEiSkvL59mW/ufGvHrVtj/4x//SJK0aNEiia3yAQAA/huFQiFlZWXFd9aPGzcuyU97SLr+sTU1NVlmmWVy+umn57HHHssjjzySW2+9NXvttVcWWmihn/fiAQD+SwI+ALBA23LLLZMkQ4cOLU4O1TenEb+mpiZJMnHixIwdOzbt2rXLnnvumcRW+QAAAD9mZg8+18X3ddZZJ0ny0ksvpba29r9+SLqioiLJ/63g33TTTdO7d+/i7mkAAKVAwAcAFmjrrbdell9++dx///0ZP358khm3Y/yxiF8oFIoTQQMHDsyzzz6bnXbaKQsvvLDV9wAAALNRN/6a/sHnQqFQfFC6Xbt2adq0aZ599tl8/PHH//ND0l5zBgCUMv9SAQAWWIVCIYsuumj22GOPvPDCCxk+fHiSmU/mzC7i1x0/bNiwnHnmmVl55ZVzwAEHpGnTplbfAwAAzEJtbW1xPHXooYfmL3/5S+65555MnDgx1dXVxQelO3TokI022ihff/11vvrqq4a8ZACAX5yADwAssOominr06JEkueiii/LYY4/N8vjpI/6ee+6ZDz74IEly1VVX5fjjj0+TJk1y6aWXpmPHjr/8DQAAAMzD6h543n333XPppZfmgAMOSK9evbLmmmtmk002yYABAzJ8+PA8//zzWWSRRTJx4sTcf//9DXzVAAC/rLJa+7oCAOSYY47J+eefn4MOOiinnnpqWrZsOctjx4wZk759++ajjz7KxhtvnO222y4DBw7MN998kxEjRqRXr16pra21+h4AAOBHTJo0KQ8++GA++uijvPfee7nnnnvyzTff5O233y4e06ZNm0yYMCHffPNN/vCHP2TIkCENeMUAAL8sAR8AIMkTTzyRAw44IO+9916GDBmSfffdd7bvRawf8evccccd6d27d/G99wI+AADAtH7sYedvvvkmSfLII4/k/fffz/3335+XXnop3377bT7//PMkyZAhQ/KHP/xhrlwvAMDcJuADAPz/zjzzzJx00klZeOGF89e//jXbbrvtbI9/8skn071790yYMCF33XVXevbsKd4DAADMQqFQKD4o/cEHH+Stt95Ks2bN0qpVqyy33HJJkqlTp6aqqmqa702ePDmvvvpqrr322lxwwQVJkgsuuCBHHHHE3L0BAIC5QMAHABZ49SeRfv/73+eKK65IixYtctVVV6VXr14zTB7V99hjj2Xy5Mnp2rWreA8AADAL9cddJ5xwQu6999688MILadSoUTbccMP07ds3Bx98cJKkpqYmFRUVSZLq6upUVlYWz3HssceK+ADAfE3ABwDmO/W3ZKw/STQ79SeIdtttt9x0001p3rx5zjnnnGy77bZZZpllZns+8R4AAGDm6o+jevfunZEjR6ZFixZZeuml89FHH+W7775LWVlZzj777BxzzDGzPdfUqVNzwgkn5Pzzz08i4gMA858fn80GAJiHFAqFaSJ6eXl5ampqfvR7FRUVqa6uTpL87W9/yyGHHJIJEyakX79+xdUhdeer+zv1lZWVifcAAADTqR/vu3btmpEjR2aLLbbIU089lX/84x+5+eabs+eee6ZQKOTcc8/NyJEjZ3u+qqqqnHXWWenXr1+S5KijjsqgQYN+8fsAAJhbBHwAYL5SNzHUuXPn7L///kl+iPNzEvErKyuLx1188cUZMmRI1lprrdxwww3Zcccdc/LJJ+fVV1/N1KlT52hVPwAAwIKsfrzfeuutM3r06PTp0yfXXXddVl111TRv3jzdu3fP4Ycfnq222iqff/55xo4d+6PnrYv4xx57bJLkuOOOy7vvvvtL3goAwFxjC30AYL4zcuTI9O7dO0nSr1+/nHvuuUmm3SZ/duof99JLL+XOO+/MoEGDMn78+Cy77LLZaKONst9++2WllVbK8ssv/4vdBwAAwPxgs802y2OPPZatttoqd999d6qqqlJdXZ2KioriTmbnnXdejj322Oy2227561//OkevQ5syZUqOO+64bLLJJunTp8/cuBUAgF+cpWMAwHxn8803z2WXXZaFFloo559/fo4++ugkc74Sv6KiovhO+44dO+aEE07Io48+mksvvTRt2rTJbbfdlu222y5XXHFFJk2a9IveCwAAwLym/pqx++67L2+88UaS5Kuvvsqbb76Z5Icd0MrKyoqvMmvRokWaNWuWhRdeOFOnTs2333472/MmSaNGjXL++eenT58+qa2tneFzAIB5kRX4AMB86fvvv8/111+fI488MpMmTcpRRx2V8847L8mcr8SfmUKhkLfeeiuvvvpq1l133bRu3frnvGwAAIB5Wv2V85999lmWWGKJ/PWvf83gwYMzduzYrLfeernwwguzwQYbpLq6OpWVlUmSgw46KJdffnnatGmTdu3a5d///nd22GGHdOjQIX379k2jRo3SqFGjmf4dAID5iYAPAMy3fu6I/7+EfwAAgPld/ajetWvXtGnTJoMHD07z5s2LEX/cuHFZf/31c/7556dz585JkjPOOCOnnHJKkqRDhw6ZPHly3nrrreJ511133bRv3z5HH310Fllkkay22mpz/+YAAOYSAR8AmCdNv9qi7ufa2triOxSTX24lPgAAAP+n/hite/fuuf/++9OnT59ceeWVadGiRaZMmTJDxL/++utz1113pV+/fll++eVz0UUXZeutt05VVVUeeOCBvPbaazn//PPzzTff5Msvv0yStG3bNk899VTatGkzzdgPAGB+IeADAPOc+hNDAwcOzPbbb5+WLVtmqaWWKh5TfytGER8AAOCXM/3K+9GjR2fXXXfNkCFDstRSSxXHXdNH/LZt2+ajjz5Khw4dctFFF2WLLbaY4WHtDz/8MJ988kkuvvjivPjiizn11FOz3XbbNdStAgD84gR8AGCetfnmm+fRRx/NYostlmWWWSZ9+/bNuuuum27dus1w7DfffJMbb7xRxAcAAPgZ1Q/u3bp1y4MPPpg+ffrk4osvzlJLLTXDbml1EX/IkCF58cUX07hx45x//vk5+OCDk8x+fPbFF19kySWXnGHnNQCA+YmADwDMkwYPHpx+/folScrKylL/nzQbb7xxOnfunO233z6rrrpqllhiiSTJlClTcuWVV+aYY44R8QEAAP5H9eP91ltvnQceeCA9e/bMzTffnKZNm84wzqof8a+//vpcdNFFGTt2bDp37pzzzjsvG2ywwY/+HQCA+Z1/9QAA86TNNtssBx54YJKkZcuW2WGHHTJw4MCsttpqeeKJJzJo0KBsttlm6d69e44++ug8+uijmTRpUg4++OAMHTo0Cy20UC644IIcddRRSZKKiorU1NQ05C0BAADMM2YW7xs3bpyWLVsWx1bTR/e6h68bNWqUPfbYI4cffnjWWGONjBkzJocffniefvrpmf4t8R4AWJBYgQ8AzLP+9a9/5YILLshVV12VlVZaKQMHDkyfPn3y6KOP5vbbb89DDz2UV155JdXV1amsrEz79u2z2267ZZVVVslnn32W448/PlOnTs2RRx6Z888/v6FvBwAAYJ4ws3fe142zCoVCdtttt5x88slp27btTLe7n347/cGDB2fcuHFZf/31M2TIkFmuxAcAWBAI+ADAPO2ll17K+eefn6uuuipLL710LrjggvTt2zdJ8sknn+Ttt9/Orbfemn/84x954oknit9ba6218vbbb2fSpEmZMmVKDjnkkFx88cUNdRsAAADzhJnF+9/85jfp379/rrvuulx22WUpFArZY489ctJJJ/3kiN+5c+f8+c9/TufOnRvi9gAAGpyADwDMk+q/S/Gll17KBRdckOHDh6ddu3Y57bTTss8++xSPrZtguvvuu/Piiy/mmmuuyWeffZbx48cXjxkxYkR69eo1l+8CAABg3rTpppvmiSeeSJ8+fXLhhRemdevW+fjjj3POOefkmmuu+a8i/iWXXJLnnnsua6+9dkaPHp0WLVo00N0BADQcAR8AKEn1V3UkyRdffJFCoZDKysosvvjiMxw/fcQ/88wzs+eeeyZJpkyZkkaNGhWP/eSTT/LFF1/kyiuvzGuvvZaDDjooO+yww0wnlAAAAMg046WhQ4fmsMMOS+/evXPFFVekVatWmTp1aqqqqvL5559n4MCB/1XEv/rqqzNkyJCcffbZ6d27d0PcJgBAgxPwAYCSUz/eX3/99XnyySczYsSITJo0KS1atEiHDh3SrVu37LTTTmnTpk3xe//6178yePDgmUb8QqGQsrKylJWVFSeICoVCpkyZkiZNmqTun0QCPgAAwLTqj9Fqamry8ccf58EHH0zPnj3TqlWr4ud1Y63/JeJ//vnnadeunQesAYAFloAPAJSU+hND++yzT6699tqUl5enUaNGqayszJQpUzJlypRUVlamffv2ueqqq6Z5N+LsVuJPv6ofAACAObf33ntnnXXWycEHH1zc5Wz6cdb/GvEBABZ0lQ19AQAAdWpra4sTP7169co999yTTp06ZeDAgVl22WVTVlaWf//73xk2bFjGjh2bN954I7169crQoUOz/fbbZ6GFFkrHjh1z1FFHJUmGDx+e/v37J0n23HPPlJeXi/gAAAD/hXPPPTfXXXddnnrqqSy00ELZc88907Rp0xmie92uZ61atcqJJ56YJLnmmmvy17/+NUlmGfHFewCAHwj4AEDJqJuwOeqoo3LPPfdk2223zbBhw6bZJj9J1lprrTzzzDM566yz8vjjj+eQQw5Jo0aN0qdPnySZacQvLy/P7rvvLt4DAAD8F3r37p1XXnklN9xwQwYNGpTa2trstddeadq06Uxj/H8T8QEAsIU+AFAi6iZu/vnPf2aHHXZIZWVlxowZk9atW89y1fw777yTAw44IKNHj06LFi3y0EMPZa211ip+Xred/jXXXJPmzZtnyJAh+e1vfzsX7woAAGD+8dZbb+WMM87IDTfckOWWWy7HHHPMLCN+Muvt9H/729/muOOOyzLLLNNAdwIAULosQQMASkLdRM+TTz6Zjz76KAcffHBat26d6urqWa6ab9++fS655JJsuOGG+frrr3PIIYfkiy++KH7esWPH9OvXL3379s3XX3+dtm3bzpV7AQAAmB+tuOKKOemkk7L77rvnvffeK26rP3HixOKq+/qmX4m/9957p3Hjxhk6dGhOP/30TJ48uYHuBACgdAn4AEBJKBQKSZKnn346SbLccsslSSorZ//Gn5VWWimHHnpoll566bzzzjsZN25ckqSmpiZJ0qFDh5xwwgl54YUXstVWW80woQQAAMAP6sZls7Piiivm5JNPzh577FGM+Ndee+0cRfyTTjopffr0yUILLZSddtopjRs3/qVuBQBgniXgAwAl5T//+U+SZMKECXN0fEVFRbbccssstdRS+eyzz3LHHXcUf1+nY8eOWXPNNX/+iwUAAJhP1H912ciRI/Pyyy/P9Jja2tqssMIKOemkk4oR/7zzzpujiN+yZcucdtppeeaZZ7LNNtt4wBoAYCYEfABgrqs/SVO3wqNuoujXv/51kuTtt99O8n8r6Wd3rtatW2fvvfdOknz++eezPX76dzICAADwf2Oyzp07p3fv3llvvfVy0EEHZfDgwfnqq6/y7bffpry8vDimWmGFFdK/f/+fHPFbtWqVDh06zPX7AwCYVwj4AMBcVSgUpono5eXlqampKU7u1L2n/i9/+UveeeedVFRUzNGqjBYtWiRJJk2aZBUHAADAf+Gggw7KU089lcrKykycODGXX355+vXrl4022ig77LBDbrvttjz77LNJfniYeqWVVsrxxx+fPfbYI++8884cbac/u58BABDwAYC5rG5Vx+abb55jjjkmyQ/b3dettN93332z8cYb5/PPP89pp52Wf//73zOd+KlT973x48cnSRZddFGTQAAAAP+FXr16Ze21105ZWVnatWuXQw89NJtuummS5KGHHkrfvn2z0UYbZe+99865556bjz/+OKusskrOPffc7LXXXvn4449zzjnn5Nprr833338/27EcAAAzV9nQFwAALHiGDh2aRx99NI8++mgWWWSRnHLKKamsrMyUKVNSVVWV3XffPa+88kruvvvurLLKKjnooIOy2GKLpba2dpo4XygUUln5wz9nnnnmmTRt2jS77rprQ90WAADAPKP+O+/r9O7dO02aNMkxxxyTcePG5bvvvsspp5yS1VdfPbfcckteeOGF3HTTTbn++utTW1ubwYMHZ/XVV89BBx2Unj17pqysLH//+99z4YUXpqysLHvssUeaNWvWQHcIADBvKqv1CCQAMJe99NJLufLKK3PRRRelUChkwIABGTBgQPHzTz/9NMcff3yuvfbaLLPMMtlvv/1y4IEHZumlly5OMtXU1KSioiLJDw8EHHbYYVl77bVz8803Z4UVVmioWwMAACh59eP9448/nnXXXTdNmjQpfv7AAw/kyCOPzMsvv5xevXpl4MCBWXPNNZMkY8eOzZtvvplrrrkmr7zySt56660kP7wOrWnTpvn0008zYcKELLfccjn22GNz0EEHzfCgAAAAsybgAwAN4rXXXsvQoUNz8cUXp7a2doaI/+677+aII47I3XffnebNm6dz584555xzstJKK6VJkybF1fjnnXdeTjnllFRXV+fee+/N5ptv3nA3BQAAMA9ZddVV8+677+Zvf/tbevXqlcaNGxc/e/DBB3PkkUfmpZdeSq9evXLiiSdmgw02KO6KVltbm08++SSjRo3Ko48+mnvuuSdfffVVqquri+d4+OGH06VLl7l+XwAA8zIBHwCYq+pvg/9jEf/999/PWWedlZEjR+bDDz/MIosskvXXXz+rrrpqvvzyy3z44Yd5/PHH07x589x4443p2bPnDNvsAwAAMKOpU6emY8eOefPNN7PsssvmvPPOS69evaZZiV8/4vfu3TsnnHBCNtxww5me7/33388TTzyRu+++O08++WSGDBmSXr16za3bAQCYbwj4AMAvYvqQ/s9//jOtW7dOmzZtpjnuxyL+F198kSeeeCKXX3557r333hQKheJnbdq0ySabbJIjjzwyG264Yer+WSPgAwAAzFrdFvqTJ09O165d88QTT2SZZZbJ+eef/6MRv3///tlggw2SpPhqs/pb8ic/vBZt6aWXNkYDAPgvCPgAwM+u/uTN3//+94wcOTLXXXddfvWrX+Xqq69Op06diu+vT3484td55JFH8umnn+Y///lPysvL061btyy++OJZdNFFk8z40AAAAAAzV11dncrKykyePDlbbrllnnzyyf8q4tc3fcgHAOCnE/ABgJ9V/Qmbgw8+OMOHD095eXk6duyYX//61znggAOy7rrrzvC92UX8yZMnT/MuRgAAAP53s4v422677TTjsNlFfA9TAwD8fAR8AOBnUz/e9+zZM6NGjcoqq6ySyy67LB06dEjLli1nOLb+d2YX8eu2ZqxjgggAAGD25mRF/P+yEv/EE0/M+uuv/0vfBgDAAsV+RgDAz6K2trY4MbT77rtn1KhR2XbbbTN69OhsttlmWXLJJYvHVVdXF4/9/vvvi+dYddVVc8ghh+Swww5LWVlZTj311Jx66qlJkoqKitTU1BSPFe8BAABmrX68//TTT2d5XGVlZaqrq9O4ceOMHj06G220UT744IP069cvd999d6ZOnVp8l/1WW22VwYMHp2PHjhkxYkROPPHEPPXUU3PlfgAAFhQCPgDws6gL6uedd15uvPHGbLjhhrn88svTpk2b1NTUFD+vra1NZWVlkmTIkCE5+OCD89FHHxXPM7OIf8YZZyTJNCvwAQAAmLW6eL/aaqulS5cueeedd2Z57Owi/uOPP56ysrJMnTo1yQ8R/8ILL8xyyy2XBx98sDi+AwDg52ELfQDgZzNlypT06NEj//jHP/LUU0+lQ4cO06z6qL8N/llnnZUTTzwxzZs3z957753+/fundevWxXPVbad/2WWXZcqUKTn55JOLq/EBAAD4cS+//HJ+9atfpaamJp07d861116bFVZYYZbH122nP3HixGy55ZZ5+umns8IKK2TMmDFp1arVNGO6Bx54II0aNUqXLl3m1u0AACwQrMAHAH42jz/+eB566KFsscUWWWWVVVJTUzPN+xbrJnrOPvvsnHjiiVlyySXTvHnzXHnllTnjjDPy8ccfF49dddVVc+ihh2bvvfdOkvz617+euzcDAAAwj+vQoUMeffTRLLPMMhkzZkz22muvvP3227M8vm4lftOmTXPLLbdkzTXXzNtvv52BAwemUCikoqKiuJ1+165di/HeGjEAgJ+PgA8A/Gw++OCDJEnHjh1TWVk5Tbyv86c//Sn9+/fPGmuskeHDh+e0005Lq1atctVVV+XMM8+cJuKvssoqOeqoozJu3Lhst912JoUAAAB+oo022ih/+9vf0rZt2zz55JNzFPFra2vTtm3bHHDAAamoqMi4ceNSU1OT5P9en1bfzH4HAMB/R8AHAP5ndWF9/PjxSZLvvvsuycwncRo3bpxlllkm5513XrbddtvssssuOfLII7PUUktl+PDhOeWUU/L1118Xj19ttdXSsWPHX/4mAAAA5hPTP/zcuXPn3HTTTXMc8evGcuuvv34qKyvz+uuv57PPPvtFrxkAgB8I+ADAT1IoFKb5uba2tji5U/cuxbFjx+bLL7+c4dgkOeGEEzJmzJh07do1tbW1adGiRQ444IAcdthhqaioyOOPP54vv/xypn/bqg4AAIBpzWynsunHToVC4SdF/Orq6iRJixYtUlVVlaWXXjpLLrnkz3/xAADMQMAHAOZYoVAobot/ySWX5NNPP51mYmiFFVZIy5Yt8+STT+a5555LeXn5TCN+27Zti/89derUNG/ePOuvv35qamqy1FJLFR8EAAAAYNYKhUJxTPbuu+/m5ptvzgUXXJD+/ftnxIgR+ec//5kkxXHczCL+W2+9Nc05q6urU1lZmSS5/vrrM2HChHTv3j1NmjTxWjMAgLmgsqEvAACYN9SP95tttlnGjBmTZs2aZe+99y5OGHXs2DHbbbdd/vKXv+R3v/td7rvvvnTo0GGaVfr11dbWpqqqKklyww03ZMqUKTn00EOTJDU1NamoqJhLdwcAADBvqT9GO/nkk3PXXXdl7Nixxc+bNGmSKVOm5I9//GO23nrrbL755kn+L+L37ds3Tz75ZPbcc89ceOGF6dChQ5o1a1aM91deeWXOOuustGrVKn369EliVzQAgLmhrNZjkwDAj6g/MdStW7c8+OCD2X777XPFFVcUt1GsO+bdd9/NnnvumTFjxmTzzTfPpZdemlVXXXWac0x/zsGDB6dfv37ZdNNNc91112XZZZed+zcJAAAwj6g/ntpuu+1y1113pWXLltlkk03Svn37vPrqq/nyyy/z9NNPJ0nWXXfd/Pa3v81hhx1WPMeTTz6ZXXfdNR999FE6dOiQ7bffPj179kyTJk1y66235s9//nNqa2szcuTIbLPNNg1ynwAACyIBHwCYrfoTQ127ds3o0aOz88475+KLL06rVq1mCPNTpkzJzTffnNNPPz2vv/56OnfunGHDhqVTp04zPf9ll12Wo48+OuXl5bn77ruzySabzJX7AgAAmBfV3+Fst912y0033ZRu3bpl2LBhad++fZIftsH/5ptvMnz48Jxzzjn58ssvs9RSS+Xwww/PCSecUDzXK6+8kl133TUvvfRSkqRx48apqalJdXV12rRpk7/85S/p3r37LHdVAwDg5yfgAwCzNLN436dPn1xyySXTxPvpt7v/5ptvct111+XSSy/Nyy+/nEUXXTRDhgzJr371q6y55pr59ttv89lnn2Xo0KEZPHhwysvLc+edd6Znz54NdasAAADzlAsvvDBHHnlkNt544/z9739P69atU1NTk/Ly8mli+x133JFBgwblqaeeSps2bXLyySfngAMOKH7+xRdf5Morr8wTTzyRt956K4ssski23XbbbLvttllrrbWK770X8AEA5g4BHwCYqZnF+5122ilDhw6dJt5XV1ensrIykyZNyosvvphf/epXady4cb777ruMGjUql156aUaPHp2qqqq0aNEiHTt2zH/+8598+umn+fe//52VV145Q4cOzVZbbWViCAAAYA7ttNNOue+++/Lkk09mjTXWmO1ry+67776cdNJJefbZZ7PFFltkyJAh6dSpU6ZOnZqqqqrid7766qs0b958mt8BADB3CfgAwGxtueWWefjhh9OnT59ceeWVadGixQzx/rvvvsuvfvWrNG3aNDfffHNWXXXVlJWVpVAoZOLEiRk4cGAee+yxPPPMM8WtF1dfffXsuuuu2X777dOxY0fxHgAAYA69+uqr6dChQzp06JAxY8akWbNm0+yKVqf+1vd///vfs8cee6SmpibnnXdejjrqqFme35b5AAANp7KhLwAAKF0nnHBCHn744TRr1izrr79+WrRoUfysfrzv0qVL3n777fzmN7/JcsstV5zoKSsrS7NmzXLmmWfm66+/zocffpiJEyemqqoqq622Who3blw8n8khAACAOTNx4sQkyWKLLZbmzZvPcjxVVlZWjPG77rprxo0bl4EDB+biiy9Onz59sswyy8z0u8ZnAAANp/zHDwEAFlSbb755tt5660yePDnDhw/P0KFDkyTl5eXFeL/pppvm+eefz/7775/LL788TZs2TaFQSPJ/k0VJitvnr7vuusVt9uuOAwAAYM5VVVWlsrIyEyZMSE1NzWyDe93uaEmy3XbbpWXLlvnuu+9+9HsAADQMK/ABgFnq3r17mjZtmurq6jz00EMZPHhwamtrc+ihh6ampiabbLJJxo4dm3333Tfnn39+mjdvnpqamuLWjT+27WL99zMCAAAwZ1q2bJkWLVpk7Nixuemmm7LHHnvM0dirU6dOWXTRRfPGG2/knXfeSfv27efWJQMAMIfMmgMAM1W3cr5Lly455ZRTsuWWW+btt9/OJZdckiFDhmS99dbL2LFj87vf/S6DBw+eId4XCoXiBNKECROKvwMAAGD2ph87vfXWW8VxVZIstdRS2WmnnZIkjzzySL7//vsk/zeOm5Xa2trimK3+K80AACgdAj4ALOBmN8FTN2nUpUuXnHTSSdl8883z+uuv55hjjskLL7yQ/fbbL5dffvlM433dCo+rrroqu+66a9566y0r7gEAAH5E/fHUjTfemH333Tcrr7xyjj766Lz66qvF43r06JEk+ctf/pKrrroqybSvMauvpqYmyQ8PV3/zzTdZffXVs8Yaa/zStwIAwH/BFvoAsACrPzH03Xff5cMPP0xFRUVWWmmllJWVpaysrBjmN9tssyRJRUVFHn744TRp0iSdOnUqRvu61fbTx/sjjzwy3377bT777LOsuOKKDXCXAAAA84b646l9990311xzTRo1apRVVlkllZWVmTp1avGYHXbYIaecckpOO+20HH744WnWrFl+97vfFcdmda80q/+w9dChQ/Pxxx9nxx13TKNGjab5ewAAlAYBHwAWUPUnav70pz/lkUceyWOPPZZGjRplr732ym677ZYuXbqkoqJimohfW1ub2trajB49OsOGDUtVVVUOOeSQlJeXZ+rUqamqqkryQ7w/6qij8u233+aOO+5I586dG/J2AQAASlr9MVrPnj0zatSorLHGGrnooovSsWPHLLHEEjMce8wxx+SLL77I0KFDs99+++WLL77IHnvskTZt2hRDfl28v/zyyzNw4MAsueSS2WeffdKkSZO5f5MAAPyostofezESADDfqT8xtOOOO+aOO+5Is2bN0qRJk3z55ZdJkk022SRHH310tttuu+I2jHUTQI888khOP/30PPTQQ1lxxRXTr1+//P73vy9+Xn/l/Z133pltt922uI1j3TEAAADMaN99983VV1+d7bbbLsOGDcvSSy89zXhseh9++GHOPffcXHjhhUmSXr16ZYMNNsiOO+6YioqKfPnll7nlllsyZMiQVFRUZMSIEdlmm23m5i0BAPATCPgAsICpH++7du2a0aNHZ+ONN85FF12UhRdeOC+88EKOPvrovP/++9l2220zbNiwtGnTZoYA/+ijj+b000/P6NGjs+KKK+bYY4/NAQcckOuvvz6HHnpoceV97969xXsAAIA5cOONN2b33XfPaqutlgceeCBt2rSZZgv8WSkUCjn33HNz+umnZ8qUKZk6dWoWW2yxFAqFfP3110mSlVdeOUOHDs1WW2012wcCAABoWAI+ACxA6sf7bt265cEHH8zOO++cwYMHp02bNsXPR40alT59+mTixIm55JJLcvDBBxfPUX+ip37EX3nllbPRRhvl//2//5dvvvnGynsAAICf6Pe//32uuuqqjBo1KltuueVPfkf9ww8/nOeffz433HBDvv/++xQKhSy99NLp27dvNttss6y++urGaAAAJU7AB4AFUPfu3XP//fdnm222yfXXX5/FF1881dXVqaioKE7inHbaafnTn/6UE088Maeffnox3M9sJf5pp52WMWPGZNKkSUli5T0AAMBPUFtbm7fffjvrrrtuamtr89xzz6V9+/ZzPJaaPvRPnDgx1dXVKRQKWWSRRYzJAADmIXP++CYAMF+4/PLLc//996eqqiorrLBCCoVCkqSysjJlZWXFn6dOnZqysrJUVFRk6tSpmTp1apIfYnxZWVnx5y5duuSUU07Jr3/96yTiPQAAwE9VVlaWxo0bp7KyMiuvvHJWWGGFnzSWKi8vL26VnyRNmzbNwgsvnBYtWkzzIDYAAKWvsqEvAACYuw488MC89dZbGTRoUK644oo0adIkBx98cFZcccXU1tYWV2189NFHqa2tzahRo/Lss8+mSZMm2XDDDbPppptm3XXXTVVVVfGcXbp0yYABA7Lwwgtngw02EO8BAAB+ogkTJuTbb7/Nu+++m7fffnuOV+DX1tampqYmo0ePzpprrpkVV1xxhmOMzQAA5h220AeABUj9bRWPP/74/PnPf05lZWWOPPLI7L///llllVWSJKeffnoGDBiQJGnXrl0+/fTTVFdXJ0maN2+eNdZYI3vuuWc23njjdOrUaYZ3MtZttw8AAMCc+eKLL7Llllvm1Vdfzd13352uXbvO8djq448/zgYbbJCdd945f/7zn6d54BoAgHmLLfQBYAFSXl5e3CL/7LPPzrHHHpvq6uoMHjw4w4cPzzfffJOzzjorAwYMSLt27XLzzTfn+eefz8svv5wbb7wxv/nNb7LkkkvmySefzGGHHZa11lore+21V/79739P83fEewAAgJ9mySWXzEYbbZTq6uocd9xxee+99350bFVTU5Mkefvtt/PRRx/l7bffFu8BAOZxVuADwAKo/kr84447LoMGDUpVVVU22GCDPP7441l99dVz6aWXpkuXLtN8b9KkSfnmm28yfPjwPPfcc7nlllty5513Ztttt22I2wAAAJgv1K20f+GFF7LnnnvmzTffzB/+8If88Y9/TMuWLWe6Er/+uG7//ffPNddck1tvvTXbbbedXdEAAOZhAj4ALKBmtp1+WVlZFl988QwZMiS77757kh9WdJSXl6esrCw1NTWpqKgoTga9//77WXbZZU0OAQAA/AwmTJiQgQMH5sILL0yLFi1y6KGH5oADDkirVq2mGcPVjc2S5OKLL87hhx+ezp0754Ybbsiyyy7bkLcAAMD/yBb6ALCAmn47/X79+qW2tjbjx4/Pa6+9lrfeeitJUlFRUYzzdRNEdc//tWvXrgGuHAAAYP7UvHnzHHHEEdluu+3y6aef5sILL8yf/vSnvP3228V4n/zf2Oyiiy7KCSeckEaNGuXMM88U7wEA5gNW4APAAm5m2+lXVlbmiCOOyEEHHZQVV1yxga8QAABgwfLRRx+lf//+ueOOO/LNN99kmWWWySmnnJJ27dpllVVWybPPPpu7774711xzTZo0aZJbb701PXr0sDsaAMB8QMAHAGYZ8Y888sj8/ve/F/EBAADmss8//zxXX311/t//+395+umni79faKGF8v3336eqqiprrbVWBg0alC5duhR3ShPwAQDmbQI+AJBk1hH/6KOPzr777puVV165ga8QAABgwTJ58uRMmDAhl1xySV5//fWMGTMmyy67bJZccsnsueeeWXvttbPccsuJ9wAA8xEBHwAomlnET5KjjjoqZ5xxRpo2bdqQlwcAALBA++6779KsWbOGvgwAAH5B5Q19AQBA6SgvL0+hUEiSnHPOOTn88MOTJF27dhXvAQAAGkD99VeNGzcu/nfd2A0AgPmLFfgAwAzqr8R/7bXXsuqqq6a2ttZ2jAAAAAAA8AsS8AGAmaof8ZMI+AAAAAAA8AsT8AEAAAAAAACgBJT/+CEAAAAAAAAAwC9NwAcAAAAAAACAEiDgAwAAAAAAAEAJEPABAAAAAAAAoATM8wH/888/z1133ZVTTjklPXr0yJJLLpmysrKUlZVln332aejLAwAAAAAAAIA5UtnQF/C/WmqppRr6EgAAAAAAAADgfzbPr8Cvb5lllsnWW2/d0JcBAAAAAAAAAD/ZPL8C/5RTTsl6662X9dZbL0sttVTefffdtG/fvqEvCwAAAAAAAAB+knk+4J966qkNfQkAAAAAAAAA8D+br7bQBwAAAAAAAIB5lYAPAAAAAAAAACVgnt9Cf27YfPPNG/oSAAAAFnhNmjTJqFGjkiTbbLNNJk2a1MBXBAAAQJI8/PDDDX0JlICJEyemZ8+eSZK77747TZs2beArmjdZgQ8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASUNnQF/C/evzxx/Pmm28Wf/7iiy+K//3mm2/m6quvnub4ffbZZy5dGQAAAAAAAADMuXk+4F955ZW55pprZvrZE088kSeeeGKa3wn4AAAAAAAAAJQiW+gDAAAAAAAAQAmY5wP+1Vdfndra2jn+HwAAAAAAAACUonk+4AMAAAAAAADA/EDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAAQAkQ8AEAAAAAAACgBAj4AAAAAAAAAFACBHwAAAAAAAAAKAECPgAAAAAAAACUAAEfAAAAAAAAAEqAgA8AAAAAAAAAJUDABwAAAAAAAIASIOADAAAAAAAA8P+1d28hVtX9H8e/UzaGWllEiVSUlJAYdBEVmZBYQhIkRUWYMJSTiFTYAaHyUBlBlkVlWUhOJGGRgRjqRYSZdtIUOhElHQQhRSRNTSd1/hfxnydR63Fy3J+nXq+rtff67eV388Or96y1CSDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAEEPABAAAAAAAAIICADwAAAAAAAAABBHwAAAAAAAAACCDgAwAAAAAAAEAAAR8AAAAAAAAAAgj4AAAAAAAAABBAwAcAAAAAAACAAAI+AAAAAAAAAAQQ8AEAAAAAAAAggIAPAAAAAAAAAAEEfAAAAAAAAAAIIOADAAAAAAAAQAABHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABOhSwN+0aVO9/fbbNWXKlLr66qvr1FNPraampmpqaqqWlpbDutb3339fEydOrMGDB9cJJ5xQvXv3roEDB9aECRPqyy+/7Mp4VVW1ZMmSzpmamppq2rRpXb4WAAAAAAAAAHS3Hl350Omnn35E/vGXXnqp7rjjjmpvb9/v/W+//ba+/fbbmjNnTj399NM1fvz4w7rujh07DvszAAAAAAAAANBIf/sR+meeeWaNGDHisD83f/78GjduXLW3t9dJJ51UDz/8cK1YsaJWrVpVL730Up177rnV3t5eEyZMqDfffPOwrj158uT68ccf67TTTjvsuQAAAAAAAACgEboU8KdMmVKLFi2qn376qdavX18vvvjiYX1+586dddddd1VVVZ8+fWrFihU1efLkGjJkSF100UXV2tpan376aV1wwQXV0dFRd9xxR+3YseO/uvaaNWvqmWeeqZ49e9b06dMP+7sBAAAAAAAA/Dc2bNhQTz/9dI0YMaLOOuusam5urn79+tX1119fH3/8caPHo5t1x/53KeA/9NBDdc0113T5UfpLliypTZs2VVXVXXfdVYMHDz5gzYknnlgzZ86sqqqffvqp2tra/vK6e/furdbW1tq7d2/df//9dd5553VpPgAAAAAAAIC/8uyzz9bEiRPru+++q6uuuqruueeeuvzyy2vhwoV12WWX1RtvvNHoEelG3bH/Pbphzr+0atWqzuOrr776kOuuuOKKOv7442vXrl315ptv1oQJE/70uk899VStWbOmBg4cWJMmTaoPP/zwiM0MAAAAAAAA8EcXX3xxLV++vIYOHbrf+++//34NHz68xo8fX9dee2317NmzQRPSnbpj/7t0B/7ftWXLls7jP7uLv0ePHnXKKadUVdUHH3xQe/bsOeTaH374oaZOnVpVVc8//7z/BAAAAAAAAEC3uu666w6It1VVQ4cOrWHDhtWWLVvq888/b8BkHA3dsf8NCfi9e/fuPN66desh13V0dNS2bduqqqq9vb3WrVt3yLXjx4+vnTt31ujRo2v48OFHblgAAAAAAACAw3TcccdV1e83Lf8brFmzpvP47rvvrtWrVzdwmsbr6v43JOCff/75ncfvvffeIdetXbu2tm/f3vl6/fr1B1332muv1dKlS6tv37715JNPHrlBAQAAAAAAAA7T+vXr65133ql+/frVBRdc0Ohxut3jjz9eDz74YOfrr7/+uu67776aMWNGA6dqnL+z/w0J+CNHjuz8i4OZM2fW5s2bD1izb9++euCBB/Z775dffjlg3ZYtW2rixIlVVfXYY4/96SP5AQAAAAAAALrTb7/9VmPGjKndu3fX448/Xscee2yjR+pWq1evriVLlhz03OLFi+vTTz89yhM11t/d/4YE/DPOOKPGjx9fVVUbNmyoIUOG1MKFC2vbtm21a9eu+uijj2rkyJG1dOnSam5u7vzcr7/+esC17r333tq0aVNdcskldfvttx+17wAAAAAAAADwR/v27atbb721li9fXq2trTVmzJhGj9Tt5s6d+6fnX3755aM0SeMdif1v2A8uzJgxo77//vtatGhRffPNNzVq1KgD1gwYMKCuu+66euKJJ6qq6oQTTtjv/LJly2ru3Ll17LHH1uzZs+uYY7rn7xGWLVvWLdcFAACga5YuXdroEQAAAGA/HR0d1draWvPmzatbbrmlZs+e3eiRjoqDPW39cM7/Uxyp/W9YwG9ubq6FCxfWK6+8Us8991ytXbu29u3bV1VVffv2rTFjxtQjjzxSjzzySOdnTj755M7j3bt317hx46qq6s4776wLL7zwqM4PAAAAAAAAUPX7nddjx46tuXPn1s0331xtbW3ddvNxmtdff73RIzTckdz/hgX8qqqmpqZqaWmplpaW2r59e23cuLGam5urf//+nb8F8Nlnn3WuHzRoUOfxW2+9Vd9880316NGjBg0aVPPnzz/g+l999VXn8RdffNG55pJLLqlzzjmnu74WAAAAAAAA8C/xx3h700031auvvvqP/917/uNI739DA/4f9enTp/r06bPfe+3t7fXJJ59U1e+P0z/11FM7z+3evbuqqvbs2VOtra1/ef0FCxbUggULqur332EQ8AEAAAAAAIC/Y9++fXXbbbdVW1tb3XDDDTVv3jzx/l+kO/Y/JuAfzOLFi2vr1q1VVXXjjTc2eBoAAAAAAACA/3j44Yerra2t+vTpUwMHDqzp06cfsGbUqFF+Dvwfqjv2Pzbg79mzp6ZOnVpVVccdd9wBd9n//6P3/8yyZctq2LBhVVU1derUmjZtWneMCgAAAAAAAPwL/fDDD1VVtX379nr00UcPuubss88W8P+humP/GxbwN2/eXL169apevXodcK69vb3Gjh1bn332WVVVTZo0qQYMGHC0RwQAAAAAAAA4pLa2tmpra2v0GDRId+x/lwL+ihUrat26dZ2vN2/e3Hm8bt26A4Y82J3yy5Ytq9bW1ho9enRdeeWVddZZZ9XOnTtr7dq1NXv27Prqq6+qqmrEiBE1efLkrowJAAAAAAAAAP8zuhTw58yZU6+88spBz61cubJWrly533uHetT9zz//XLNmzapZs2Yd9HxLS0u98MIL1dzc3JUxAQAAAAAAAOB/RsMeoT906NCaMWNGvfvuu/X111/Xxo0b65hjjqn+/fvXsGHDqqWlpS699NJGjQcAAAAAAAAAR1VTR0dHR6OHAAAAAAAAAIB/u2MaPQAAAAAAAAAAIOADAAAAAAAAQAQBHwAAAAAAAAACCPgAAAAAAAAAEEDABwAAAAAAAIAAAj4AAAAAAAAABBDwAQAAAAAAACCAgA8AAAAAAAAAAQR8AAAAAAAAAAgg4AMAAAAAAABAAAEfAAAAAAAAAAII+AAAAAAAAAAQQMAHAAAAAAAAgAACPgAAAAAAAAAE+D8VFgNKfpr7VwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 2500x1000 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"msno.matrix(countries)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "04707a7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are no null values in the table.\n"
]
}
],
"source": [
"# count number of null values in countries dataframe\n",
"nulls_c = countries.isna().sum().sum()\n",
"if nulls_c == 0:\n",
" print(\"There are no null values in the table.\")\n",
"else:\n",
" print (\"There are \", nulls_c, \"null values in the table.\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d3321cc6",
"metadata": {},
"outputs": [],
"source": [
"# rename columns\n",
"countries.rename(columns={'REGION (DISPLAY)': 'region', 'COUNTRY (DISPLAY)':'country_name'}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "19e7f8b4",
"metadata": {},
"outputs": [],
"source": [
"# type casting\n",
"countries['country_name'] = countries['country_name'].astype('string')\n",
"countries['region'] = countries['region'].astype('string')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a369a99e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Il y a 194 pays dans la liste.\n",
"Aucun doublon dans la table.\n"
]
}
],
"source": [
"print (\"Il y a\",countries['country_name'].nunique(), \"pays dans la liste.\")\n",
"if (countries.loc[countries.duplicated() == True].shape[0]) != 0:\n",
" print(\"Doublons dans la table.\")\n",
"else:\n",
" print (\"Aucun doublon dans la table.\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f195f881",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"country_name est une clé candidate.\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# check if country name is a primary key\n",
"isCandKey(countries, 'country_name')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f93110ed",
"metadata": {},
"outputs": [],
"source": [
"# reorder columns to set primary key as first column\n",
"countries_final = countries[['country_name','region']].copy()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "cd8fad0a",
"metadata": {},
"outputs": [],
"source": [
"# export df to csv file\n",
"countries_final.to_csv('C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/DWFA_countries_final.csv', index=False, encoding='latin_1')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "948e99a9",
"metadata": {},
"outputs": [],
"source": [
"# load data into database\n",
"load_countries = \"LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/DWFA_countries_final.csv' INTO TABLE countries CHARACTER SET latin1 FIELDS TERMINATED BY ','\"\n",
"cursor.execute(load_countries)"
]
},
{
"cell_type": "markdown",
"id": "52e1bf62",
"metadata": {},
"source": [
"### 2 - table political_stability"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "f6d9de7b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>Political_Stability</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>3526.000</td>\n",
" <td>3526.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>2009.522</td>\n",
" <td>-0.051</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>5.256</td>\n",
" <td>0.996</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>2000.000</td>\n",
" <td>-3.310</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>2005.000</td>\n",
" <td>-0.710</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>2010.000</td>\n",
" <td>0.050</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>2014.000</td>\n",
" <td>0.798</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>2018.000</td>\n",
" <td>1.970</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Year Political_Stability\n",
"count 3526.000 3526.000\n",
"mean 2009.522 -0.051\n",
"std 5.256 0.996\n",
"min 2000.000 -3.310\n",
"25% 2005.000 -0.710\n",
"50% 2010.000 0.050\n",
"75% 2014.000 0.798\n",
"max 2018.000 1.970"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# import file - source : \n",
"political_stability = pd.read_csv('political_stability.csv', encoding='latin_1')\n",
"political_stability.describe()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "51c60cf6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACAIAAAPFCAYAAAD1cNjwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHbklEQVR4nOzdd5gV5eH34e8uvYuKShMVe4ktiiIo2FtsWGOLxsRuVKxIbDEglohgwai/iIoGEAtiBxvYwAK2xC52jV1Eli3n/cN3T1jRxCSyq4f7vi4vlj1zDjP/OGfm+czzlBUKhUIAAAAAAAAAgJJQ3tA7AAAAAAAAAAD8cIQAAAAAAAAAAFBChAAAAAAAAAAAUEKEAAAAAAAAAABQQoQAAAAAAAAAAFBChAAAAAAAAAAAUEKEAAAAAAAAAABQQoQAAAAAAAAAAFBChAAAAAAAAAAAUEKEAAAAAAAAAABQQoQAAAAAAAAAAFBChAAAAAAAAAAAUEKEAAAAAAAAAABQQoQAAAAAAAAAAFBChAAAAAAAwAJXU1PT0LsAAAALDSEAAAAAALDAlZd/fStywoQJmTlzZhJxAAAALChCAAAAAACgXowdOzY77LBDzj///CT/jAMAAIAflm/aAAAAAEC9WHrppdOoUaNMmTIlr776akPvDgAAlCwhAAAAAACwwNXU1GTVVVfNTjvtlOnTp2fy5MkNvUsAAFCyhAAAAAAAwAJXXl6eNm3aZPvtt0+SDBkyJK+99loD7xUAAJQmIQAAAAAA8IMpFAp1/vzm7/fff/9sv/32efPNN/PMM88kSaqrq+t3JwEAoMQJAQAAAACAH0ShUEhZWVmSr5cC+LbXC4VCNtlkk3z55Zf505/+lJqamjRq1Ki+dxUAAEqaEAAAAAAA+EHURgCXXnpptthiizz00EN57733iq/V/nfQQQdllVVWyYMPPpjx48cnmX8GAQAA4L8nBAAAAAAA/ifzPv3/yiuvZMiQIbn//vuz/fbbZ88998x1112XL774orhNu3btcvjhhydJ7r777iT/jAgAAID/XVlBagsAAAAA/AfmzJmTWbNmZfHFF6/z+8mTJ6dRo0ZZeeWVc+mll+aBBx7IxIkTkySbbrpp+vbtm2OPPTYtWrTISy+9lLXWWitfffVV7rjjjmy11VYNcSgAAFCSzAgAAAAAAHxvc+bMyYgRI3Lsscdm2rRpxSn9R4wYkU022STXX399Fl100QwYMCC33nprRo4cmS222CLTpk3L73//+6y//vo5/fTT065du5x11llJkvvvvz9J3ZkFAACA/54ZAQAAAACA7+3zzz9P//79c+WVV6Z379657rrrctttt+WQQw5Jhw4dMmLEiOy888513vPhhx/mjTfeyBlnnJGnnnoqb731Vlq1apVevXrlrrvuyiKLLJLHH388yy23XAMdFQAAlBYhAAAAAADwb9XU1KSsrCxlZWX5+9//nqOPPjp33313Vlhhhbz00kvp1KlTRowYke233774nkKhkLKysuKfX375ZV5//fX85S9/yfXXX5/333+/OAvAcccdlz/+8Y9p0qRJQx0iAACUDCEAAAAAAPCdhg4dmnXWWScbb7xxqqurkySNGjXKl19+mR49euTFF19Mo0aN8sc//jHHHntskqS6ujqNGjWq8zm1MUCtJ598MjNmzMi5556bV155JWuttVYmTZqU1q1bz7ctAADwnylv6B0AAAAAAH6cJk2alGOPPTZ9+vTJI488kkaNGhUH+GfMmJHnn38+5eXlqaioyG233Zbp06enqqpqvgggSXFgv3YGgHXWWScHHHBAJkyYkI033jjTpk3LxRdfXGdbAADgvyMEAAAAAAC+1WabbZZf//rXSZIrr7wyyddP+xcKhbRp0ya//vWvc84552S77bbLfffdl9/97nd55pln8q8mIS0v/+ctyUKhkOWWWy6///3vkyQPPPBAqqqqFuARAQDAwsHSAAAAAADAfObMmZPmzZsnSa6++urst99+SZL33nsvSy21VKqqqvLll1+mXbt2efXVV3PooYfmnnvuSe/evTN06NCstdZaxSf7v22pgFqVlZWZPXt2evbsmb/97W957rnnssoqq9TPQQIAQIkyIwAAAAAAUPTEE08kSZo3b56KiookKUYAgwcPTqdOnTJ58uQ0btw4rVu3TnV1dZZbbrlcfPHF2XLLLTN58uQcffTRmT59egqFQgqFQho1apRCoZAbbrghTz75ZPHfKhQKadKkSdq1a5e2bdumffv2adq0af0fNAAAlBghAAAAAACQJBk6dGjWW2+9nHPOOUmSZs2apaampvj6Cy+8kCTZaqut8vDDDxef8q+urs7yyy+fiy66qE4M8OSTTxZnBRgwYEB23333jBw5MpWVlUlSfO2MM87IY489lmWWWSbt2rWrt+MFAIBSJQQAAAAAAFJZWVkcoB80aFDOP//8JEl5eXmqqqqSJFdddVUOO+ywzJkzJ3369PnOGGCrrbbK5MmTc8ghh2TQoEH55S9/mSFDhmTxxRfPMccckyZNmhT/3bfffjvPPPNMmjZtmmuvvTaLL754PR85AACUnrJCoVBo6J0AAAAAABrerFmzMnLkyPTv3z+NGzfOGWeckf79+ydJKioq0qxZsyTJoYcemssuuyyNGzfO/fffn549e6a6ujpJ0qhRo7zyyisZMGBA7rzzznzxxRdJktVWWy233357unbtmqqqqjRu3Lj4706dOjVLLbVUll566Xo+YgAAKE1CAAAAAABYiM2ePTstW7Ys/n3WrFn5y1/+kuOPP/5/igHee++9PPbYY3n44YfTuXPn7LnnnlliiSVSXV1dnEWgUCgUlwcAAAB+OEIAAAAAAFhIXXzxxXnjjTdyzDHHZKmllir+/n+NAcrKylJePv+qpPNGAAAAwIIjBAAAAACAhdDTTz+d3r17p6qqKieffHKOOuqotG3btvj6/xID1NTUpKyszNP+AADQQObPcgEAAACAkte9e/cMGjQoHTt2zLvvvlsnAkiS1q1b54ADDsi5556bqqqqnHbaaTn//POTJM2aNUtFRUWS5NJLL83BBx+cqqqq9OnTJ4888kjKy8vj+SMAAGg4ZgQAAAAAgIVMoVBIWVlZZs+encceeyx9+/ZNkjz++OPp0qXL/7RMQJJMnTo1P//5z+v5qAAAgFpmBAAAAACAhUxZWVkKhUJatmxZjABGjRqVHj165KKLLsoHH3xQ3PY/mRlgr732SpIsscQS9XxEAADAvIQAAAAAALAQKisrK/5cXV2dDz/8MB06dMif//znXHrppXn//feLr3/fGGDUqFH56KOPsvTSS6e6urp+DwgAACiyNAAAAAAAkC+//DLXXnttBg8enM8++yxHH310DjnkkCy55JLFbf7VMgFz585N06ZNk/xz6QEAAKBhCAEAAAAAYCFXU1OT8vLyzJ49OyNHjsyQIUP+bQxwwgknpHnz5jnmmGNy6qmnNuDeAwAA3yQEAAAAAICFxPd5Uv/7xgBXX311jjjiiCy//PJ54okn0qZNmwW9+wAAwPfUuKF3AAAAAAD44VVXV6dRo0bFv9c+9Z8kzz//fN54442899576dixY1ZfffV07tw5SdKyZcvst99+SZIhQ4Zk6NChSVInBmjdunX23XfftGjRIptvvnnatGljOQAAAPgRMSMAAAAAAJSYSy65JC1btsyee+6Z5s2b1xmkHzVqVPr3758PPviguP3PfvazbLnlljnnnHOKv/vyyy9z9dVX/8uZAWp9MzoAAAAalhkBAAAAAKCETJ48OUcccUTatGmT5s2bZ6eddkrz5s2TJKNHj86+++6bJNlzzz3TtGnTPPnkk3nppZfy9NNP56WXXsqVV16ZRRddNK1atcr++++f5J8zA5SXl+eggw5Kx44d6/ybIgAAAPhxMSMAAAAAAJSQmpqanHjiiRk2bFjatm2bYcOGZaeddkp1dXW23HLLvPjii7nsssvSr1+/JMmbb76ZRx99NL/5zW/y+eefZ/vtt8/NN99cXEZg9uzZGTlyZM4///y8+uqrOe+883L00UcXXwcAAH58hAAAAAAAUCJqp+gvFAo5+eSTc84552SxxRbLRRddlDXXXDM/+9nPctppp+WUU06Z771PPfVUNt1003z22Wf59a9/ncsvv7z42uzZszNixIiMGTMmN9xwQ7p06VKfhwUAAPyHhAAAAAAAUEJqampSXl6eQqGQAQMGZMiQIVl88cWLswRcdNFF+cUvfpGqqqo0bty4znvuueee9OvXLzU1NRk3bly22mqr4mtfffVVqqur07p162JwAAAA/DiZvwsAAAAASkh5eXmqq6tTVlaWQYMG5cQTT8xHH32UgQMH5s0338wbb7yRJMUIoPY9hUIhvXr1yi677JLZs2dn+vTpdV5r0aJFWrdunUKhIAIAAIAfOSEAAAAAAJSYRo0a1YkB+vfvnzZt2iRJbrrpprz66qvzvaesrCwtWrTI+uuvnySZOnVq5s6dm0KhkLKysjrbAQAAP25CAAAAAAAoQfPGAEOGDMn++++f1q1bZ+rUqbnxxhsza9asOtvPnTs3SdK1a9ckSdu2bdO0aVMD/wAA8BMkBAAAAACAn7hCoVDnz9qfGzVqlLlz56asrCznnHNODjvssMyZMyeDBw/OqFGj8u677xa3bdq0aZLkmmuuSZKsttpq830mAADw01BW8E0eAAAAAH6y5p26/6OPPsqXX36ZL7/8Mm3btk3nzp2TJFVVVWncuHEKhUIGDBiQc889N61bt84+++yTnXfeORtttFEqKioyYMCAXHrppVlppZVy//33Z8kll2zIQwMAAP5LQgAAAAAA+ImaNwIYP358Lrjggjz11FP5/PPPs9xyy+XAAw/MSSedlPLy8uK2hUIhJ598ci688MJUVFQkSVZaaaW89NJLqampyc9//vOMGzcuXbt2TXV1dRo1atSQhwjAQmDe8xkAPwwhAAAAAAD8BM07aHLVVVflwAMPTJJsttlm6dy5c8aPH59PP/00+++/f0477bQss8wydd574okn5qqrrsqHH36YvffeO+uss07WX3/9rLrqqmnfvr0IAIB6Me/57IMPPsgSSyzRwHsEUBrKG3oHAAAAAID/XO2gyc0335yDDjooiy22WK688srcc889ueqqq7LvvvsmSUaOHJmTTjopr7zySp33DhkyJPvvv39at26dUaNGZfnll89GG22U9u3bp6amRgQAQL2oPZ9deeWVOfLIIzNnzpzU1NQ08F4B/PQ1bugdAAAAAAD+Oy+++GLOOuusNGrUKEOHDs3ee++dJPnjH/+Y4cOHp3Xr1unUqVPGjBmTRo0a5Ywzzsjyyy+f5OuBl3POOSdfffVVbrnllqy99trFzy0v9/wQAPVn5syZOeWUU/LZZ5/l7bffTvfu3S0XAPA/8o0eAAAAAH6iHnjggTz55JMZNGhQMQI455xzcuqpp6Z169aZMWNGxo0bl5YtW+b666/PGWeckZdffrn4/rKysgwfPjzPPvtsunTpkurq6oY6FAAWYt26dcs222yTioqKDBo0KHPmzBEBAPyPhAAAAAAA8CNWKBSS5FunSW7fvn169+6dQw89NEly/fXX55xzzknLli0zceLELLvssllttdUyYsSIJMmoUaMycODA+ZYJaNeuXQqFguUAAKh3tee3k08+OUsvvXSmTp2azz77rM5rAPznhAAAAAAA8CNSO/D/1Vdfpbq6OmVlZamoqChO1z958uR89dVXSZJdd9011113XVq0aJG5c+fmlltuyaxZszJy5Misv/76qaysTKFQyMYbb5zlllsuzZs3z5gxY3LIIYdk5syZdf5dT14C0BBqz29LLLFE1ltvvTz33HO5+OKL67wGwH/O/0EBAAAA4EekrKwsX331VYYMGZK99947X3zxRZo1a5Yk+fOf/5xNNtkkp512WvEpyc6dO6esrCwzZszIDTfckBVXXDGbbLJJkqRJkyYpKyvLkksumdatW6dHjx5ZaaWVMm3atLRu3brBjhGAhc+3Pd1fG78lySKLLJIjjzwySXLzzTfnxRdfrLd9AyhFQgAAAAAA+JEpLy/PU089lTFjxmSLLbZI8vW0/4ccckg6duyY9dZbb76nJMvKytKkSZO0a9cu7dq1S5JUVlYmSSoqKvL+++9n5513zvjx4/P3v/89iy22mCmXAag3teet559/Pp988kmSr89dNTU1KRQKKRQK2XDDDbPbbrvlueeeyxNPPNGQuwvwkycEAAAAAIAfkUKhkGbNmuWKK67I6quvnqlTp6Z79+7Ze++907Vr11x00UXZbbfd5ntfq1at0qlTpzzyyCO5++67k3w9I0Dy9brL77//fhZffPGssMIKWWqppVJTU2PKZQAWuHmf+h82bFhWX3319OvXL3/84x8zZ86c1NTUpKysLIVCIU2aNMlmm22WQqGQM844I2+++WYD7jnAT1tZYd7/AwMAAAAA9apQKKSsrKzO7yoqKorLAXTu3DkfffRRkmTkyJHZY489ioMm33zfaaedlj/84Q8pKyvL6aefniWWWCL33HNPbrzxxqy77rq58847s9hii9XPgQGwUKk9n817Xquqqkrjxo2TJNXV1bn66qtzySWX5LnnnsucOXPy85//PFtttVX23XffrLjiisXP2nLLLTNlypSMHTs22223Xaqrq9OoUaMGOS6AnyohAAAAAAA0kNqn8ufMmZPXX3891dXVWW211YqvP/jgg+nTp09xYKVnz56ZOHFimjdvXmdwZd6n+4855phceOGFdf6dFVdcMffcc0+6du1qJgAAFphZs2bl/vvvT7du3bLGGmsUf3/llVdm/Pjxue6665Ikjz/+eAYNGpSnn34677//ftq0aZNjjjkmG2ywQbbeeutccsklOeKII7LFFlvkrrvuaqjDAfhJEwIAAAAAQAOoHZD/4IMP8qc//SkTJkxIy5YtM3To0PTs2TNJcuONN2bs2LHZZpttcsEFF2TGjBlZb731ct9996Vly5bzPWlZ+7TkX/7ylzz77LN5880387Of/SwHHXRQllpqKU9UArDAFAqF3H777enfv386duyYIUOGZP31188VV1yR3/72t+nWrVvGjh2bn//850mSTz/9NDNnzszFF1+cW265Jf/4xz+SJL/73e+y9tpr5/jjj8/s2bNz5ZVXZvfdd//WGXQA+G5CAAAAAACoZ7URwBtvvJF99903kydPzjLLLJO99947BxxwQJZbbrnitm+//XY6d+6cTz/9NL17985zzz2X9ddfP/fee2+dGODfDfKLAABY0GbMmJH+/fvn3nvvzU477ZSVV145Z599djp37pxhw4Zl5513TjL/sjiPP/54pkyZkiFDhuT999/PUkstlY8//jhz587N7373u1xwwQUNdUgAP1lCAAAAAACoR7URwMyZM9OnT5/MnDkze+65Zy655JK0adOmOFg/7yBJ7SD+J598kk022STPPvtsnRhgzpw5ad68eQqFQm6++eZsvfXWadGiRUMeJgALgbfffjsdO3YsLjlTXV2dadOm5fzzz8+4ceOSJB06dMi1116bLbbYIknd89s3l6t54YUXMnXq1Fx44YV59tlnM3fu3CTJfffdl0022aQ+Dw3gJ89iYAAAAABQj8rLy/P++++nX79+mTlzZo499thcd911WWSRReo8HTnvz40aNUplZWXat2+fBx54IKuvvnqmTp2aTTfdNLNmzUrz5s2TJAMHDky/fv1y2mmn1ftxAbBwOf/887PjjjvmwQcfTE1NTZKvz1cbbLBBcWabsrKydOnSJV26dEnydQQwr3kjgCRZaaWVsu++++ahhx7K//3f/2XfffdNktxxxx0pFAqprq5e0IcFUDLMCAAAAAAA9ezss8/OgAEDsuOOO+amm25K8v2m7q99cnLemQHWWWednHTSSRk/fnyuvfbaLLXUUnnooYey7LLL1sehALAQ+vDDD7PXXntl0qRJ2XzzzXPRRRdlxRVXTFVVVT766KOstNJKKS8vT/fu3fPEE09k6623zqmnnpoNNtggyfxLA8xr3vPho48+mn79+qVJkyZ5/PHHs/jii9fbMQL81AkBAAAAAKAeFQqFbLPNNrn33ntzzz33ZJNNNklVVVUaN25cHBipqKjIF198kbFjx6aysjJt27bNJptsUmdw/5NPPsn222+fRx55pPi7VVZZJXfccUeWXnrp4mcCwIIwY8aM/PGPf0zLli1z1VVXJfnnAP/DDz+cL774Il27ds0JJ5yQ22+/PVtttVXOOOOMrL/++nW2/VdRQJLstttuGTduXC699NIcfPDB9XFoACXBlQAAAAAA1KP33nsvL7zwQho3bpxmzZol+Xoq5dqn/V9//fVceeWVueOOO/Lkk08W39e3b9/stddeOeigg5Ik7du3z5133pmLLroo//jHP9KmTZscfvjhWWKJJVJdXS0CAGCBWnPNNfOnP/2pOO3/rbfemhYtWqRPnz7p2bNncbsBAwYkSW6//fYkKcYAZWVlqaysTJMmTZIkX3zxRdq0aVM8H1ZUVKRZs2bZfffdM27cuLz77rv1fIQAP22uBgAAAACgHi2++OLp0qVLZs6cmRtuuCGrrLJK2rVrl5qamjz22GP59a9/nRdeeCHV1dVZZJFFstxyy+Xpp5/Offfdl3fffTetWrXKXnvtlaqqqrRp0yYnnXRSysrKigMn32eJAQD4IdRGAHfddVd23HHHbLjhhhk8eHB69+5dfMq/Z8+eGThwYJL5Y4AmTZqkpqYmZ555ZqZPn57LLrssSy65ZJIUY7kHHnggSdK8efPUTnL9r2YQAOBr5Q29AwAAAACwsCgUCmnSpEl+8YtfpHnz5hk9enSOPPLIDB8+PIcffng23XTTPP/881lllVVy5JFH5pFHHsmDDz6YCRMmpE+fPvn73/+eW265JUmKT/zXDobU/ikCAGBBq6mpqfP3JZZYIttuu22mTp2a008/PQ8++GCdbTbYYIP8/ve/z3bbbZe77rorp556ah5++OEkyUknnZQzzzwzzzzzTMrL6w5bnX/++bnkkkvSpUuX7LnnnikrKxMBAHxPZYXafAoAAAAAqBevv/56jjrqqEycODFz5syp89oOO+yQE044Iauvvnratm1bXDv5nnvuyVZbbZUkeeaZZ7Laaqs1xK4DsJCrPS8lyS233JIVV1wxq6yySp599tmcdtppuemmm9KnT5+cdtpp6d27d53B/cceeyyDBw/O+PHj07Jly3Tv3j3PPPNMll566TzwwAPp1q1bcYabJHn66aez3Xbb5bbbbsvPfvazBjlegJ8qIQAAAAAA1KPaAZTXXnstV1xxRR544IG8/PLL2XTTTbP++uvn6KOPrrN97YDIZ599lnXXXTevvvpqZsyYkTXWWKNhDgAAklx33XXZZ5990r179zz66KNZbLHF8swzz+T000//lzHA3/72t/z5z3/OhRdemM6dO2ellVbKyJEj07lz5zrL29T+XFFRUVwmAIDvTwgAAAAAAPWsNgaYO3duGjdunPfeey+dOnUqvv5tAyEvvPBCNtxww6ywwgqZPHlymjZt2lC7D8BCaN6ZAF544YVsu+22qayszMCBA/Pb3/62uN33iQGS5Mknn0y7du3SoUOHtG3bts6577v+XQC+v8YNvQMAAAAAsLCpHdBo3LhxysvL07Fjx+JrhUJhvgggSQYMGJBPP/00ffr0mW8wBQAWpG8Oxn/22WfFmW0OPPDAJP88Z62xxho5/fTTkyQ33XRTktSJAWq3W2eddep8/rdFAElEAAD/JSEAAAAAADSQ2gH9eQc5an+uqalJo0aNUigUcvzxx+emm27Kuuuum+OOOy6NG7utB0D9qT03DRkyJJMmTcoBBxyQtddeO7/85S+T/POcVetfxQC157ZvO/cB8MOxNAAAAAAA/AhVVVXl888/z29/+9vceOON6datWx588MF07do1NTU1ZgUAoN4UCoXMmjUrHTt2zOzZs7PEEkukoqIiTz75ZJZddtnvfN+8ywRsttlmOeGEE7L55psb+AeoB64WAH7iampqij9XVlY24J4AAAAsnCoqKpLUvT77Xz366KM59thjs8EGG+TGG2/MxhtvnClTpqRr166prq4WAQBQr8rKytKmTZs89dRT6dSpUz744IO0aNEif//735N8vSzAt6mdGWDXXXfNpEmTcvnll7uHCVBPzAgAUCL++te/prKyMvvuu2+dNSQBAABYcIYNG5YXX3wxZ555ZhZddNH5pjr+b3z++ec56KCDcsMNN2TFFVfMLrvskmOPPTaLL7646z0AGkztOejll19Or1698sEHH6Rv376544470rRp01RVVX3n0jVPPfVULrnkkvz+97/P0ksvXc97DrBwEgIAlICHHnoovXv3zuabb5677767oXcHAABgofC3v/0tG264Yb788sscd9xxOeGEE9K+ffsfJAZ44YUXMnny5PTp0yddu3ZNs2bNLAcAQL2a97xT+3PtYP8rr7yS3r1757333st2222XW2+9NUn+ZQxQ+5qoDaB+CAEASsBrr72WHj165MMPP8yYMWOy6667NvQuAQAAlLwvvvgiN954Y84666y88847Ofzww3PyySf/zzHAt733h4gLAODfmfd8UygUUl1dPd/AfmVlZZo0aVInBth+++0zfvz4JP86BgCg/kiIAX7iampqsuyyy+bUU09NeXl5Jk+e3NC7BAAAsFBo06ZN+vXrl1NPPTVLLLFELr744gwePDiffPJJysrK8t8+f/NtA/4iAAAWtJqamuL55t57780RRxyRDTfcML17985pp52Wp556KknSuHHjzJ07N927d8/kyZOz1FJLZcKECdlhhx2Kr1dVVTXYcQDwNTMCAJSIhx9+ONtuu20+//zzPPzww9lggw0aepcAAAAWCrNmzcpNN92UU089NR988MEPNjPAN6dOtjQAAAvKvOerkSNH5uCDD87cuXOz2GKLpWnTpnn33Xez1FJL5bLLLssvfvGLFAqFVFZWpmnTpt85M4AlAAAalisHgJ+If9dt9ezZM7/97W+TJDfccEOqqqpSU1NTH7sGAACwUGvdunV23nnnnHnmmT/YzAA1NTXFwZOpU6cmiQgAgAWmNgIYPXp0DjjggDRv3jzDhg3L22+/nZdffjl9+/bNe++9lx133DG33HJLysrK0qRJk2+dGWDjjTdOEhEAQANz9QDwEzBvkTt79uz5Xquurk6S7LHHHunYsWNuueWWfPzxxykvL/+vp6IEAADg+/shY4Dq6urioP8ZZ5yRDTbYIJdeeumC2nUASPJ1eHbSSSelTZs2ueyyy3LEEUekadOmueiii3LfffelZcuWSZKdd975W2OAKVOmpHHjxpkyZUr+8Y9/NPDRACAEAPiRmzcCOPvss7Pccsvl3HPPzWOPPZbk61q3tq5dbbXVsu666+aVV17Jueee+z9NQQkAAMB/5oeIAeadRvmss87KH/7wh7Ro0SI9e/Zc0LsPQIm7/fbb8/LLL3/ra5WVlRk3blxmzpyZwYMHZ4899kiSDB48OCeeeGJat26dp59+OqeffnqSr2OAm2++uU4MsNxyy+Wll17Km2++mQ4dOpitFKCBCQEAfsTmHcivqKjI/fffnw8++CAnnnhiNt100/z+97/Pgw8+WNy+efPmOe2009K+ffs89NBD+eyzz4qfAwAAwP/uu66vampqUigU/qcY4JsRwKmnnpo2bdpk2rRpWXPNNRfI8QCwcLjmmmuy/fbb55RTTsnrr78+3+uVlZV5++2384tf/CKHHXZYkuTyyy/PH//4x7Rq1SoTJ07Mcsstl8MPPzy77bZbkmSXXXbJjTfeWIwBKisr061bt3Tu3LnO7DYANAz/Fwb4kZo3Arjooouyxx575M4778wDDzyQY489NhUVFfnjH/+Y7bbbLrvttlseffTRvP/++1l77bWz/vrr59FHH82oUaOSxKwAAAAAP4B5r9M+++yzzJw5My+//HI+/PDDlJeXF1/7b2KAb4sA2rVrlylTpmTVVVetv4MEoCR17tw5q6yySsaOHZtTTjklr732Wp3XW7ZsmWOPPTaDBg1Kkrz66qu55pprUlNTk3HjxmX99ddPdXV1FllkkfTo0aP4vl133TVjxowpxgC1as9pADScsoLHRAF+1G6++eb069cvhUIhd9xxR7baaqskyZQpU/LII49k2LBhefvtt7PooovmZz/7Wf74xz9mxowZOeyww9KrV69cc8016datWwMfBQAAwE/bvBHA+PHjM3To0DzyyCOpqKhIhw4dcvrpp2fbbbetc/01a9as3HTTTTn11FPzwQcf5PDDD8/JJ5+c9u3bp6ampvik5L+KAFZbbbX6P1gAStKUKVNy5JFHZsaMGdlrr71y1llnZdlll/3Wba+//vrsvffe2XvvvTNy5MiUl5cXz4XTp0/PFltskXXXXTd333132rdvn7fffjvNmjXzQBLAj0jjht4BAOqqvRlUU1OTuXPn5tJLL80iiyySyy+/vBgBJEmvXr3Sq1ev7LPPPrnmmmtyzz33ZNKkSdloo42yySabpFGjRpk+fXpefPHFdOvWrc5NJgAAAL6/eSOAq666KgceeGCSZJtttskiiyySRx55JEcddVSeeuqp/OY3v8l6662X5J8zAyTJqaeemosvvjiNGjXKcccdl8UWWyzJ19eAIgAAFqTa81ivXr0ybNiwHHXUUbn++uuT5DtjgNrlA1ZaaaXivcpCoZBGjRqloqIic+bMyQUXXJB77rkn2223XZo3b16fhwTA92BECOBHpnaw/rnnnkujRo3y0ksv5aCDDsouu+ySpO56lDU1NenYsWOOO+643HPPPfnzn/+c3XbbLZMnT051dXVmzZqV0047LZ999pkIAAAA4L9UGwHcfPPN+c1vfpPFFlss//d//5fbbrsto0aNyuabb57q6ur85S9/ybnnnptp06YV3zvvMgGdOnXKkCFDMmLEiBQKhRQKheK12umnny4CAGCBmHdZmt69e2fYsGFZc801c/3112fgwIF1lgmo3a5169ZJkgkTJuTTTz9NeXl5MVwbPnx4Kioq0qxZsxx11FHp3r17qqqq6vmoAPh3jAoB/Aj95S9/yZprrpl99tknhUIhvXv3TvL1dJHzTq/1zcH9gw46KFdffXXuvffe7LvvvunevXv+9re/ZcaMGUm+DgcAAAD4z7344os544wz0qhRo1xwwQX51a9+lSQZMmRIrrjiirRq1Sprr712xo0bl/POOy+PPfZY8b21McDxxx+fHj16ZL/99ktZWVmdwOAPf/hDmjdvLgIAYIH4vjFA7blp//33z5prrpmpU6fmV7/6VWbMmJG//e1vOfjgg3Pddddl0003zRJLLFH8/MaNTUAN8GMjBAD4EZj3Kf8kadKkSZJk3LhxeeONN/LGG29863a1atfoSpKmTZtm4403ztChQ3PggQfms88+y8iRI4vbAQAA8J+bPHlyZsyYkTPPPDP77LNPkuScc87JgAED0rp16zz88MMZOnRoll122dx4440ZNmxYHn300eL7W7dunb333juTJk1K165dU11dXXytU6dO+fWvf51p06aJAAD4Qc37YFBZWVnx7/9uZoC2bdtm2LBhWXXVVTN+/Pj06dMnPXv2zOWXX55ll102V1xxRVq3bv2d9ysBaHhlBf+XBqh31dXVKS8vL375rh2gf+utt7LEEkukadOmGTt2bPbZZ59UVlZmxx13zE033VR8b+00XP/OK6+8knXXXTfl5eV5+OGHs/LKKy+wYwIAAChlF154YW699dbccccdadKkSUaNGpXf/e53qaioyMSJE9OjR48kyaBBgzJw4MA0btw4u+66a4455pist956//bz58yZY31lABaY66+/Pp07d87GG29c537k5MmTc9RRR2XGjBnZa6+9ctZZZ2XZZZdN8vV9yBdffDHHHXdcXnjhhbRo0SKrr756zjvvvHTu3Pk/uk8JQP0TAgDUs1mzZmXcuHHp0qVLevbsmRYtWiRJLr744lx55ZU5//zz06dPn5SVleWGG27I3nvvncrKyvTv3z/nnntuku8XA8ydOzdNmzbNr3/96/zlL3/J3Xffnc0333yBHx8AAMBPWaFQqLMk27xeeOGFrLjiiikUCtlzzz1z66235tprr02/fv2K12Cff/551l133bz22mtp3LhxevXqlfPOOy9rrbXWf/zvAcAP4YEHHkjfvn3Tvn37TJgwIRtuuOH3jgGSr89V7733Xpo3b56WLVumWbNmIgCAnwBzRAPUs6eeeiqDBg3K7rvvnrvuuitJ8n//93858sgj8+qrr6Zx48bFm0C77rprrrvuujRp0iTnn39+Bg4cmCRp1KhRnWkkv03Tpk2TJB999FGS715WAAAAgK/NOyj/1ltv5dlnny1eUyXJSiutlLKyskyfPj033HBD1lprrWJw3bRp09TU1BSvvbbaaqv07NkzL774Yrp06fKd/6YIAIAFrXfv3tl9993zySefZLfddsvDDz+c8vLy771MQFlZWTp27Jj27dunWbNmKRQKIgCAnwAhAEA969GjRzbZZJN88sknOeaYY3LYYYfloIMOSteuXTNy5Mj07t27zvb9+vXLtddemyZNmhSnmEy+Xwxw+umnZ/z48VlhhRWy+uqrL7BjAgAA+KmbNwK49dZbs+eee+YXv/hFrr766syaNavOtrNnz07y9brLtYMolZWVKS8vT+PGjfPll19m7bXXznnnnZdp06Zl8cUXr7NGMwDUl6qqqpSXl+f666/Pvvvum3feeSe77bZbHnroofligOHDhxdjgFNOOaVODDAvERvAT4MQAKAe1dTUpGnTphk+fHgGDBiQmTNnZsSIEVl00UVz/vnnZ8cddyxuN6/ddtsto0aNKsYAp5xySpJ/HwNUVVWlrKwsN954Yzp27LjgDgwAAOAnbN4I4KqrrspOO+2Uhx9+OJtttll69eqVVq1a1dm+NrZ+/fXXc++992b27Nlp0qRJkuSEE07Ie++9l7XXXjvrrLNOllxyyTrTLwPAgjLvjKC1Pzdu3DjV1dUpKyvLVVddlX333Tfvvvtudt999/ligF69ehVjgL/+9a854ogj8sYbbzTIsQDwv3MFAlCPysvLU11dnWbNmmWppZZKkuI0Wu3atUtVVVVxu2/addddizHA4MGD8/vf/77O+7/NmWeemXfffTerrbbaD30oAAAAJaM2Ahg/fnwOPPDAdOjQIddee22uuOKKrLfeevM9+di+fftst912+cc//pGTTjopZ5xxRv76179m9913z6WXXpp11lknffr0KW4vAgBgQaupqalzviorKyvea6x9mOjbYoBvLhPQq1evXHTRRenatWseeeSR+WI4AH46ygoWjQaod7Nnz84pp5ySUaNG5ec//3nuvPPOdOrUKRdeeGF+8YtfpGnTpt/53htuuCG/+tWvMnv27AwePDgnnnhiPe45AADAT9u8T//P6/33389uu+2WKVOm5Nprr80vf/nLJJnvaf7a93/66ac54YQTcsMNN+TTTz8tvr7iiivmnnvuSdeuXc0EAEC9O/fcczN16tSMHTs2ydczhjZu3DhJUl1dnUaNGqVQKGTffffNddddl86dO2f06NHp2bNnnfPWtGnT0rVr1yy11FLOZwA/UUIAgAbyj3/8I19++WWWWWaZHH300Rk2bFg6deqU4cOHZ7vttqsTA3zzy/Y111yT0047Lffee2+WWWaZBth7AACAn5ZXX301yy23XJJvjwH+9re/Zf3118/666+fSZMmfed2yT+v0b744otMmDAhkyZNyqxZs7L88svniCOOyFJLLVUcbAGA+lAoFPLJJ59k8cUXT5L86le/yv/93/8l+e4YYPPNN899992Xjh07ZvTo0enVq9d89yGdzwB+uoQAAAvYd904Sv75JXz27Nk5+eSTM3z48PligHm/bL/44otZZpll0rRp03z11Vdp0aJFnS/yAAAAzG/o0KG57LLLcvbZZ2fHHXf81m1uueWW7Lzzztlrr70yatSof/v049y5c79zNjeDJgA0lCeeeCJbbLFFPv300+y7774ZOXJkkroxQO3P999/f/r165dPPvkkXbp0yciRI9O3b9+G3H0AfkDmcgFYgOZdm+vZZ5/N3XffnbvuuivTp09PkjRu3DjV1dVp2bJlzjnnnBx55JF55513cuSRR+a2227LV199Vbx5dPzxx2e//fbLlClTkiQtWrQofgYAAADf7uOPP87DDz+cF154Ieedd17xeuy7vPLKK/n888+/M+hOklmzZuWee+7Je++9V+f3tc/biAAAaAjV1dVZd911M2nSpLRq1SrXXHNN9t9//yRf30Osqqoq/pwkiy66aCorK7PuuuvmrbfeynHHHZe5c+c22P4D8MMSAgAsIIVCofj0yLXXXps+ffpk6623zjbbbJOePXtm8ODBxYH+QqGQZs2a1YkBjjjiiIwaNSp///vf079//5x//vn529/+ltVWW62BjwwAAOCnY9FFF82pp56agw46KCuttFLWWmutOq/X1NQkSdZdd90sv/zyefPNN/PKK6+krKysOGBSq7q6OsnXscDAgQMzceLEOq//q3gAAH4o3zXRc3l5eaqqqrL22mvnwQcf/NYYoKamJpWVlUmS9u3bp2PHjjn33HPTv3//jB079jtnuwHgp8fSAAAL2NixY7PHHnskSbbYYotUVVXlvvvuS5L85je/ycCBA9O1a9fiEgIVFRUZMGBALrvsslRXV6d58+b57LPP0r1790ycODHdunX7t1NUAgAAUHeptnfeeSedOnVKktx0000pFArZZZdditt+9dVX2XfffXPjjTemR48eue+++9K8efPi9VdlZWWaNGmSJNlxxx1z66235oYbbqjzGQCwoM17X/D111/PRx99lGbNmmWxxRZLx44dU1NTk0KhkEaNGuWpp57KxhtvnC+//DJ77713rrjiijRr1qz4WQcccECuu+66vP766+nYsWOSWIYUoIQYRQL4gdU+TVIoFDJ79uxceumlWWyxxTJmzJjcddddmTRpUsaNG5euXbvm8ssvz6mnnpo33ngjZWVlxZkBBg8enHPOOSebbLJJllxyyfzyl7/MAw88kG7duqW6uloEAMACN28vXPu0CAD81Mz7hH5tBFC7HvIf/vCHTJgwofh6ixYtcvHFF2eFFVbIY489ls022yxvvfVWcRaA2gjg2GOPza233potttgim222WT0eDQALu3lnIL3uuuvSt2/frLfeetlggw3Sq1ev3HbbbSkvL0+jRo1SU1NTnBmgdevWGTVqVHbaaadceeWVeeSRR7L//vtn5MiR2WSTTdKmTZvivyECACgdZgQAWEDeeuuttGjRIp06dcqpp56aU045Jck/q91Jkybld7/7XZ5//vnsv//+OeOMM7L00kvX+YyKiop88cUXadOmTZo1a5bq6mprTQJQr8aMGZMLLrgg48ePT4cOHRp6dwDgP/bNGdWefPLJXHDBBRk3blzWXHPNnHzyydlhhx2Krz/99NPp169fXnnllay88srZfPPNs8EGG+TLL7/MmDFjMmnSpHTv3j33339/OnfubMY2AOrd9ddfn7333jtJsuaaa6aqqirPPfdckuS8887Lr3/967Rr1654jpoxY0b22GOPvPjii0m+HuyvqqrK8ssvn3vvvTddunSpM4sOAKVBCACwAFx88cU58sgjM3z48Fx11VUZMWJE1l133VRVVaVRo0bFL9X33ntvjjrqqH8ZA9TyZRyA+jZx4sRst912qayszMiRI7Pvvvs29C4BwL9VUVGRmpqatGjRos50/g899FA22mijJMlzzz2XP/3pT7n66qvz85//fL4YYObMmdl3330zbdq0VFRUFH9fXl6ejTbaKKNGjUqXLl3E2gDUi3nvC3744YfZYost8u6772b48OHZbbfdMmfOnJxzzjn54x//mKqqqpx11lk57LDD0q5du+J7X3311YwaNSr33XdfysrKssIKK+S0005Lx44dnc8ASpQQAGABOPLII3PxxRenefPmmTNnznyDJ/N+ef9mDHDmmWema9euDbXrACzEas9PhUIhNTU12X333XPnnXfmsssuyz777NPQuwcA/9ZXX32VP//5z3n99dfTv3//dOnSJUly+eWX5+CDD85JJ52UQYMGJfn3McAXX3yRSZMmZcqUKfnkk0/SqlWr9O3bN5tsskkWXXRRgyYA1It57yPOmjUr//jHP9K9e/cMHz48hx9+eJ1tR4wYkVNOOSWffvppzjrrrBx66KFZZJFFvvUBo9rZApzPAEqXxV4A/kfzfpGu/Xn48OFp3rx5zj///JSXl2fatGnZZZdd0qpVqyQpDrKUlZVl0003zbBhw3LUUUdl5MiR+fzzzzNs2LB07ty5IQ8LgIVQ7fnsmWeeyTLLLJOXX345v/rVr4oRgKmPAfix++yzz/LAAw/k5ptvzltvvZWxY8fmuuuuy8EHH5zOnTunR48exW1XW221HHvssUmSq6++OoMHD06SYgzQpk2b7LTTTtlpp53m+3dqamoMmgBQL2qv0y688MIMHTo0gwcPzhprrJEdd9wxSVJdXZ2ysrKUl5fnkEMOSVlZWU4++eQMHDgwSYoxQO22teev2ms75zOA0uUuHsD/YN4IoLKyMmVlZamqqkqSnHvuuTn66KNTU1OTyy+/PLfeemud99bGAEmy6aabZvjw4VlyySVz//33p0WLFvV7IADw/02YMCFrrbVWfvOb3+Sdd97JhhtumEQEAMBPwxJLLJGjjjoqa621VsaNG5ef//zn2WeffdK1a9cMGzasOGhSU1OT5J8xwH777ZfHH388gwcPzvjx44ufV11d/a3/jnMiAPWpsrIyN910U2bOnJkjjjgizzzzTN54440kXw/kl5eXF89tBx98cAYPHpx27dpl4MCBGTFiRD777LPitgAsPFy1APwPaiOAYcOGZaeddsonn3ySxo0bF2OAP/3pT+nfv38qKipy4IEH5pZbbpnv/bUxQN++fXPDDTfk2WefzaKLLlr88g4A9aVQKGTOnDlp3bp1JkyYkI8//rh4w+i7BkIAoCHdeuuteeihh4p/Ly8vz8Ybb5y//vWv6dKlS2bMmJHmzZvn9NNPz84775xk/rjtX8UAjRo1ilU1AWhoTZo0yS233JJtt902H3/8cZo1a5aHHnoolZWVxW2+LQZYZJFFcvrpp+e8887L559/3lC7D0ADEQIA/A8KhUI+/vjjDBo0KHfccUcOPfTQfPrpp3VigHPPPTfHHXdc5syZk7322utfxgAbbbRROnbsmOrqak+YAFDvysrKssMOO+Saa67J4osvnkKhkKuvvjpz585NkyZNRGoA/KjceOON2XHHHTNkyJBMnTq1+Pva5dneeuutlJWVZc6cOZk4cWLef//97/ysb8YA5557bsaOHZsk862pDAD1rbq6Ou3atcuoUaOy5ZZbpqKiIpdffnmmT59eZ7tvxgBnn3125s6dm6uuuqr+dxqABmeUCeB/UFZWlkUXXTS33357VlpppYwZMya/+c1v5osBzjnnnH8bA8zLNF0ANJSmTZtm6623zoUXXphu3bpl2rRpOfzwwzNnzpyUl5ebGQCAH402bdqkb9++ufvuu4shQG1k/eGHH2a99dbLmWeemXXXXTfXX399Dj/88Lz77rt1BknmVRsDHHDAAXnooYdyzTXXZM6cOfV6TACQpM55qqamJo0aNUplZWXatWuXMWPGZOutt87LL7+cAw44IM8//3yd9857nvvNb36Tq6++Oo888kjatm1rlhuAhUxZwf/5Af4ntdNKTp8+PbvttlteeeWV9OvXL5dffnkWWWSRVFVVpXHjxkmSE044Ieedd15atGiR66+/PjvssEMD7z0A/NO8UyVXVFTkjjvuyJFHHpm33347Rx55ZM4555w0a9Ys1dXVojUAfhQefPDBTJs2Lf3790+SvP/++1lyySWTJK+//nqWWWaZPPzwwzn88MMzY8aM9OvXL8OGDUvHjh2L571vnteeeOKJXHfddfnd736XpZdeukGOC4CFT6FQKD4s9NVXX2Xu3LlJvo61W7RokSSZO3dumjZtms8//zx77bVX7rjjjqy66qoZPXp0VltttTqf982lcFzHASx8hAAA31Ptl+faL+Xzfjn/b2KAJLnjjjuy1VZbNdgxAbDwmff89eGHH+ajjz7Ke++9lxVWWCGdOnWqs+3cuXNz22235cgjj8w777wjBgCgwX3wwQfp0KHDt07XP2LEiNx8880ZOHBgevXqVfx9ZWVlpk6dmiOPPDLTp0+vEwPUDqgkyfjx44uxdmVlZZo0aeJ8B0C9mPc67c4778yVV16ZqVOnprq6Ouuuu25+9atfZeedd06S4n3G7xMDALBwszQAwPdUW9C+/vrrSVKMAWpfq6mpyVprrZWxY8dm+eWXz7hx43LwwQd/6zIBBx98cFq1apVVV121QY4FgIXTvDeX7r777vTr1y/rrLNO+vbtm9VXXz3HH398nTWWmzZtmu222y7Dhw9Pp06dMnz48JxwwgmpqKhIo0aNLBMAQL06++yzs+WWW+bJJ5+cb2rjd999N6NGjcrdd9+dYcOG5bHHHiu+1qRJk2y44YYZPnx41lprrYwbNy5HHXVU3n777TRt2jQ1NTUZOHBgdtppp5x88snF9ySWbQNgwZv3Ou2qq67Ktttum3HjxqVNmzZZZpllcuutt6Zfv34ZMmRIkhTvM7Zt2zbXX399ttlmmzz//PPZY4895lsmAICFmxAA4D8wdOjQdO/ePdddd12S744BRo8encUXXzxjx47NIYccMl8McOmll+bNN99M165dDaIAUG9qby6NGzcuW2+9dSZPnpzNN988v/3tb7Pmmmtm6NChOfbYY3PXXXcV3/NtMcDJJ59cjAEAoD589tlnufXWW/P000/n+OOPz1NPPVUnBujYsWPOOOOMbLPNNhk3blyGDBlSJwYoLy+fLwbYb7/98uijj+aQQw7JoEGD0qlTpxxyyCENcXgALMTmvU478MAD0759+4wYMSLPPvtspkyZkl/+8pdJkpNPPjlnnnlmCoXCd8YAm222WV588cWGPBwAfkSEAAD/gc8++yxJss8++2T06NFJvj0GWHvttTN69OiUl5dnzJgxOeigg+aLARZZZJEUCgWDKADUq3vvvTcHHHBA2rVrl4svvji33HJLRowYkT59+qS6ujqPPfZYjj322Nx9993F98wbA3Tr1i1Dhw7Naaed1oBHAcDCpl27dhk5cmS23Xbb3H///Tn66KPniwE23XTTHH/88dliiy1yyy23fGcMcMkll6RHjx6577770rNnz1xxxRVZeeWV8/DDD6dbt27FazYAqC9PP/10Bg4cmBYtWuTiiy/Ob3/72yRfz4Zz3XXXpXXr1ikvL8/pp5+eQYMGfWsMsOGGG+Yf//hH2rRp08BHA8CPRVnhm3OpAfAvnXPOOTnppJOSJNdff3322GOPJHWn8aqpqcns2bOz5ZZb5oknnkhlZWU23XTT3HjjjWnbtm2D7TsAC7e33nor++yzTx588MFcdNFFOeyww5Ikw4YNy/HHH59CoZAtt9wyt99+e1ZeeeX86U9/ytZbb118/9y5c3PTTTflzDPPzNixYy1xA0C9qb3eeuWVV3LEEUfkrrvuSq9evTJ06NCsvfbaxWuxJLn//vtz9tln55577smOO+6YE088MT169KjzeZ9++mlOPPHEfPnll1lsscVy8sknZ6mllkp1dbVYG4B6VVNTk3PPPTcnn3xyhg4dmqOOOirJ1xHAgAED0rp16zz99NOZPn16dtlllyTJGWeckYEDB6asrCxVVVVp3LhxZs2ala+++iodOnRwPgMgiRAA4Hub9wt07Rfx5NtjgNo/d95551RWVubRRx/Nxx9/nA8++CCLL754gx0DAAu3O++8M9tuu2369++fc889N0lyySWX5LjjjktVVVUmTZqUNdZYI3vvvXfuuOOOrLbaahkyZEi23Xbb4mdUVlamoqIirVu3bqjDAGAh9UPFALUDJrVqr/UMmgBQH2pqalJeXney5tNPPz0PPfRQ7rnnniTJyJEj87vf/S7V1dWZNGlS1l9//STJwIEDM2jQoCTJqaeemtNPPz1J3fuW3/b5ACycnA0AvuG7+qhGjRqlsrIySXLSSScVv3TvtddeGTNmTJKvlwmoqalJWVlZKisr8+STT2a77bbLE088kbfeeiuLL754ampq6udAAOAbvvjii+y11145/vjjkyTjx4/P2WefncrKytxxxx3p3bt3WrdunX322SfNmjXLiy++mJNOOil33XVX8TOaNGkiAgCgQdRG1927d89FF12UrbbaKlOmTPnWZQL69OmTk0466VuXCZh3ybYkxYETEQAAC1qhUCgO0k+aNCkPPPBAkuR3v/tdLrnkkhQKhXz44YcZPXp0Kioq8te//jXrr79+5s6dm0KhkE022SRt2rRJeXl5zjzzzOK13bznMBEAALWcEQDmUTuInyR///vfc//99+eiiy7KlVdemTfffDOzZ88ubjtvDLDnnnvmz3/+cyoqKopfto8//vi8+eabadeuXbp165ZOnTqlurral3EAGsxuu+2W008/PYsttliSr2cIePfdd3PZZZdls802Kz4huddee2XZZZdNZWVlnn322ey333659957G3jvAWD+GGDrrbf+lzHAySefXCcGmDp1apLUmREAAOpL7X3Ha665JltssUUGDRqUmTNnpn379llhhRVSVlaWJ554InfeeWd69eqVvn37JkmaNm2asrKyrLHGGmnTpk223HLLJMmIESPy+eefN9jxAPDj5qoH4P+bt8gdPXp0Bg4cmLfffjtz5sxJkiy77LLZbLPNcuihh2bttddO8nUMUF5enpNOOimHHHJIbrvttnTt2jUvvPBCcXrl2i/miSdMAGg4tVNFrrDCCkmSmTNn5sorr0ynTp2y6aabpqamJo0bN05FRUWaNWuWpZZaKmussUaaN2+e0aNHp1u3bg18BADwtdqZ2Lp3757hw4fnyCOPzJ133pmjjz56vmUCNtlkk+L7br/99nz66ac577zzss466zTU7gOwkHvxxRdz6qmnZvHFF8/ee+8937XWF198kSTp0qVLWrZsmZqamuL1WmVlZb744osceeSROeaYY7LSSiulbdu2xeVzAGBeQgCA/2/eInf//fdP8vW0/+3atctjjz2WV199NVdccUWmTJmSyy67LL17906SnHDCCWnXrl3OPvvs3HXXXZk7d26SZI011siECROKywGYCQCABW3emz9z587NV199lS+++CJdunQpxmjzrh3ZqFGjNG7cOK1atUp5eXkxAkiSV199NUsssUTOPvvsnH322enYsWPDHBQAC61/NahR+/vvGwOUlZXl008/zUsvvZSll1663o4BAOY9n1VXV2fmzJmZOXNmRo4cmX333Xe+7du2bZskmTBhQl544YWstNJKxfuKf/jDH/LFF1+kZcuWxdht3ms8AJhXWeG7FsMGWAg98sgj2WabbVJVVZWrrroqu+66a5KksrIyt9xyS0aMGJF77703yyyzTK6//vr06NGj+N7HH388r7/+ep588smsuuqq2WqrrdKhQwdfxgFYYOYNzea9uXTfffdl5MiRefjhh/P5559njTXWSN++fXPQQQdliSWWKG7bq1evPPzwwxk4cGCOOeaYtG/fPkly8sknZ8iQIbnoooty2GGHNdjxAbDwmvccN23atOLSbW3btk2fPn2y2mqrZfnlly9u/8orrxRjgF69es0XAyRfX+8tv/zy6dChg1gbgAWi9vzybTHbZZddlunTp6dbt24ZPnx4XnvttTRt2vRbt91jjz0yduzYdO3aNRdccEFatWqVa6+9NqNGjUrPnj0zYcKELLLIIvV4ZAD8FAkBAPLPL+l/+tOfctxxx+Wss87KgAEDknwdATRp0iTV1dV5/vnnM2DAgNx2223Zdtttc+mll6Zr167/9nMB4If2/vvv5/LLL8+JJ56Yxo0bF28cjRs3LnvttVeqqqqy0korpbKyMp988kk++eSTrL/++hkzZkzxSci//vWvOe6441JRUZG+fftmq622ysSJEzN69OissMIKmThx4r88zwHAgjDvgMi1116b/v375+OPP051dXWSr2cD6N27d/bbb78ceOCBxfd9nxggcZ0GwA/vm4P577zzTjp16pTk6/POW2+9lXXXXTcfffRRVlpppcyZMycvvfRSGjeuO2lz7QNFn376afbZZ5/cfvvtadSoUfEc2L1799x7773p2rWr8xkA/5YQAFiofPXVV/noo49y8803Z6WVVkrPnj3TqlWr4uu77bZbxo0bl9tvvz1bb711qqqq6nwhLxQKueeee3Lsscfm/fffzzXXXJOtt97aF28A6tVXX32Vbt265eOPP84777yTJZZYIsnXMwFstdVWadq0aQYPHpxDDjkkH374YSoqKrLHHntk2rRpady4cd57770suuii+fTTT/N///d/GTFiRF5++eXi5y+99NK58847s/LKKzfUIQJArr/++uy9995p2rRpjj766HTs2DGvvPJKJk6cmBdeeCFNmjTJ6aefnpNOOqn4nnljgE022SRnn3121l9/fesmA7DA1N4X/Pzzz/Poo49m1KhRufPOO3PppZdml112KW5344035ve//31efPHFFAqFXHvttdljjz3mO0fVRgU1NTU5+eST88wzz2T27Nn52c9+lpNOOimdOnUyAykA30vjf78JQGl49913M2jQoNx555155ZVX0rlz54wYMSJ9+/ZNy5Ytk6T4Bfrpp5/O1ltvPd/gfllZWTbeeOOsu+66ueaaa/KXv/zlW7cDgAWpRYsWWWaZZVJWVpYvv/wySTJ79uwMGzYsVVVVGTZsWA455JAkSceOHfP3v/+9eK7ae++9s+iiiyZJFllkkRx88MHZYost8pe//CVz587NUkstlf3228/6yQDUu3mfpnzmmWdy/PHHp1GjRhk1alT69etX3O6JJ57IqFGjMnTo0AwYMCCtWrXKkUcemeTrJyWHDx+eo48+OrfddluGDBmS0aNHp0mTJg1yTACUttoI4J133slxxx2XCRMmZNasWWnbtm3++te/pmfPnlliiSVSXl5ejAJOOeWUvPDCC7nllluywQYbZJlllqnzmbURQHl5eYYMGZK5c+emrKws5eXlxdkBRAAAfB9CAGCh8Prrr2f77bfP888/n9VXXz2nn3561lhjjay33npp2bJl8YZTjx49MmbMmDz11FNJkvLy8vnWX27evHn22WefjB49OrNmzWrIwwJgIVR7zurSpUsef/zx3HPPPfntb3+bTz/9NA8++GD69OlTjACSZMaMGTn44IMzderUHHbYYbnooouKr1VXV6dVq1ZZY4018qc//akhDgeAhdA3Z1SrnYlt3icin3/++bzzzjs5+uijixFA7bJt6667bpZeeum0bt06Z511Vi6++OKstdZa6d27d6qrq9O9e/ecf/75WWSRRfKHP/xBBADAAlF7Pnvttdey1VZb5eWXX07Pnj0zYMCArLfeeunQocN829bGACeccEJGjx6dxRdfPKecckqWWmqpOp9dXl5evPZr2rRpnddEAAB8X0IAoOS99dZb2XzzzfPqq6/m17/+dYYPH57mzZvX2ab2htNGG22URo0aZfTo0Vl11VXz+9//PuXl5cXStqampljezp07N23atGmIQwJgIVZ7M2jbbbfNzTffnNdeey1J8uGHH+aTTz7JIossUtxmxowZOfTQQ781Avjwww8zceLEbLvttmnbtu18nw8AC0LtQMg//vGPjBs3Lvfff3/mzJmTbt265eCDD84yyyyTli1bZtq0aUlSXF+5urq6zoB+hw4d8stf/jLPPPNMxo8fn0ceeSS9e/cuxtwrrrhirrrqqjRq1Gi+Jd8A4H9Vez576623suWWW+aVV17JEUcckQsvvLB4PVV7bTV37tw6g/m77LJLysrKctxxx+Xiiy9OWVlZBgwYMF8M4LoMgP+VuayBkvbJJ5/kN7/5TV599dUcffTRufzyy9O8efNUV1d/6/brr79+LrvssiTJaaedlnPPPTfJP0vb2j9HjhyZJNlwww2TfP3FHgDqQ+0TlN27d0+SPPDAAykUCmnSpEnKy8sza9aslJWV5cknn8whhxySRx99tE4EMGfOnCTJgw8+mD/84Q954IEH6ny+m00ALCi1gyYzZ87MDjvskMMOOyxjxozJrbfemuHDh+fXv/51Ro0alUKhkC5duiRJnnvuudTU1HzrNdfKK6+cLbfcMoVCIVdccUVxuZzac2Xt9ZsIAIAfWnl5eT799NMceuiheeWVV3LUUUdl2LBhKSsrK953rP25NgK45JJLMnXq1CTJzjvvnPPOOy/LLrtsLrroogwaNCjvvfdegx0PAKXJlRBQkmqL2wceeCD33ntvNt100+KUx9+1jlbte/bcc8+8+eabOeOMM3LiiSfmrbfeyk477ZSVVlopjRo1yumnn57Ro0dnrbXWyi9/+cskBk0AWLBqz1HzPq2/yiqrpEuXLnnhhRfy7rvvZplllsn666+fiRMnZujQobnpppvy2GOP5dBDDy1GABUVFcVZcYYNG5Z33323GBQAwII07/TJvXv3zjvvvJNtttkmm2++eQqFQs4///w89thj+eyzz7LIIouke/fuKS8vz6OPPpp//OMfWXLJJetcy9WeE7fbbrucdtppqaysNKsNAPWi9pz20EMPZeLEidl4440zdOjQJHXvO847I81OO+2U8ePH54ADDkjTpk2z1lprZeedd06S9O/fv3jN9m0zAwDAf8uMAEBJqr35c8stt6SysjL9+/dP8vUX8O9aR6v2PS1btsxRRx1VDAeGDx+e7bffPj169Mjaa6+dyy67LCussEJuueWWdOjQITU1NfVwRAAsjObMmZNPPvmkeI6ad4rJpZZaKiuuuGI++eSTvPzyy2nRokVxDeXjjjsukydPTv/+/XPxxRcnSWbPnp1mzZolSY499tg8+OCD6devX7p169YARwbAwmTeCGCjjTbKO++8k+OOOy633XZbjjnmmBx77LG5/fbbs8466+Tvf/97rrnmmmyyySbp0aNHXnjhheyxxx6ZM2dOcZr/JMWnLSsrK/PVV19l2WWXTevWrRvyMAFYSNTOPHPTTTeloqIixx13XJK69x2rq6uLEUC/fv0yfvz4NGnSJH/5y18ydOjQTJ8+PcnXMwOcf/75xZkBTj755HzwwQf1f1AAlCQhAFCSampq8uWXX2batGlp2rRpVlhhhSTff0rI9u3b5+ijj87EiROz6667pnPnzvnss8/SpUuXHHbYYXnggQfStWvXVFdXF7/8A8AP6f33388WW2yRvn375oQTTsjw4cPz2GOP5eOPP05lZWWSZNVVV02S3HvvvUm+fpLkV7/6VWpqatK8efPssssuxc9r2bJlkmTgwIEZOnRoVltttfz+979Pq1at6vnIAFjY1EYAvXr1ynvvvZcBAwbknHPOSfL1oEmhUMiaa66Zyy67LE2bNs2ECRPy4osv5vLLL88yyyyTBx98MLvssktmzZpVvKar/fPss8/Ol19+mfXWWy+FQsGybQAscDU1NZk9e3amTZuWZs2aZZVVVklS975jbRCw9dZb56abbsoOO+xQHPC/+uqrM3To0MyYMSPJ1zHABRdckDZt2mTChAlp0qRJ/R8UACXJ0gBAyZo7d24+/PDDJP/dmpCvvvpq+vTpk969e2fWrFl57733svTSS6dp06Zp0qTJdy4xAAD/q5qamvzud7/LE088kTlz5uTpp59OkjRp0iRLLrlkunfvnu233z6ffvppktR5YmTgwIGpqKjI9ddfn4022ij9+/fPcsstl7Kystx4442ZOHFillpqqYwdOzZLL710QxweAAuZioqK9O3bN++++27WXnvt7LrrrsXXaq/Vqqqqstpqq2XFFVfMs88+mzfffDM777xzLrzwwhx11FG58847s/HGG+fggw/OyiuvnEUXXTTnn39+rr766qy88so59thjLQsAQL2pqKjIBx98kLKysu8cuH/44Yczffr09OrVKxdffHE6d+6cRRddNAMGDMjVV1+d6urq9O/fP2uttVZ22GGHjB07Nquvvnrat29vuRsAfhBlBak0UMI23njjTJ06NXfccUf69u1bZ22uf2fIkCHp2rVrdt999/8qJACA/8Unn3ySNm3aZOLEiXnnnXcyadKkvPzyy3n11Vfz0Ucf1dm2TZs2ufPOO7PhhhumUCjkk08+yTnnnFN82rJW27Zts8EGG+Siiy7K8ssvX5+HA8BC7qGHHsqWW26Zr776KgceeGAOPfTQrLvuukm+nt6/SZMmKRQKWXnllTNr1qzcd999WXHFFVNZWZmpU6fmoIMOygsvvFD8vCZNmqSysjKrrbZabr/99uKMbWJtAOrLxhtvnGnTpuWee+5Jr1695jsPffnll3nqqaey3HLLpVOnTsXf33jjjTnqqKPyzjvv5KKLLsqhhx5aZ9Df+QyAH4oQAChJhUIhc+fOzT777JNx48Zlr732yqhRo4qv/bui9uOPP87qq6+exo0b57HHHkvHjh3rY7cBoOjbzldz587NG2+8kWeeeSavvfZa7rvvvrz++ut57rnn0q1bt4waNSo9e/Ysbj958uTMnDkzr776alq0aJFNN900yy67bBZddNH6PhwAyLRp09KjR48kyX777Zejjz46a665ZvF8d+KJJ+bcc8/Nlltumeuuu67O+erjjz/ORRddlKeffjp///vf071796y33nr57W9/myWWWMKgCQD1pva+4957750bb7wx++yzT66++uria99237F2+ZraJUb333//XHPNNbn44otz6KGH1uv+A7DwEAIAJW3KlCnZeuutM3fu3Fx88cX5zW9+k+S7v5TX3jyaPn16+vTpky233DJjxoyp790GgPnU1NQUbxrVmjNnTu67774MHjw4U6ZMSdeuXTN69OhssMEGDbSXAPCvzRsD7LvvvjnppJOyyiqr5Nxzz82JJ56YDh065IEHHsjKK69cvG6rvU6r/fuHH36YxRdffL7XAaA+TZ48Odtss02qqqoyfPjw733fcfbs2VlnnXXSqlWr3HfffWnbtm197zoAC4nyf78JwE/XOuusk9133z01NTW58sorM2HChCRJWVlZampq6mw7782jAQMG5PPPP89OO+2UJPNtCwD17ZsRQE1NTZo3b57NNtssJ554YjbaaKO8+eab2WOPPfLoo48m+edTJwDwY7HeeuvlscceS5Jcc801Offcc3PUUUflxBNPTJs2bXLXXXdl5ZVXTk1NTXEQpfY6rfbviy22WJ3PFAEA0BDWXXfd7L777qmqqvre9x1rampywAEH5MUXX8wOO+yQli1bNsSuA7CQMCMAUPJee+219OvXL9OnT88mm2ySww47LLvttluSr7+El5eXF6fmqqmpyXHHHZehQ4dmyy23zOjRo9OuXbsGPgIA+NcqKytzzz33ZPDgwXnooYfStWvXjBkzJj169PheS+IAQH2bd2aAsrKytGzZMg899FB+9rOfpbKyMk2aNGngPQSAf+8/ue9YKBRy3HHH5YILLkivXr1y0003zRe3AcAPSQgALBSef/757LzzznnppZey/PLLZ4899sipp56aJGnSpEnmzp2br776Kocffniuu+66LLvsspk8eXI6der0rVMxA8CPzTdjgNppJn/+85839K4BwLeaOnVqNt5448ydOzfbb799RowYkY4dOwrYAPhJmfe+4worrFC871goFNKkSZPMmTMns2bNyuGHH56xY8emW7dumTJlSjp37uy+IwALlBAAWGi8+OKLOeyww/LQQw+loqIiPXr0SOfOnbP66qtn+vTpef755/Pyyy9n7bXXzi233JIuXbpYaxKAn5TKyspMmjQpxx9/fJ577rm88MILWWGFFRp6twDgO02dOjUbbrhhCoVC9t133xx99NFZe+21G3q3AOA/8s37jhtuuGG6du2aVVddNY8//nief/75vPrqq1lvvfUybtw49x0BqBdCAGCh8t5772XMmDEZNGhQPvroo1RXVxdf+9nPfpbNNtssJ510Ujp06ODLOAA/SXPnzs0DDzyQFVZYIcsss0xD7w4A/FvzLhOw33775eijj85aa62VJJa4AeAn47333svo0aMzePDg+e47rrPOOtl8883Tv39/9x0BqDdCAGCh9NZbb+WZZ57JjBkzsthii6V58+bZZptt0rZt2zRt2tSXcQAAgHr0zRjgmGOOyZprrtnAewUA/7k333wzzzzzTJ5++ul06NAhzZs3z3bbbZdWrVqlSZMm7jsCUG+EAADf4IkTAACA+jdt2rRssMEGKRQK2WmnnfKHP/whq622WkPvFgAAwE+SEAAAAACAH4XHH38866+/fjp06JC//e1vWXTRRRt6lwAAAH6ShAAAAAAA/GjMmDEjiy66aLp27ZqampqUl5c39C4BAAD85AgBAAAAAPjRsYYyAADAf08IAAAAAAAAAAAlxNxqAAAAAAAAAFBChAD/3wcffJAJEybk1FNPzTbbbJPFF188ZWVlKSsry69+9auG3j0AAAAAAAAA+F4aN/QO/FgsueSSDb0LAAAAAAAAAPA/MyPAt+jatWu23HLLht4NAAAAAAAAAPiPmRHg/zv11FOz3nrrZb311suSSy6Z119/Pcsuu2xD7xYAAAAAAAAA/EeEAP/fGWec0dC7AAAAAAAAAAD/M0sDAAAAAAAAAEAJEQIAAAAAAAAAQAkRAgAAAAAAAABACRECAAAAAAAAAEAJadzQO7Cw6NOnT0PvAgD8T5o3b54777wzSbL11ltnzpw5DbxHAPCfcz4DoFQ4pwFQau6///6G3gV+JEaMGJHRo0dn9913z6GHHtrQu/OTZUYAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCGNG3oHfiymTJmSl19+ufj3Dz/8sPjzyy+/nKuuuqrO9r/61a/qac8AAAAAAAAA4PsTAvx/V1xxRUaOHPmtrz300EN56KGH6vxOCAAAAAAAAADAj5GlAQAAAAAAAACghAgB/r+rrroqhULhe/8HAAAAAAAAAD9GQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAAAAKCFCAAAAAAAAAAAoIUIAAAAAAAAAACghQgAAAAAAAP5fe/cfq2Vd/3H8dfwBJw6ETsEfgWOiUGMVhSY0SEhZzkgUHGqtwZaZxYqlpjkJZakNWMKkVbYkmrQIQVxZlll6nI1EarJMmoimHTIIlspEhCPn+0d5JsEBTvw4fd89HhvbOff1+Vz3+2bXdv64n/d1AwBQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQoQAAAAAAAAAAFCIEAAAAAAAAAAAChECAAAAAAAAAEAhQgAAAAAAAAAAKEQIAAAAAAAAAACFCAEAAAAAAAAAoBAhAAAAAAAAAAAUIgQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAoRAgAAAAAAAAAAIUIAQAAAAAAAACgECEAAAAAAAAAABQiBAAAAAAAAACAQjodArzyyitZvHhxrr766px99tk57bTT0rt373Tr1i19+/bN6NGjM3v27GzevLnDcyxcuDANDQ379W/hwoUdnueFF17It771rVxyySUZPHhwmpqa0tjYmH79+mX8+PH54Q9/mNbW1k69vhdeeCE33nhjzjjjjPTp0yeNjY3p379/Ro0alRkzZuTJJ5/s1PkAAAAAAAAA4HA6qrMbVq5cmcsuu2yPx/7+97+nubk5zc3NmTNnThYtWpSPfOQjBzzknsyYMSM333xz2tradju2fv36rF+/Pj/+8Y9z2223ZdmyZTnllFP2ec758+fn+uuvz6uvvrrL4y0tLWlpacmjjz6aV155JfPmzTtYLwMAAAAAAABgF7Nnz851112XJFmxYkWGDx/exRNxuB3oNdDpECBJ+vfvnzFjxmTYsGHp379/TjrppOzcuTMtLS1ZunRp7rnnnmzatCkXXHBBHn/88bznPe/p8Fy/+MUvcvLJJ3d4vF+/fnt8/K9//Wva2trS1NSUiy66KOecc05OP/30NDY2Zs2aNbn99tvz+OOPZ9WqVTn33HPz+9//Pj179uzweW6++eZ85StfSZKceuqpueKKK3LWWWelV69eWb9+fZ5++uksX748Rxzh2xQAAAAAAACAQ2PNmjWZMWNGmpqadvsAM/8bDsY10OkQYMyYMXnhhRc6PD5p0qTce++9ueiii7J9+/bMnDkzy5Yt63D9oEGDMmDAgM6OkeOOOy6zZs3KZz/72fTq1WuXY8OGDctll12Wj3/841myZEnWrl2buXPntr/R/+9+/etftx+7+OKLs2jRonTv3n2X8yXJNddck+3bt3d6VgAAAAAAAIB9eeONNzJ58uS8973vzaBBg7Jo0aKuHonD7GBdA53+ePuRRx65zzUXXnhh3vnOdyZJHnnkkc5PtR9mzZqVa6+9drcI4E1HHnlkvvnNb6Zbt25JkqVLl+5x3c6dO3PllVcmSQYPHrxbBPDv3jwfAAAAAAAAwME0a9asrF69OgsWLNiv92Wp52BdA4fsPvdNTU1Jkm3bth2qp9in4447rv1rCdatW7fHNQ888EDWrl2bJLn++uv3GgEAAAAAAAAAHApPPvlkZs6cmenTp2fIkCFdPU6X+dvf/pYkue+++zJ16tSsWrWqiyc6fA7mNXBIQoA1a9bkiSeeSJL2OwN0lddffz1JcsQRe36pd999d5J/3kFgwoQJ7Y9v2rQpzzzzTF5++eVDPyQAAAAAAADwP6u1tTVTpkzJu971rnz5y1/u6nG6zOzZs9Pc3Jwk2bp1a5566ql86Utfypw5c7p4skPvYF8DBy0E2Lp1a9auXZvbbrstY8aMyRtvvJEkmTZt2l73TZkyJSeccEK6deuW448/PsOHD8/06dOzfv36A55p48aNWbNmTZKOg4Tf/va3SZIhQ4akqakpt99+e0477bT06dMnp59+eo455pgMGTIkt99+e3bs2HHAMwEAAAAAAAC81a233tp+O/ijjz66q8fpEqtWrcr999+/x2M/+9nP8rvf/e4wT3R4Hexr4IBCgIULF6ahoSENDQ1pamrKoEGDcvXVV2fDhg1JkmuuuSaf+MQn9nqO5ubmbNy4MTt27MjmzZvz2GOP5ZZbbslpp52WO+6440DGy5w5c9La2pokmTRp0m7Hd+7cmT/96U9JklNOOSUTJkzItGnTdvsagaeeeirTpk3L2LFjs2XLlgOaCQAAAAAAAOBNq1evzs0335xrrrkm73//+7t6nC7zve99b6/HFyxYcJgmOfwOxTVw1EE5y78ZOnRovv3tb+ess87qcM2pp56aCRMmZMSIEenfv3+S5Nlnn82yZcuydOnSbNu2LVdeeWUaGhpyxRVXdHqGxx57LPPmzUuS9OvXL5/73Od2W/Pyyy9n586dSZJf/vKXef3119OvX7/MmTMn5513Xrp3756VK1fmuuuuy2OPPZbm5uZ8+tOfzuLFizs9z8MPP9zpPQDw3+rnP/95V48AAAfM3zMAqvA3DQD+f5s8eXIGDhyYm266qatH6VKbNm06oOP/nx2Ka6Chra2t7T/d/NJLL6WlpSVJ8tprr2XdunVZsmRJli9fnoEDB2bevHkZN27cbvtefvnlvP3tb09DQ8Mez3vfffdlwoQJ2bFjR3r06JF169blxBNP3O+5NmzYkDPOOCMtLS1paGjIgw8+mA9/+MO7rWtpaWmPEJKkV69eeeKJJ3Lqqafusu61117LiBEjsnr16iTJypUrc+aZZ+73PAAAAAAAAAB70tF7pv9u+fLlufDCCw/tMHSJQ3ENHNAdAY455pgcc8wx7b+feeaZufTSS3PXXXdl8uTJGT9+fO68885MmTJll329e/fe63nHjRuXG2+8MdOnT8/WrVtz55135oYbbtivmbZs2ZKPfvSj7YHCrbfeuscIIEkaGxt3+X3q1Km7RQBJ8ra3vS233HJLe9SwePFiIQAAAAAAAABwwD71qU/t8fFHHnkka9euzQUXXJA+ffpkwIABh3cwDptDcQ0c0B0B9uaSSy7JkiVL0tTUlL/85S859thjO7V/48aNOfHEE9PW1paxY8fmgQce2Oeebdu25fzzz89DDz2UJLnqqqvy9a9/vcP1r7/++i4xQHNzcz70oQ91eO5evXqltbU1o0aNyiOPPNKp1wMAAAAAAACwv6ZMmZLvf//7WbFiRYYPH97V49AFDuQaOOIQzZTx48cnSV599dXcf//9nd7ft2/fHH/88UmS9evX73N9a2trJk2a1B4BXH755XuNAJKke/fu6dOnT/vv/fr163BtY2Nj+zwbN27c5zwAAAAAAAAA0BUOWQjw1jfYn3/++f/oHPt7s4KdO3fmk5/8ZH7yk58k+efdCO6444792jtkyJD2n9944429rn3z+FFHHdA3KgAAAAAAAADAIXPIQoC3foq/Z8+end6/cePGbN68OUly8skn73XtZz7zmSxevDhJMm7cuNx111054oj9e2lv/SqAdevWdbjulVdeyaZNm5Ik73jHO/br3AAAAAAAAAD/iYULF6atrc3XAvwPO5Br4JCFAHfffXf7z+9+97s7vf873/lO+x0Bzj777A7XXXXVVfnud7+bJDnnnHOydOnSHH300fv9PBMnTmz/+Z577ulw3fLly9vnGTVq1H6fHwAAAAAAAAAOp4a2/b3//r8sXLgwl156aRobGztcM3fu3Fx11VVJkgEDBmTt2rXtt9P/85//nH/84x953/ve1+H+++67LxMnTsz27dvT2NiYZ555Zo+fwr/pppsyc+bMJMkHP/jBPPDAA2lqaurMy0mSnH/++bn//vtz1FFH5aGHHsrIkSN3Of7iiy/mAx/4QFpaWtKtW7c8++yz7goAAAAAAAAAwH+lTocAAwYMyJYtWzJx4sSMHDkyAwcOTM+ePbNly5b84Q9/yA9+8IP85je/SZJ069YtP/3pT3Puuee273/44YczZsyYjBgxIh/72McydOjQ9O3bN21tbXn22WezdOnSLF26tP3T99/4xjcyderU3eaYP39+vvCFLyT55636f/SjH6V37957nX3w4MF7vFvA008/nbPOOisvvfRSevTokS9+8Ys577zz0r1796xcuTJf+9rX2r/qYNasWbn22ms7818GAAAAAAAAAIfNfxQCPP/88/tc169fvyxYsCBjx47d5fE3Q4B96dGjR+bOnZsrrrhij8dHjx6d5ubm/Rv6X5577rkMGDBgj8ceffTRXHzxxdmwYcMejzc0NOSGG27IV7/61U49JwAAAAAAAAAcTkd1dsOvfvWrPPjgg3nooYeyZs2abNiwIZs3b05jY2NOOOGEDB06NOPGjcukSZPSo0eP3fYPGzYsixYtyooVK7Jq1aq8+OKL2bRpU1pbW3PsscdmyJAhOeecc3L55Zenb9++B+VF7o+RI0fmj3/8Y+bPn5977703zz33XLZv356TTjopo0ePzuc///m9fp0BAAAAAAAAAPw36PQdAQAAAAAAAACA/15HdPUAAAAAAAAAAMDBIwQAAAAAAAAAgEKEAAAAAAAAAABQiBAAAAAAAAAAAAoRAgAAAAAAAABAIUIAAAAAAAAAAChECAAAAAAAAAAAhQgBAAAAAAAAAKAQIQAAAAAAAAAAFCIEAAAAAAAAAIBChAAAAAAAAAAAUIgQAAAAAAAAAAAKEQIAAAAAAAAAQCFCAAAAAAAAAAAo5P8A8/O+A4x+i4kAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 2500x1000 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"msno.matrix(political_stability)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "380be499",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are no null values in the table.\n"
]
}
],
"source": [
"# count number of null values in countries dataframe\n",
"nulls_ps = political_stability.isna().sum().sum()\n",
"if nulls_ps == 0:\n",
" print(\"There are no null values in the table.\")\n",
"else:\n",
" print (\"There are \", nulls_ps, \"null values in the table.\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "01076b4e",
"metadata": {},
"outputs": [],
"source": [
"# rename columns\n",
"political_stability.rename(columns={'Country': 'ps_country_name', 'Year':'ps_year', 'Political_Stability':'political_stability'}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "a8b943c5",
"metadata": {},
"outputs": [],
"source": [
"# type casting\n",
"political_stability['ps_country_name'] = political_stability['ps_country_name'].astype('string')\n",
"political_stability['ps_year'] = political_stability['ps_year'].astype('int')\n",
"political_stability['political_stability'] = political_stability['political_stability'].astype('float')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "5f89f805",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Il y a 200 pays dans la liste.\n",
"Aucun doublon dans la table.\n"
]
}
],
"source": [
"print (\"Il y a\",political_stability['ps_country_name'].nunique(), \"pays dans la liste.\")\n",
"if (political_stability.loc[political_stability.duplicated() == True].shape[0]) != 0:\n",
" print(\"Doublons dans la table.\")\n",
"else:\n",
" print (\"Aucun doublon dans la table.\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "9964961d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pays ayant un indice de stabilite politique mais absents du referentiel pays:\n",
"['American Samoa', 'Bermuda', 'China, Hong Kong SAR', 'China, Macao SAR', 'China, mainland', 'China, Taiwan Province of', 'Greenland', 'North Macedonia', 'Palestine', 'Puerto Rico']\n"
]
}
],
"source": [
"print(\"Pays ayant un indice de stabilite politique mais absents du referentiel pays:\")\n",
"countries_out = isInList(political_stability['ps_country_name'].unique().tolist(), countries['country_name'].unique().tolist())\n",
"print(countries_out)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "7f8b67dd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pays du referentiel n'ayant pas d'indice de stabilite politique:\n"
]
},
{
"data": {
"text/plain": [
"['China', 'Monaco', 'Republic of North Macedonia', 'San Marino']"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\"Pays du referentiel n'ayant pas d'indice de stabilite politique:\")\n",
"isInList(countries['country_name'].unique().tolist(), political_stability['ps_country_name'].unique().tolist())"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "21d50ca5",
"metadata": {},
"outputs": [],
"source": [
"# replace China, mainland with its correct name in countries list\n",
"political_stability.loc[(political_stability['ps_country_name'] == 'China, mainland'), 'ps_country_name'] = 'China'"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "577f329c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pays du referentiel n'ayant pas d'indice de stabilite politique:\n",
"['American Samoa', 'Bermuda', 'China, Hong Kong SAR', 'China, Macao SAR', 'China, mainland', 'China, Taiwan Province of', 'Greenland', 'North Macedonia', 'Palestine', 'Puerto Rico']\n"
]
}
],
"source": [
"print(\"Pays du referentiel n'ayant pas d'indice de stabilite politique:\")\n",
"isInList(countries['country_name'].unique().tolist(), political_stability['ps_country_name'].unique().tolist())\n",
"print(countries_out)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b49a83f3",
"metadata": {},
"outputs": [],
"source": [
"# remove countries for which political stability index is missing\n",
"political_stability_trim = political_stability.loc[(political_stability['ps_country_name'].isin(countries_out) == False)].copy()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "98879320",
"metadata": {},
"outputs": [],
"source": [
"# reorder columns to set primary key as first column\n",
"political_stability_final = political_stability_trim[['ps_country_name', 'ps_year','political_stability']].copy()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "f49fb184",
"metadata": {},
"outputs": [],
"source": [
"# export df to csv file\n",
"political_stability_final.to_csv('C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/DWFA_political_stability_final.csv', index=False, encoding='latin_1')"
]
},
{
"cell_type": "markdown",
"id": "8538ef7b",
"metadata": {},
"source": [
"### 3 - table population"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "62e9f2cc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>Population</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>20914.000</td>\n",
" <td>20914.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>2009.047</td>\n",
" <td>22531.641</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>5.479</td>\n",
" <td>100016.851</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>2000.000</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>2004.000</td>\n",
" <td>348.346</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>2009.000</td>\n",
" <td>3016.337</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>2014.000</td>\n",
" <td>11150.426</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>2018.000</td>\n",
" <td>1459377.612</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Year Population\n",
"count 20914.000 20914.000\n",
"mean 2009.047 22531.641\n",
"std 5.479 100016.851\n",
"min 2000.000 0.000\n",
"25% 2004.000 348.346\n",
"50% 2009.000 3016.337\n",
"75% 2014.000 11150.426\n",
"max 2018.000 1459377.612"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# import file - source : \n",
"pop = pd.read_csv('population.csv', encoding='latin_1')\n",
"pop.describe()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "095c3dcc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACBMAAAOZCAYAAABGUPqqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3S0lEQVR4nOzdedxWA/7/8fd9322KJJI2RUPZt5Hse7YZslRjbIMZBhORXUYZY8s2lcFg7FLZZU8JhbKTwdiyNgZFtN3b7w+/+5qObfgO3ej5fDzm4e6+znV1zvzRuc45r/M5ZbW1tbUBAAAAAAAAAPj/yut7BQAAAAAAAACAHxYxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAD8H9TW1tb3KgAAAADA90ZMAAAA8C3V1tamrKwsSfLee+/V89oAAAAAwHdPTAAAAPAt1YUEl156afr27Zs5c+akpqamntcKAAAAAL47ZbVmcwIAAHxrU6dOzXrrrZePPvoozz33XDp37lyYWAAAAAAAP2YmEwAAAPwfdOzYMdttt13mzp2bU089NXPmzBESAAAAAPCTYTIBAADAt1RTU5Py8vK89NJL6dGjRxZbbLGMGTMmrVu3Lr0GAAAAAD9mznABAAB8S3WxwNJLL5111103U6ZMyfnnn194DQAAAAB+zJzlAgAA+Ao1NTVf+N38w91atGiRvn37JkluvvnmvPTSSwts3QAAAADg+yQmAAAA+Ap1Uwaef/75TJ8+PUlSVlaWmpqa1NbWpra2Nuuvv3569eqVKVOm5PHHH6/P1QUAAACA74yYAAAA4HPmnz4wZMiQrLrqqtl1113z5z//OXPmzElNTU3KyspSW1ubhg0bZsstt0xtbW0GDRqUN998sx7XHAAA4KetLuyu+xmA74+YAAAAWGh92QmoqqqqlJWVJUmqq6uz2GKLZZ111skjjzySE088MZtsskkGDRqUl156qTS54IADDshWW22VN954I88880zpvQAAAPzv5j9mKysrKx1v1R27iQoAvh9iAgAAYKFVVlaWTz75JLfffnueffbZJEmDBg2SJJdeeml22WWX9O7dO/fff3/uvPPObL311nnzzTfz5z//Oeuuu24GDhyYu+66K0nSs2fPzJkzJ0OGDEmSVFRU1M9GAQAA/ITU1taWooHRo0dn3333Tffu3XPIIYfkuuuuS2VlZelxdAB8t8pq5VoAAMBCqra2NnfccUf69++fNm3a5Iwzzki3bt1yySWX5IADDkjHjh0zatSo/PznP0+SzJgxI1OnTs3555+fW265Jf/+97+TJIcddljWWmutHHXUUZk1a1YuvfTS9O7du3DSCwAAgP+7yy+/PPvtt1/hd82bN0/v3r0zZMiQNGnSJDU1NaUJcgD878QEAADAQu3pp59O//79M3bs2PTs2TNdu3bN6aefnnbt2mXIkCHZeeedk+QLYcBjjz2Whx56KGeccUb+9a9/ZZlllsmHH36YefPm5bDDDsu5555bX5sEAADwkzJhwoRss802qaioyMknn5zlllsukydPzmWXXZZ33nknu+yyS66++mpBAcB3TEwAAAAsVN5+++20adOmdHKpuro6kydPztlnn50bbrghSdKqVatcffXV2XrrrZMUQ4LPn5h68cUXM2nSpPzlL3/Jc889l3nz5iVJxo0bl0033XRBbhoAAMBPwuePu4YMGZJ+/fpl+PDh6dOnT5Jk7ty5eeSRR7L//vvn1Vdfzc4775xrrrlGUADwHfIvKQAAsNA4++yzs9NOO+WBBx4oPU+zoqIi3bt3z/LLL58kKSsrS/v27dO+ffskn4UE8/v8CakuXbpkr732yoQJE/L3v/89e+21V5LkzjvvTG1tbaqrq7/vzQIAAPhJqTvuuvLKK3PZZZfllVdeSc+ePUshQU1NTRo3bpxNN900o0aNyvLLL5+bbrope+yxR+bMmZPy8vLSMR8A/3cmEwAAAAuF999/P7vvvnvuu+++bLXVVhk2bFhWXHHFVFVV5YMPPkiXLl1SXl6ezp075/HHH8+2226bP/7xj+nevXuSLz7mYH7V1dWpqKhIkjzyyCPZdddd07Bhwzz22GNZaqmlFtg2AgAA/FQ8+eSTWWedddKuXbs0adIkXbt2zc0335wkpeOv+Zft1avXFyYUzH+sBsC3ZzIBAACwUFhqqaVy1llnZbfddkvbtm2z4oorJvnsJFTr1q1zxx13ZPjw4bniiiuy/fbb56677sqgQYMyadKkJJ9NLKhrsT/fZM9/cqp79+7ZYIMN8sYbb5QemwAAAMC3s+yyy+aYY47JtGnT8sorr2Tu3LmpqKhIRUXFF6YOrLXWWoUJBfvss09mz54tJAD4H4kJAACAhcYaa6yRc845J5dffnmS5Lbbbst9992XqqqqbLDBBtlmm22y8sor5/jjj8/222+fu+++OyeddFIhKKisrCxNKJg5c2aSlE5kzZ07N0nSu3fvJMm77767IDcPAADgJ2PJJZfMUUcdlRNPPDFJMmbMmJxzzjlJ8qWPMagLCrp06ZJRo0blsMMOW+DrDPBTIyYAAAAWKu3bt0+S3H333dlpp51y0kknZeLEiYVpAxtssEEGDBjwpUFBw4YNU1NTk4EDB2avvfbKv/71r9LzPBs3bpwkGT9+fJKkSZMmqa2t/cIkAwAAAIpqampKx07V1dVJkpYtW+bggw/OySefnCQZNGhQKQ7/qqDgiiuuyAYbbJDjjjtuwa08wE+UmAAAAFgofP4k09JLL53tt98+kyZNysCBA/PAAw8UlunevXtOPPHE7LDDDrn77rvzxz/+MRMnTkySHHvssTn55JPz7LPPlkKCOmeffXb++te/pn379vnVr36VsrKy0iQDAAAA/mP+8Lq8vPxLj52WWmqp/P73v89JJ52UmTNn5phjjslll11Wes/nj/W6deuWcePGZbnllktVVdX3uwEAP3EN6nsFAAAAvm+1tbWli/633HJLVlxxxay11lo5/fTT07hx49x0001JkpNOOikbb7xxadn11lsvAwYMSEVFRW699dY89NBD6dy5c5599tksu+yyGTt2bFq1apWamprSe7beeuu0a9cuo0ePTqdOneplewEAAH7o5j+OevDBBzNmzJiMHz8+iy++eFq3bp2DDjooq622Who0aJCllloqhxxySJLPphMce+yxKSsry29+85tSUDB/6N2wYcMkSYMGLoMB/C/Kas3bBAAAFhLXXntt9txzz3Tu3DmPPPJIllxyyTz77LMZOHBgbrrppmy22WZfCAqS5B//+Ef+9re/5S9/+UvatWuXLl265Iorrki7du1SXV2dioqKJCn9PHfu3NIjDwAAACiqra0tTSG48sorc/DBB2fWrFmFZZo1a5ajjz46u+22W1ZaaaUkyQcffJBhw4Zl0KBBadWqVc4444z85je/SZIvBAUA/O/EBAAAwE/W/CeoXnzxxWy//faprKzMgAEDcsABB5SW+yZBQZI88cQTWXzxxdOqVas0b968EBJ81d8LAADAlxs1alT69OmTFi1a5MQTT0y3bt3yzjvv5Oabb87w4cPTqFGj7LHHHunXr19WW221JMmHH36YoUOHZtCgQWnTpk0GDBiQgw46qJ63BOCnSUwAAAD8JH3+gv6kSZPSvXv3XHLJJdlvv/2SpBADfF1Q8GXRgGAAAADgq9UdM33VsdPLL7+cnXfeOVOmTMmIESPSq1evwuuDBw/OBRdckLfffjt9+/bNMccck1atWiX5LCg4//zzc9JJJ2W11VbLxIkT06xZswWyXQALE/NeAACAn6S6k1VnnHFGevTokVdeeSVrrbVWfv3rXyf5bATm/IHAaqutloEDB2bnnXfO/fffn0GDBuXBBx8sLff5DltIAAAA8NVee+21JCkFBZ/3/vvv54033siuu+5aCglqampSVVWVJDnqqKNy5JFHpkGDBrnooovy2GOPld7bsmXLHHzwwTnrrLNy2223CQkAvidiAgAA4CeptrY2M2fOzJ/+9KeMGTMmhx9+eF599dW8++67SfKlz9L8fFBwyimn5L777jOFAAAA4Fv44x//mJ/97Ge5+eabk3x5jP3EE09k5syZpT9XVVWlvLw8DRo0SE1NTZLk4IMPzv77759PP/00J554YqZPn15afskll8zhhx+eZZddNtXV1d/vBgEspMQEACRJ6Qt6klRWVtbjmgDAd6OsrCyLLbZYnnzyybRt2zbvvfdeFllkkbzwwgtJ8pUnm+qCgt122y333XdfLr74YvtGAACAb2H27NlJkl122SVPPfXUly7Tvn37JMmbb76Z2traQkRQ97i5JOnfv3/atWuXGTNmZN68eYXPqIsUPv9YOgC+G2ICAJL85+7M6667Ltddd12Sr77IAgA/FtXV1VlhhRVy//33Z+mll860adNy1llnZd68eamoqCiNz/y81VZbLccdd1z233//nHXWWWnUqNECXnMAAIAfr8GDB2fgwIHZbrvtsuaaaxZeq3vkwZprrpnWrVtn0qRJOeecc5J8do6y7vW6QKBp06YpLy/Pq6++mqlTp37pIxMA+H6U1fpXF4D/b8KECdl4442z1VZb5Z577qnv1QGAb62mpqYUyNX9XFVVlQYNGuSVV17JxhtvnGnTpmWHHXbIbbfdliSl179M3WvV1dXudAEAAPgGvuz4adiwYWnTpk123XXXJP851jrnnHMyYMCALL/88jnllFPSs2fP0mfUTSv49NNP07Vr1yy99NIZN25cmjdvvqA3CWChZTIBACVt27bNUkstlTFjxuT666+v79UBgG9k/j66rKysNG2gLipo0KBBKisr07lz5zz44INZZpllcvvtt2fHHXcsvf5VEwrqIgMhAQAAwDdTUVFRelxBTU1NJk+enEMPPTS9evUqRd11x1rbbLNNttlmmzz//PM57bTT8re//a30GXXLHHfccXn77bez9tprmxoHsICZTABAkv/cvTls2LD069cvhxxySP7yl7/U92oBwNeafxLB2LFjc8MNN2TSpElp0qRJtthii/Ts2TNrrbVWamtrU1lZmUaNGhUmFPziF7/IrbfemuTrJxQAAADwzcx/nFbnuOOOyxlnnJEkufnmm0txd5I89NBDOfXUUzNmzJg0btw4v/jFL/KLX/wiiy66aK6++urccMMN6dy5cx544IG0adMmtbW1KSsrW6DbBLCwEhMAUDBx4sRsv/32+fjjjzNx4sR07969vlcJAL7U/CeQrrjiihx44IGZN29ellxyyTRq1CjvvvtulllmmVx00UX55S9/+Y2CAo8zAAAA+Hbmzp2bOXPmZPHFFy/8fuLEiWnWrFnWWGONJMlJJ52UP/3pT0m+GBQ89thjufbaa3PxxRfn008/LXzOz3/+89xwww3p0KGDYzaABcxjDgAWMv+tIdtggw1ywAEHJEmuv/76VFVVlcaSAcAPSV1IMGLEiOy7775p0qRJhgwZkrfffjsvv/xyNt9880ybNi077bRTbrnllpSVlaVhw4aZN29e4ZEHo0ePziabbJLE4wwAAAC+jdmzZ+eCCy7ICSeckClTppR+f8EFF2SjjTbK9ddfnxkzZiRJBg0alBNPPDFJ0rNnz1LUnXwWDPz5z3/O/fffn4MOOii9e/fO/vvvnwsvvDB33nmnkACgnphMALAQmf8OzlmzZqVp06aF12pqalJRUZHHH388O+64Y5o2bZoJEyZk6aWXNj4MgB+kSZMmpU+fPvnwww/zt7/9LX369EmSDB48OMccc0yaNm2aWbNmJUluuumm7LTTToUJBa+++mq6du2aqqqq/Otf/0qrVq3qc3MAAAB+VN5///307ds3I0aMyI477pjLL788o0aNyoEHHpgll1wyl1xySXbaaadCCPBVEwq+Lhb4skcnAPD98y8vwEJi/hjg9NNPz/LLL5/Bgwfn0UcfTfLZ3Z11X9ZXWWWVrLPOOnnllVcyePBgIQEA9eaOO+7Iyy+//KWvVVZW5oYbbsjUqVNz2mmnlUKC0047Lcccc0wWXXTRPPPMMxk4cGCSZOedd87NN99cmFCw/PLL55///GfefPPNtGrVyjQeAACAb2GppZZKv379st566+XWW2/N5ptvngMPPDDt2rXLZZddlp122inJZ1Pgqqurk3z1hILy8vLU1NQUjsvq7ocVEgDUD5MJABYC88cAc+fOzU477ZR77rknSbLIIovkiCOOyNZbb10a8Zwkjz/+eHr06JEuXbrkjjvuSIsWLUQFACxQV111VfbZZ5/06tUrZ5xxRjp16lR4fdasWTnggAMyc+bM3HLLLUmSiy++OIcffnjKyspy3333pVu3bvnggw9y8MEHZ9SoUUk+e4zPLrvsktra2lRVVaVhw4ZJvv4uGAAAAL6o7nzh22+/nU033TRTp05Nw4YNM3jw4BxyyCFJisda32RCgXOQAD8cUi6An7j5v3wPGzYsffr0yV133ZXx48fniCOOyNy5c/PnP/85O+ywQ3r16pVHHnkk//rXv7LWWmulW7dueeSRR3LNNdckiS/xACxQ7dq1y0orrZRRo0blhBNOyGuvvVZ4vWnTpjniiCNy6qmnJkleffXVXHXVVampqckNN9yQbt26pbq6Oi1atMh6661Xet9uu+2WkSNHliYU1BESAAAAfDt15wtfeumlvPrqq6moqMicOXNy//3355///OcXou2vm1BQF4A7Bwnww2EyAcBC4uabb86uu+6a2tra3Hnnndlmm22SJA899FAefvjhDBkyJG+//XZatmyZ1VdfPX/+85/z9NNP5+CDD85GG22Uq666Kh07dqznrQBgYfPQQw+lb9++efrpp7P77rvnlFNOyXLLLfelyw4fPjx77LFH9thjj1xxxRUpLy8vRXVPPfVUtt5666yzzjq55557ssQSS+Ttt99O48aNnagCAAD4H9TW1mby5Mk566yzstZaa+WOO+7IhAkT8stf/jJnnnlmunTp8oX3zB8ZDBo0KIMGDXKcBvAD1KC+VwCA70dNTU3pOWPz5s3LBRdckBYtWuTiiy8uhQRJstFGG2WjjTbKnnvumauuuir33ntv7rvvvmy44YbZdNNNU1FRkaeeeiovvfRSOnbsWPpcAPg+1UUAG220UYYMGZJDDz00w4cPT5KvDApef/31JEmXLl1K+8Da2tpUVFRk7ty5mTNnTs4999zce++92WGHHdKkSZMFuUkAAAA/SWVlZVl33XXzt7/9LS1atMi2226bgw8+OLfddlvKyspyxhlnFIKCupCg7r8nnXRSmjZtml133dVxGsAPjMkEAD9xzz77bLp27ZouXbqUnjmdFB9/MH94UF5enksuuST33ntvbrjhhtTU1CRJunfvnjvvvDOLL754vW0LAAuX+fdVDz74YA499NAvnVBQt9zQoUNz2GGHpVu3brnrrrvSokWL0mftueeeGTlyZF544YUsv/zySZKqqqo0aKCvBgAA+KbmP077vPmnDTz++OPp27dvHnnkkey4446loGD+9992223p2LFjVl999dJnOE4D+GFxaynAT9hll12WNdZYI3vuuWdqa2uz8cYbJ/nsi/38X/o/P2ngt7/9ba688sqMHTs2e+21Vzp37px//OMfefrpp5OkFBgAwPeprKwsde3zxhtvnCFDhmSNNdbI8OHDM2DAgLz22mul5ZJkn332yRprrJFJkyblN7/5TZ5++un84x//yIEHHphrr702W2yxRZZeeunS5ztBBQAA8M3V1NSUjr9efvnlTJw4MX/729/yxBNP5MMPP0xFRUWqqqpSW1ubddZZJ0OHDk337t1z66235phjjsk//vGP0vuPOeaY7LTTThk5cmSqqqpKf4fjNIAfFpMJAH5CPl8GX3311dl7771Lz4weOnRoDj744K8tfOs+o+6/06dPz4UXXpgTTjgh++67by699NIFtTkALKQ+/0id+f/8dRMK6l4/6KCD8vzzz5em6Xz00UdZbrnlMn78+LRv3/5r76QBAADgi+Y/jrr++uszaNCgvPrqq5k9e3YWW2yxrLHGGrnggguyyiqrFI7h5p9QsMUWW6Rnz56ZNGlSrr766rRs2TKPP/54OnbsWJ+bBsDXEBMA/IhVV1envLw8ZWVlhS/pb731VpZeeuk0atQoo0aNyp577pnKysrstNNOuemmm0rvrRs79t+88sorWWeddVJeXp6JEyema9eu39s2AUCd4cOHp127dtlkk02+cVBQXV2dl156KUceeWRefPHFLLLIIll11VVz1llnpV27dt9q/wcAAEAxJLj88suz3377JflsOtzqq6+ecePGZfTo0WnevHluvPHGbLHFFoX3PPnkkzn++ONz//33Z+7cuUmSlVZaKXfeeWeWXXZZx2kAP2BiAoAfqU8++SQ33HBD2rdvnw022CCLLLJIkuT888/PpZdemrPPPjubbbZZysrKcv3112ePPfZIZWVl+vfvn8GDByf5ZkHBvHnz0qhRo+y///657LLLcs8992Srrbb63rcPgIXb+PHjs/nmm2eJJZbI6NGjs/7663+rCQW1tbWZNm1amjRpkqZNm6Zx48ZOUAEAAHwDXzXN7Y477siuu+6axRdfPGeeeWb23nvvJMmQIUNy9NFHZ968eWnRokVGjBiRrbfeuvA5r7zySiZOnJiJEydmueWWyz777JPWrVs7TgP4gSv/74sA8EP05JNP5tRTT03v3r1z9913J0n+/ve/p2/fvnn11VfToEGD0pf13XbbLddee20aNmyYs88+OwMGDEiSVFRUpLq6+mv/nkaNGiVJPvjggySJBg2ABWHjjTdO7969M3369PTq1SsTJ05MeXl5ampqSq8PGTIka6yxRoYPH54BAwbktddeK72/rKwsbdq0yRJLLJHGjRuntrbWCSoAAICvUXf+78tCgrfeeiuDBw/O3Llzc8YZZ5RCgpNPPjn9+vVLo0aNsttuu2XGjBnZfffdM2bMmNKjVJOkc+fO2WuvvXLBBRfkqKOOEhIA/EiICQB+pNZbb71suummmT59eg4//PAcfPDB+e1vf5sOHTrkiiuuyMYbb1xYftddd83VV1+dhg0b5tRTT/1WQcHAgQNz6623ZoUVVsiqq676vW0TACRJVVVVysvLM3z48Oy1115555130qtXr0yYMOELQcHQoUNLQcEJJ5xQCArm92UnwwAAAPjM2WefnQMPPDDPPffcl77+wgsvZPz48TnppJOyzz77lN5z8sknp1mzZpk8eXJGjhyZX/7yl/nwww/Tu3fv3HPPPYVjsbqwoO53QgKAHz4xAcCPUE1NTRo1apShQ4fm+OOPz9SpU3PhhRemZcuWOfvss7PTTjuVlptfr169cs0115SCghNOOCHJfw8KqqqqUlZWlhtvvDFt2rT5/jYMgIXO/BNv6n5u0KBBqqurU1ZWlssvvzx77bVX3n333fTu3fsLQcFGG21UCgquu+66/OEPf8gbb7xRL9sCAADwY/T666/n4osvzo033phzzz03U6ZMKb1Wd5zWoUOHHHrooaWJBLfddlvOPffcNGnSJPfee2+6dOmSJDn33HPTpUuXzJgxoxQU1BF5A/z4iAkAfoTKy8tTXV2dxo0bZ5lllknyn5J38cUXT1VVVWm5z9ttt91KQcFpp52WE088sfD+L3PyySfn3XffzSqrrPJdbwoAC7GamprCyaSysrLSPqwudPuyoODzjzzYaKONMmzYsHTo0CEPP/xwmjVrVi/bAwAA8GPUqVOnnHPOOVl//fVz2WWXZfDgwaWgoO6YbcUVV8zAgQPTqVOnJMk999yTd999NxdeeGG6d++empqa1NbWpm3btllsscXSoEGDfPzxx9l2220zfvz4+to0AP5HYgKAH6mKiorMmjUrr7zySpZaaqlsvfXW+fDDD7Pvvvvmlltuybx5877yvXVBQdOmTfPnP/85Z5xxxtf+XeXl5Vl66aW/600AYCFXF70NHjw4vXr1SvLZVIKvCgp+/etf5913302fPn2+EBRsuOGGuf766/P8889nySWX/MJ0HgAAAL6obvLA9ttvnxNPPDHdunXLlVdeWQgKks+ighYtWqSsrCxTp07NlVdemaZNm2bttddO8tnxXWVlZZo0aZKuXbtm++23T+/evdOoUaN07ty5XrYNgP9dWe38c0UB+NH597//nU8//TSdOnVKv379MmTIkLRt2zZDhw7NDjvskEaNGpWWrampKUwruOqqq3LSSSdl7NixpaoYABaU2traTJ8+PUsttVSS5De/+U3+/ve/J/nsETsNGjRIklRXV6eioiK1tbXZaqutMm7cuLRp0yYjRozIRhtt9IX9W93yAAAA/He1tbWlCQR33XVXBg4cmEmTJmXvvffOUUcd9YVppbNmzcp6662XGTNm5Lnnnsviiy+eWbNmpWnTpkmSjh07Zquttsqll16aGTNmpEWLFo7TAH6kTCYA+JH4qvarVatWad++fZLk1FNPTd++ffPOO++kb9++uf3220sTCqqrq0sXWl566aXMmzcve+21V6ZMmZJOnTqV7gIFgAWlrKwsLVu2zOTJk9OiRYtcfvnl2WeffZJ8cUJBVVVVysrKcuKJJ2aJJZbIu+++m1//+tcZN27cFx7r4wQVAADAN1dWVlY697jttttm4MCBXzmhoKamJtXV1VlqqaXy9ttvp2/fvklSCgkOP/zwvPnmm/nZz36W5LNHstbW1jpOA/iRMpkA4Edg/jsun3vuubzzzjupra1N69ats+aaayb5z12Yc+fOzdFHH52hQ4eWJhRsu+22WWSRRZIkRx11VB588MGceuqp2WKLLeprkwAgyX/2X08++WQ22WSTfPrpp9lrr71yxRVXJClOKEiSZ555JhtttFG6dOmSxx9/PGuttVYefvjhwiQeAAAAvpn5pxLM779NKJgyZUo222yzfPDBB9lss83StWvXvPjiixk3blxWXnnljB071mNTAX4CxAQAP3Dzf6G/+uqr069fv3z44YdJkiZNmuTEE09Mv379ssgii5SWnT8oaNOmTQYNGpSNNtooF198cc4999wstthieemll9K6dev63DQAFiJfdYKqtrY21dXVadCgwVcGBXV3vjRs2DBvvvlmttpqq1x00UW5/fbbc9BBB2X55Zdf0JsDAADwozf/cdq0adPSqlWrwgSB/xYUTJw4Mb169cq7775b+t2qq66a22+/PR06dPBoA4CfADEBwI/EqFGj0qdPnyTJ1ltvnaqqqowbNy5J8rvf/S4DBgxIhw4dCkHB8ccfn4suuijV1dVp0qRJPvroo3Tu3DljxoxJx44dv/CMaQD4Psy/v3n99dfzwQcfpHHjxllyySXTpk2b1NTUlMZezh8U7LHHHrnkkkvSuHHj0mftu+++ufbaa/P666+nTZs2Sb44vQAAvmvzX2yprKxMw4YN63mNAOC7c9FFF+WMM87IpZdemk033bRwvvC/BQVvvvlm7rvvvrz77rvp3LlzNt9887Rq1UpIAPATISYA+IGqu/BSW1ub2bNn5xe/+EWeffbZXHDBBdltt92SJDfddFP69euXN998M/vss08GDRqUZZddtnSia968ebnkkkty66235vXXX8/Pf/7znHnmmWnbtq0v9AAsEPNffLn22mtzwgknZOrUqWnatGlat26dIUOGZIcddkjyn33fk08+mU033TSffPJJttlmm+y2225ZeeWVc+GFF+aqq67KVlttlRtvvDGLLrpofW4aAAuhkSNH5txzz82tt96aVq1a1ffqAMD/bM6cOenTp09uu+22rLnmmjnvvPOy4YYbfqsJBZ/nBiaAnw4xAcAP3FtvvZVFFlkkbdu2zR//+MeccMIJSf7zpfy+++7LYYcdlueff74QFMxv7ty5mTlzZhZbbLE0btxYSADAAjd8+PDsscceSZI11lgjVVVVmTJlSpLkrLPOyv7775/FF1+8tH97+umn06dPn7z00ktJkgYNGqSqqio/+9nPMnbs2LRv3/4rH50AAN+HMWPGZIcddkhlZWWuuOKK7LXXXvW9SgDwnXjvvfdyxBFH5Nprr82qq66aYcOGfaugQDwA8NPlX3eAH7Dzzz8/yy67bK677rqsvvrq2XbbbZN8Ns657uLJlltumSFDhmTllVfOFVdckZNOOilvvPFG4XMaN26cpZZaKo0bNy6NkQaA79P8zfL777+fM888M0svvXRGjBiRJ598MpMnT87AgQPTsGHDHHXUUfnrX/+ajz76qDSVZ4011sgdd9yRQYMGZbPNNsvGG2+cAw44IOPHj0/79u1TXV0tJADge1W3L6utrU11dXUuuOCCNGjQIFdeeaWQAICfjJqamiy99NI599xz06dPnzz33HP5wx/+kAkTJqS6urq03LbbbpuBAwemW7duufLKK3POOefk6aefThIhAcBPmMkEAD9gffv2zfnnn58mTZpkzpw5X7j7Zf47MseOHZtDDz20NKHg5JNPTocOHepr1QFYiM2/f/rkk0/y73//O507d87QoUNzyCGHFJa98MILc8IJJ2TGjBk55ZRTctBBB6VFixZfOnWg7m4XE3YAWJCeeeaZdOrUKRtvvHE22mijnH/++UnchQnAj8vX7bfqXvv3v/+dQw89NCNGjPjaCQWnnHJKJk6cmMMOOyyDBw9OgwYNFtRmALCAOeIB+IGYv+2q+3no0KHp379/5syZk/Ly8kyePDmffvppabmysrLSsltssUVhQkG/fv3y9ttvL9iNAICkFAH85S9/yWqrrZZHH300q622WnbaaackSXV1dWpqapIkv//973Pqqadm8cUXz4ABA3LBBRdkxowZpc+Y/06YuhNfQgIAFpTRo0dnzTXXzO9+97u88847WX/99ZMICQD48anbb02aNClVVVVfeK2mpiatWrXKkCFD8qtf/SrPPfdcDj300C+dUHDUUUdlhx12yOGHHy4kAPiJc9QD8AMw/92XlZWVKSsrK32pHzx4cPr165eamppcfPHFue222wrv/XxQMHTo0LRu3Tr3339/FllkkQW7IQDw/1VWVuamm27K1KlT84c//CHPPvts6TE8FRUVpZNVSXLggQfmtNNOKwUFF154YT766KPSsgBQH2prazNnzpwsuuiiGT16dD788MPS/mn+iyoA8GNx5ZVXpnv37unfv//XBgXnnntuttlmmzzzzDM54ogj8tBDDxX2fTvttFNGjRqVZZdd1j4R4CdOTADwA1AXEgwZMiQ9e/bM9OnT06BBg9KX+nPOOSf9+/fP3Llzs99+++WWW275wvvrgoLNN988119/fZ577rm0bNmydKEGABakhg0b5pZbbsn222+fDz/8MI0bN86ECRNSWVlZWubLgoIWLVpk4MCBOeuss/Lxxx/X1+oDQMrKyrLjjjvmqquuylJLLZXa2tpceeWVmTdvXho2bOhYC4AfncUWWywNGzbM0KFDc+yxx35lUNC6detceumladu2bZ544okcdthhmThxYiEcaNKkSRIBOMBPXVnt/HO1AagXtbW1mT59elZeeeW899576d27dy688MK0aNEiVVVVpXFhRx99dM4666w0adIkw4cPL42Lnv9z5n++tGdKA1Bf6vZBH330Ufr06ZN77rknP/vZz3LNNddk3XXXLSw7/6joiy++OAceeGDatWuXKVOmpHnz5vWx+gBQMnfu3Nx55505/PDDM3Xq1Oy///4ZOnRomjRp4pgLgB+d22+/Pb/+9a8zc+bMHHHEETn99NO/8KiCuvOR++67b6677rrU1tZmiSWWyE033ZTu3bvX05oDUB9MJgD4ASgrK0vLli1zxx13pEuXLhk5cmR+97vfZcaMGYUJBWeeeWaOPPLIzJkzJ7vvvvuXTiiYn5NaACwo89+dWVNTk4qKilRWVmbxxRfPyJEjs+222+bll1/Ovvvum+eff77w3vknFPzud7/LlVdemYcffjjNmzeP9hmA+lK3b2rcuHG22267nHvuuWnXrl0uvfTSHHPMMZk7d24qKiqMdwbgR6Fuv7bDDjvkmmuuyWKLLZZzzjnnSycU1J1jbNWqVdZcc81sueWWmTNnTjp16rSgVxuAemYyAcAPRN1dmU899VR69eqVV155Jbvuumsuvvjir5xQsMgii2T48OHZcccd63ntAVgYzT8RZ/bs2Zk3b16SpFGjRllkkUWSJPPmzUujRo3y8ccfZ/fdd8+dd96ZlVdeOSNGjMgqq6xS+Lz5JxQkJuwA8P2bf1/2/vvv54MPPsi0adOywgorpG3btoVl582bl9tvvz19+/bNO++8k759++bMM89M48aN7bMA+MH4/OTSr3rttttuy5577pmZM2emf//+OeWUU9K4cePCsmuttVY22GCDnHfeeZk5c2aWXHJJ+zyAhYzJBAALWF0FXNdy1f237q7MNddcM6NGjUrnzp1zww03fO2EgtmzZ6dnz565++6762djAFhozX8S6q677sree++d1VdfPausskp+9atf5aabbkryWVhQVVWV5s2bZ/jw4dluu+3y/PPPp0+fPpkyZUrhM+cPCRITdgD4fs2/L7vnnnuy6667Zu21187mm2+eVVddNUcddVQmTZpUWr5Ro0bZYYcdMnTo0LRt2zZDhw7N0UcfbUIBAD8Y8+/bxo8fn3PPPTe//e1vc+ihh+bee+/NP//5z9Kyv/zlL0sTCs4+++wcdthhee6550qvH3744XnmmWfSoUOHNGrUKEsuuWRpCh0ACw+TCQDqyWuvvZblllsuSfGL/vwTCnr37p2XX345vXr1ykUXXfSFCQUHHXRQrr766jz//PPp0KFDvW0LAAuX+fdbl19+efbbb78kycorr5wWLVpk4sSJSZLTTjstxxxzTJL/PHPz8xMKRo4cmZVXXrl+NgQAktxwww3p1atXks8urLRp0yYvvvhiHnrooay33no58cQTs80225SW//yEgn79+uW0004r3M0JAPXpyiuvzG9/+9vC4wuaNWuWlVZaKcccc0x23XXX0u9Hjx6dAw44INOmTUuXLl3SoUOHfPTRR5k8eXJWXHHFjB8/Pq1bt66PzQDgB0BMAFAPzjvvvBxxxBG5+uqr8+tf/zrJlwcFTz75ZLbZZpu8//776d27dy688MIvBAUzZsxIixYtjBgDYIGru/iyxBJL5LTTTssBBxyQJNlzzz1z7bXXJkkGDhyYE088MWVlZV8aFLRu3Trjx4/PiiuuWJ+bAsBCauzYsenZs2cqKipy6qmn5qCDDkqSDBo0KIMGDUpFRUVWXHHFnHvuuenRo0fpfXVBwRFHHJGpU6fm6KOPzumnn15fmwEAJaNHj85OO+2UBg0a5KijjkqnTp0yadKkPPnkk3n88ceTJH/729/y29/+tvSe+++/P+edd14efvjh/Pvf/84iiyyS1VZbLddff33at2/vvCPAQkxMAFAP6k5MJcnw4cPTp0+fJF8eFIwbNy5bb711ampqsssuu+SSSy75QlDwdc9CA4DvwzPPPJM+ffrkjTfeyKWXXppf/epXSZLTTz89xx9/fBZddNHMmjUrNTU1+dOf/pTjjz/+C0HBdtttl0cffTRvvvlm2rRpU89bBMDC5q233sqee+6ZBx54IMOGDcvBBx+cJBkyZEiOOuqo1NbWpkePHrnjjjvStWvXnHPOOdl2221L7583b15uuummnHzyyRk1apRJOwDUi7pziHX233//XHPNNbn66quz2267lX7/j3/8IxdddFGGDBmSJLnqqquyxx57lF6fNm1a3n///TzyyCPp3Llz1lhjjbRs2VJIALCQExMA1JMzzzwzxx57bJKvDwpmzZqVHj165PHHH09lZWW22GKL3HjjjWnevHm9rTsAC7eampoMHjw4xx13XM4777wceuihSYohwTPPPJOnnnoqu+yyS5LPQroBAwYUgoJPPvkks2fPTqtWrZygAmCBu+uuu7L99tunf//+GTx4cJLkr3/9a4488shUVVXlvvvuy2qrrZY99tgjd955Z1ZZZZWcccYZ2X777UufUVlZmblz52bRRRetr80AgCSfTdtZccUVs8suu6R9+/a58cYbk3wWvzVq1Kj088CBA3P66aenXbt2GTFiRDbYYIOv/MzPhwoALHzsBQAWsOrq6iTJ0UcfnVNPPTVJsvvuu2fEiBFJkrKystR1XmVlZVl00UXTunXrbL311mnZsmXGjh2befPm1c/KA7BQqqmpKfy5vLw8s2fPzpZbblkKCa644oqcfvrpadasWcaMGZNOnTqlZ8+eOf7445MkJ510UmkqT4MGDVJdXZ1FF100rVq1Sk1NjZAAgAVu5syZ2X333XPUUUclSW699dacfvrpqayszJ133pmNN944iy66aPbcc880btw4L730Uo499tjcfffdpc9o2LChkACAenf99ddnq622yp577pmKiop06dIlyWfRW11IkCSNGjXKIYcckt122y3/+te/8uCDDyZJvuqeUyEBAPYEAN+Tr/oSXlFRkcrKyiTJscceWwgKRo4cmeSziKCmpiZlZWWprKzME088kR122CGPP/543nrrrSy11FJfuLADAN+H2tra0gmk++67L+PHj0+SHHbYYfnrX/+a2travP/++xkxYkTmzp2b6667Lt26dcu8efNSW1ubTTfdNIsttljKy8tz8sknly7YzB8POEEFQH3o1atXBg4cmCWXXDLJZ5MK3n333Vx00UXZcsstS5N0dt999yy33HKprKzMc889l7333jtjx46t57UHgP9YccUV07FjxzzwwAN59NFHM378+MyZMycNGzb8wrJt27bNxhtvnKqqqlx99dWZNWuWx6cC8JWctQP4HtSFAEnywgsv5P7778+wYcNy6aWX5s0338ysWbNKy84fFPzqV7/K3/72t8ydO7d0YeWoo47Km2++mcUXXzwdO3ZM27ZtU11d7cILAAtE3f7sqquuytZbb51TTz01U6dOzRJLLJEVVlghZWVlefzxx3PXXXdlo402yuabb57kszteysrKstpqq2WxxRZLjx49kiQXXnhhPv7443rbHgBI/jMxboUVVkhFRUWmTp2aSy+9NG3bts0WW2yRmpqaNGjQIHPnzk2SLLPMMunVq1f22muvfPTRR+nYsWN9rj4AlNTU1GT11VfPbbfdVppIMG3atEycOPFLly8rK8uOO+6Y1q1b56OPPsqnn366IFcXgB+ZBvW9AgA/NfPfwTlixIgMGDAgb7/9dubMmZMkWW655bLlllvmoIMOylprrZXks6CgvLw8xx57bH7/+9/n9ttvT4cOHfLiiy+WntNZdxEmiVHQACxQL730Uv74xz9mqaWWyh577PGFCygzZ85MkrRv3z5NmzZNTU1N6SJMZWVlZs6cmb59++bwww9Ply5d0rx589TW1rr7BYDv1fz7mnnz5mX27NmZOXNm2rdvXzqmqq6uLv1cUVGRBg0apFmzZikvL8/cuXPTuHHjJMmrr76apZdeOqeffnpOP/30tGnTpn42CgA+p7y8PNXV1Vl11VUzcuTI9O7dOy+++GJOPfXUrLjiimnfvn1p2bqpO1VVVZk3b17atm3rcT0AfC23tQJ8x+a/g3P33XfPK6+8kp133jm///3vs9Zaa+XDDz/MJZdckj322KP0XLIkOfroo3PBBRekY8eOufvuu/PXv/61FBKMHj3aow0AWGDmf1RPdXV1pk6dmqlTp+bss8/O3nvv/YXlmzdvniQZPXp0XnzxxZSXl6dBg8+65T/96U+ZOXNmmjZtmq233jrLLrtsqqurhQQAfOfmP16aPyQYN25cDjjggKy77rr5+c9/Xpq0895776WioiK1tbXp2LFj1l577bz22msZOnRopk+fXgoJjjvuuLzxxhvZZJNN0qZNGyEBAPXiqx6pmvzn0XGrrbZarr/++nTt2jVjx47N7373uzz++OOZPXt2kpSO084888xMnz49q6+++pc+CgEA6pTVft0eCID/k4cffjjbbbddqqqqcvnll2e33XZLklRWVuaWW27JhRdemLFjx6ZTp04ZPnx41ltvvdJ7H3vssbz++ut54oknsvLKK2ebbbZJq1atCnfMAMB3paamJuXl5V86KeCiiy7KU089lY4dO2bo0KF57bXX0qhRoy9dtk+fPhk1alQ6dOiQc889N82aNcvVV1+da665JhtssEFGjx6dFi1aLMAtA2Bh8q9//SsXX3xxjjnmmDRo0KC0n7rhhhuy++67p6qqKl26dEllZWWmT5+e6dOnp1u3bhk5cmSWXXbZJMl1112XI488MnPnzs3mm2+ebbbZJmPGjMmIESOywgorZMyYMenQoUN9biYAC6m647YkmTx5cumxqs2bN89mm22WVVZZJT/72c9Ky0+ZMiW9evXKCy+8kHXWWSfdu3dPz549U1FRkYsvvjjDhw9P586dM378+LRt27a+NguAHwExAcB3qO6L/TnnnJMjjzwyp5xySo4//vgkn4UEDRs2THV1dZ5//vkcf/zxuf3227P99tvnggsu+NqTUvMfMADAd+HzQcA777xTOolUU1OTt956K+uss04++OCDdOnSJXPmzMk///nP0p0sdepitxkzZmTPPffMHXfckYqKitKzqDt37pyxY8emQ4cO9mcAfC9mz56djh075sMPP8w777yTpZdeOslnEwm22WabNGrUKKeddlp+//vf5/3338/cuXPTp0+fTJ48OQ0aNMi0adPSsmXLzJgxI3//+99z4YUX5uWXXy59/rLLLpu77rorXbt2ra9NBGAhNv+x29VXX53+/fvnww8/LB1zlZWVZeONN87ee++d/fbbr/S++YOCJGnatGmaNm2auXPnZoMNNsjFF1+c9u3bu4EJgK/V4L8vAsDnzZ49Ox988EFuvvnmdOnSJRtssEHpuZrJZ5MJkmTttddO8tnzyOpGhlVUVGTVVVdN375989prr+XRRx/NlClTvvYiiwsvAHyX6vY3H3/8cR555JFcc801ueuuu3LBBRdkl112SXl5eZZddtlcdNFFOfHEE/PSSy+ltrY2119/ffr06VOIEOrGQ7do0SK33nprjjvuuDz77LOZNWtWVl999Rx77LFp27atE1QAfG8WWWSRdOrUKWVlZfn000+TJLNmzcqQIUNSVVWVIUOG5Pe//32SpE2bNnnhhRdKx1h77LFHWrZsmSRp0aJFDjzwwGy99da57LLLMm/evCyzzDLZe++9S9MLAGBBqzv+Gj58ePbee+80atQo/fv3T5s2bfLKK69kzJgxefDBB/PII4/kvffey7HHHpskWWWVVTJy5Mj06tUrL774Yjp16pShQ4ema9euad68eZo1a+Y4DYD/SkwA8C29++67OfXUU3PXXXfllVdeSbt27XLhhRdm8803T9OmTZOk9CX8mWeeybbbbvuFGKCsrCybbLJJ1llnnVx11VW57LLLvnQ5APiu1YUE77zzTo488siMHj06n3zySZo3b57rrrsuG2ywQZZeeumUl5dnl112SZKccMIJefHFF3PLLbeke/fu6dSpU+Ezy8rKSp97xhlnZN68eSkrK0t5eXlpSoETVAB8H+ru1mzfvn0ee+yx3HvvvTnggAMyY8aMPPDAA9lss81KIUGSPP300znwwAMzadKkHHzwwRk2bFjpterq6jRr1iyrrbZazjnnnPrYHAAomX8iwbPPPpujjjoqFRUVueaaa7LrrruWlnv88cdzzTXX5Lzzzsvxxx+fZs2apW/fvkmSVVddNSNHjkzv3r3z/PPPZ9iwYbnkkkvSrFmz1NTUOE4D4L9y1QrgW3j99dez9dZb5/zzz88iiyySgQMHZsiQIVl33XXTtGnT1D05Zr311kuSPPnkk0k+myxQU1NT+pza2to0adIke+65Zxo1apRPPvlkwW8MAAudugv+r732WjbbbLNcd911WX311TN69Oj885//zMiRI7PMMssU9lu77LJL/vznP2f55ZfPiBEjcvbZZ2fatGlf+Ozy8vLSfrBRo0Zp2LBh6cSUE1QAfF/q9j3bb799kuS1115Lkrz//vuZPn16WrRoUVrm6aefzkEHHfSlIcH777+fUaNG5eOPP/7SzweA78v85wyTzyacJilMhHv++efzzjvvpG/fvqWQoLKyMkmyzjrr5LjjjsuAAQOSJOeff34efPDBJJ+Fcquttlquv/76dO3aNTfddFN+85vf5IMPPnBTEwDfiMkEAN/QW2+9la222iqvvvpq9t9//wwdOjRNmjQpLFP3JX/DDTdMRUVFRowYkZVXXjknnnhiysvLS3dm1pW/1dXVmTdvXhZbbLH62CQAFiJ1IcFbb72VHj165JVXXskf/vCH/OUvfyntv+rufJk3b14aNWpUeu8uu+ySsrKyHHnkkTn//PNTVlaW448/Pssss0zh75j/ZBcALAh1F0I6d+6cJBk/fnxqa2vTsGHDlJeX55NPPklZWVmeeOKJHHLIIXn00UcLIcGcOXPSpEmTPPDAA/nTn/6UZs2a5Ze//GXp8+3bAPg+1R2n/fvf/84NN9yQ+++/P3PmzEnHjh1z4IEHplOnTmnatGkmT56cJGnbtm2SzyKBukeqJkmrVq3y61//Os8++2xuvfXWPPzww9l4441Lofgqq6ySUaNGpVevXrntttuy33775e9//3uWXHLJetluAH48pGcA38D06dPzu9/9Lq+++mr69euXiy++OE2aNEl1dfWXLt+tW7dcdNFFSZKTTjopgwcPTpIv3KF5xRVXJEnWX3/9JO56AeD7U15enhkzZuSggw7KK6+8kkMPPTRDhgxJWVlZaX9W93NdSPDXv/41kyZNSpLsvPPOOeuss7Lccstl2LBhOfXUU790QgEAfN/qjpvmP35aaaWV0r59+7z44ot5991306lTp3Tr1i1jxozJeeedl8MPPzyPPvpoDjrooFJIMHfu3FIgPmTIkLz77rulKAEAvm91IcHUqVOz44475uCDD87IkSNz2223ZejQodl///1zzTXXpLa2Nu3bt0+STJkyJTU1NV96DrFr167p0aNHamtrc8kll+TTTz9Nki8EBV27ds1tt92W3XbbLR9++OEC3WYAfnxMJgD4GnV3aI4fPz5jx47NFltsUXp25lc9/7nuPb/61a/y5ptvZtCgQTnmmGPy1ltvpWfPnunSpUsqKioycODAjBgxImuuuWZ+/etfJ3HXCwDfj7qTVBMmTMiYMWOyySab5LzzzktS3J9VVVWlQYPPDhF69uyZW2+9Nfvuu28aNWqUNddcMzvvvHOSpH///qULMV82oQAAvg9z5szJ7Nmzs8QSSyRJYbLOMssskxVXXDFjx47Nyy+/nE022SS77rprHnnkkRx55JGpqalJ//79S6H3rFmz0rRp0yTJEUcckQceeCD7779/OnbsWD8bB8BCZf5H0G288cZ55513st1222WrrbZKbW1tzj777Dz66KP56KOP0qJFi3Tu3Dnl5eV55JFH8u9//zutW7cuHMvVnY/cYYcdctJJJ6WysrL0u6QYFFx//fXZcsstM378+Hz66adp2bJlff5fAcAPnJgA4GvUfeG+5ZZbUllZmf79+ycpXmz5qvc0bdo0hx56aBZffPEcccQRGTp0aC655JK0bNky1dXVmTZtWlZYYYXccsstadWqVekgAgC+a3X7l5tuuilz587NkUcemaS4P6uuri79vOuuu+bWW29Nw4YNc9lll6W6ujr9+vUrBAVHHnlkhg0blpkzZ+aMM87I0ksvXQ9bBsDC4l//+ld22223zJw5Mz169EiHDh3SrVu3rLDCCll00UXTqFGjrLzyyhk7dmzGjh2bTTbZJP3798+UKVNy+eWXp0mTJtlll11Kn1cXEgwYMCDnnXdeVllllZx44olp1qxZfW0iAAuJ+UOCDTfcMNOmTcuRRx6ZM888s7TMlltumf333z9PPPFErrrqqlx99dVZb7318vDDD6dPnz6566670qRJk9IxXd3xXGVlZWbPnp1VV101iy66aOHvrQsKVl555YwbNy4NGjRIhw4dFvTmA/AjIyYA+Bo1NTWZPXt2Jk+enEaNGmWFFVZIkq8MCT5viSWWSL9+/bL66qvnwgsvzFNPPZVp06ala9eu2WWXXTJgwIAss8wyXznlAAC+CzU1NZkzZ04mT56cxo0bZ6WVVkpS3J/V7Ye23Xbb3HPPPdlxxx2z1VZb5dxzz82VV16ZJDn88MOzxhprZOedd05FRUX22muvjB49ujS1BwC+DzU1NTnssMPy+OOPZ86cOXnmmWeSJA0bNkzr1q3TuXPn/OIXv8iMGTOSJO+9917pvQMGDMjcuXMzfPjwbLjhhunfv3+WX375lJWV5cYbb8yYMWOyzDLLZNSoUVl22WXrY/MAWMjUhQQbbbRRpk2bluOPPz6nnHJKks+C74qKiqyxxhq56KKLsuGGG2b06NF56aWXcvHFF+cXv/hFHnjggeyyyy4ZOXJkKRioO7Y7/fTT8+mnn2bdddctPQph/kmodUFB165dF/BWA/BjVVbrAd0AX6mmpiYfffRRVlpppcyYMSMvvPBCOnXq9K0+49VXX02nTp1SXV2dTz75JNOmTcuyyy6bRo0apWHDhkICAL53dfuzlVdeOR999FFeeOGFL71gMnHixOyyyy5ZccUVM3z48LRr1y7XXnttjj/++LzxxhvZY4890r9//6y55ppJknvuuSerrrpq2rZtWxihCQDftenTp2exxRbLmDFj8s477+S+++7Lyy+/nFdffTUffPBBYdnFFlssd911V9Zff/3U1tZm+vTpOfPMMwt3fCZJ8+bN07179wwbNiw/+9nPFuTmALAQmzt3brp06ZI33ngja621Vi699NLSMVadqqqqVFVVpVu3bnnuuedyww03ZOedd85tt92WQw89NFOnTs2aa66ZAw88MF27dk3Lli1z9tln58orr0zXrl0zbty4tG7dun42EICfFDEBwDewySabZNKkSbnzzjuz+eabf+1jDj7vjDPOSIcOHdK7d+9v/B4A+D5ssskmmTx5cu69995stNFGXwjaPv300zz55JNZfvnl07Zt29Lvb7zxxhx66KF55513MmzYsBx00EGFcEAYB8D37cuitXnz5uWNN97Is88+m9deey3jxo3L66+/nilTpqRjx4655pprssEGG5SWf/DBBzN16tS8+uqrWWSRRbLFFltkueWW86xoABa4CRMmpEePHpk9e3b222+/HHTQQVlnnXWSJJWVlWnYsGFqa2vTtWvXfPLJJxk3blxWXHHFVFZWZtKkSfntb3+bF198sfR5DRs2TGVlZVZZZZXccccd6dChg+M0AL4TYgKAr1FbW5t58+Zlzz33zA033JDdd98911xzTem1/3YH5ocffphVV101DRo0yKOPPpo2bdosiNUGgIK6/dkee+yRG2+8MXvuuWfp0QVftT+rra1NbW1tysvLkyT77LNPrrrqqpx//vk56KCDFuj6A8Dn1T1ven5z5szJuHHjctppp+Whhx5Khw4dMmLEiHTv3r2e1hIAvtrkyZOz3nrrJUn23nvv9OvXL2ussUbp+OyYY47J4MGD06NHj1x77bWF+O3DDz/MsGHD8swzz+SFF15I586ds+666+aAAw7I0ksvLSQA4DsjJgD4Bh566KFsu+22mTdvXs4///z87ne/S/LVF2DqvrA/9dRT2WyzzdKjR4+MHDlyQa82ABQ8+OCD2W677VJVVZWhQ4d+4/3ZrFmzsvbaa6dZs2YZN25cmjdvvqBXHQC+Vl1cMG/evNx77705/fTTM2HChEJQ8GXPjgaA+jR/ULDXXnvl2GOPzUorrZTBgwfnmGOOSatWrTJ+/Ph07dq1dNxWd5xW9+f3338/Sy211BdeB4DvQvl/XwSAtddeO717905NTU0uvfTSjB49OslnJ6FqamoKy87/hf3444/Pxx9/nJ49eybJF5YFgAVpnXXWSe/evVNVVfWN92c1NTXZd99989JLL2XHHXdM06ZN62PVAeBr1U0paNSoUXr06JHjjjsuG264Yd5888306dMnjz76qIgAgB+cddddN48++miS5KqrrsrgwYNz6KGH5phjjsliiy2Wu+++O127dk1NTU1pP1Z33rHuz0suuWThM4UEAHyXTCYA+IZee+217Lrrrnnqqaey6aab5uCDD06vXr2SfHbBpby8vDQOuqamJkceeWTOO++89OjRIyNGjMjiiy9ez1sAAN9uf1ZbW5sjjzwy5557bjbaaKPcdNNNXzhRBQA/RJWVlbn33ntz2mmnZcKECaXpOj//+c/re9UA4Avmn1BQVlaWpk2bZsKECVl99dVTWVmZhg0b1vMaArCwEhMAfAvPP/98dt555/zzn//Mz372s/Tp0yd//OMfkyQNGzbMvHnzMnv27BxyyCG59tprs9xyy+XBBx9M27Ztv/SZngBQH+bfn62wwgql/VltbW0aNmyYOXPm5JNPPskhhxySUaNGpWPHjnnooYfSrl07+zMAfjQqKytz33335aijjsqUKVPy4osvZoUVVqjv1QKALzVp0qRssskmmTdvXn7xi1/kwgsvTJs2bUzWAaBeiQkAvqWXXnopBx98cCZMmJC5c+dmvfXWS7t27bLqqqvmqaeeyvPPP5+XX345a621Vm655Za0b9/es8oA+MH5/P5s/fXXT4cOHbLyyivnsccey/PPP59XX3016667bm644Qb7MwB+lObNm5fx48dnhRVWSKdOnep7dQDga02aNCnrr79+amtrs9dee6Vfv35Za6216nu1AFiIiQkA/g+mTZuWkSNH5tRTT80HH3yQ6urq0murr756ttxyyxx77LFp1aqVCy8A/GBNmzYtI0aMyGmnnfaF/dnaa6+drbbaKv3797c/AwAAWEDmf+TB3nvvnX79+mXNNddMktTW1ppUAMACJSYA+B+89dZbefbZZ/P0009nySWXTJMmTbLddtulefPmadSokQsvAPwovPnmm3n22WfzzDPPpFWrVmnSpEl22GGHNGvWLA0bNrQ/AwAAWIA+HxQcfvjhWWONNep5rQBYGIkJAL4nSmEAAAAA4P9i8uTJ6d69e2pra9OzZ8/86U9/yiqrrFLfqwXAQkZMAAAAAAAA8APz2GOPpVu3bmnVqlX+8Y9/pGXLlvW9SgAsZMQEAAAAAAAAP0BPP/10WrZsmQ4dOqSmpibl5eX1vUoALETEBAAAAAAAAD9g1dXVqaioqO/VAGAhIyYAAAAAAAAAAArMwwEAAAAAAAAACsQE37H33nsvo0ePzh//+Mdst912WWqppVJWVpaysrL85je/qe/VAwAAAAAAAID/qkF9r8BPTevWret7FQAAAAAAAADgf2IywfeoQ4cO6dGjR32vBgAAAAAAAAB8KyYTfMf++Mc/Zt111826666b1q1b5/XXX89yyy1X36sFAAAAAAAAAN+YmOA7NmjQoPpeBQAAAAAAAAD4n3jMAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAAChoUN8rwLez2Wab1fcqAMD/WZMmTXLXXXclSbbddtvMmTOnntcIAP5v7NMA+KmwTwPgp+b++++v71XgB2LnnXfOjBkz8ve//z3LLbdcfa/Oj5LJBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKGtT3CvzUPPTQQ3n55ZdLf37//fdLP7/88su5/PLLC8v/5je/WUBrBgAAAAAAAADfjJjgO3bJJZfkiiuu+NLXJkyYkAkTJhR+JyYAAAAAAAAA4IfGYw4AAAAAAAAAgAIxwXfs8ssvT21t7Tf+HwAAAAAAAAD80IgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwAAAAAAAAAABWICAAAAAAAAAKBATAAAAAAAAAAAFIgJAAAAAAAAAIACMQEAAAAAAAAAUCAmAAAAAAAAAAAKxAQAAAAAAAAAQIGYAAAAAAAAAAAoEBMAAAAAAAAAAAViAgAAAAAAAACgQEwAAAAAAAAAABSICQAAAAAAAACAAjEBAAAAAAAAAFAgJgAAAAAAAAAACsQEAAAAAAAAAECBmAAAAAAAAAAAKBATAAAAAAAAAAAFYgIAAAAAAAAAoEBMAAAAAAAAAAAUiAkAAAAAAAAAgAIxAQAAAAAAAABQICYAAAAAAAAAAArEBAAAAAAAAABAgZgAAAAAAAAAACgQEwDw/9q7/1gv6/r/448jBpnosACXwsKhCLbWTFi4tiBTi2oaSgpzCBulpWNaQfiDmjYyQA0XlsKMNF2E01lIiq0tgQxCMtlM2o4/UEQccTKGQZ0B5/NH83x5yuHIkXM4X+t229iu8369rtf1enOx8ce577oAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFGICAAAAAAAAAKAQEwAAAAAAAAAAhZgAAAAAAAAAACjEBAAAAAAAAABAISYAAAAAAAAAAAoxAQAAAAAAAABQiAkAAAAAAAAAgEJMAAAAAAAAAAAUYgIAAAAAAAAAoBATAAAAAAAAAACFmAAAAAAAAAAAKMQEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIDiHcUETz31VG666aaMGTMmAwcOTK9evdK7d+8MGTIkkydPzqpVqzq03vLly3PBBRdkwIAB6dWrVwYMGJALLrggy5cvP+g1li1blnHjxrWu0bdv35x55pm59dZbs3Pnzrc9f9OmTXnwwQdzzTXX5Kyzzsqxxx6bhoaGNDQ05IYbbujQ93mrLVu2pE+fPq3rjR49+pDWAwAAAAAAAICudGRHTxg1alRWrly53+fNzc1pbGxMY2Nj7rnnnkycODF33XVXevbsecC1Wlpa8tWvfjULFy4sn2/evDkPPfRQHnrooVx22WW5884709DQ0OYaO3bsyCWXXJKHH364fN7U1JSmpqasWbMmCxYsyNKlSzN06NA213jppZcyaNCgt/nm79zUqVOzffv2LlsfAAAAAAAA4K3mzp2bGTNmJElWr16dkSNHdvOOOJwO9f53+MkEmzdvTpKccMIJueqqq/LAAw9k7dq1Wb16dX7wgx/kxBNPTJLce++9mTx5crtrzZw5szUkOP3007N48eKsXbs2ixcvzumnn54kWbhwYb797W+3eX5LS0suvvji1pDgjDPOyH333Zd169bld7/7XaZNm5ZevXqlsbExY8aMSVNT0wHXeVNDQ0NOPvnkfPKTnzz4v5R2PPzww3nwwQfTv3//TlkPAAAAAAAA4O1s2LAh3/nOd3L00Ud391boBp1x/zscEwwdOjRLlizJyy+/nNtuuy0XXnhhRowYkZEjR+brX/96nn766QwZMiRJsnjx4gO+8uC5557L3LlzkyTDhw/PE088kfHjx2fEiBEZP358fv/732f48OFJkjlz5uT555/fb40HH3wwjz76aJLknHPOyR/+8IdccsklOeOMMzJ69OjcfPPNWbZsWXr06JGNGzfmxhtvbHMvxxxzTGbNmpXHHnssTU1NaWxsPODcjnjjjTdy5ZVXJkluueWWQ14PAAAAAAAA4O3s2bMnkyZNykc/+tGMHTu2u7fDYdZZ97/DMcGyZcty0UUXpUePHm2O9+3bN7feemvrzw888ECb8+bNm5fdu3cnSebPn5+jjjqqjL/vfe/L/PnzkyS7d+/Obbfdtt8a99xzT+vxj370ozZfqXD22Wdn/PjxSZIFCxbk9ddf32/OBz7wgVx//fU599xzc9xxx7W533fiuuuuy6ZNm/KpT30qEydO7LR1AQAAAAAAAA5kzpw5Wb9+fRYtWnTA3+vy36uz7n+HY4KDMXr06Nbjtp4o0NLSkl/96ldJ/vOkgwO9m2HkyJE59dRTkyS//OUvy+sIkuTJJ59Mkpx88sk55ZRTDrifz372s0mS5ubmLF269OC/yCFYu3Zta+Bwxx13HJZrAgAAAAAAAP/bnnnmmdx4442ZOXNmPvzhD3f3drrFunXrsmPHjiTJrFmzsm7dum7e0eHTmfe/S2KC5ubm/3eBI/a/xIsvvpjNmzcnSUaNGtXuWm+Ov/LKK9m4cWMZ+/vf/54kOf7449tdY9/xFStWtDu3M+zevTuXXXZZ9u7dmxkzZrQGEQAAAAAAAABdZffu3Zk8eXKGDRuWa665pru30y3mzp2b6dOnZ8+ePUmSF154IdOnT8/NN9/czTvrep19/7skJtj3F/ZDhw7db3zDhg3tju9r3/F9z0uSo48+Okmyffv2dtfYd/zZZ59td25nuOWWW7J+/foMHjw41113XZdfDwAAAAAAAOCmm25qfbz9e97znu7ezmG3bt26PProo22OPfLII/nTn/50mHd0eHX2/e/0mGDv3r2ZPXt2688XXXTRfnM2bdrUejxgwIB21xs4cGCb5yXJsGHDkvwnMvjb3/52wDVWrlzZevzyyy+3e71D9cILL+S73/1ukuTHP/5x3vve93bp9QAAAAAAAADWr1+fWbNmZdq0afnYxz7W3dvpFj/96U/bHV+0aNFh2snh1xX3/8hOWWUf8+bNy9q1a5MkY8eOzfDhw/eb8+b7KZKkd+/e7a735tMHkuSNN94oY+eff35Wr16dPXv2ZObMmVmwYMF+5zc2NpZ/NPteuytcfvnl2bVrVy6++OKce+65nb7+448/3ulrAkB3WL58eXdvAQA6hf/TAPhv4f80AHh3mzRpUgYPHpwbbrihu7fSbbZt23ZI4+9mXXH/OzUmWLFiReu7F/r375877rijzXn/+te/Wo979uzZ7pq9evVqPd61a1cZ+9rXvpbbb789r7zyShYuXJidO3dm+vTpGTp0aHbs2JFHHnkk3/rWt/LGG2+kZ8+eaW5u3m+NzvSzn/0sv/3tb3Psscdm3rx5XXYdAAAAAAAAgH2tX78+SQ745PQzzzwzSfLQQw/li1/84uHa1mG1ZMmS7t5Ct+mK+99pMcFf/vKXjB07Nrt3706vXr1y//335/jjj29z7r5foLm5ud11//3vf7ceH3XUUWXs2GOPzdKlS/O5z30ur732Wu67777cd999+61xxRVXZOXKlXnmmWdyzDHHdORrHbRt27blm9/8ZpLke9/7Xj74wQ92yXUAAAAAAAAA3mrKlCltfr5y5co0NjbmvPPOS79+/TJo0KDDuzEOi664/50SE7z44os599xz8/rrr6dHjx5ZvHhxRo0adcD5+/5C/62vLnirf/7zn63Hbb0S4fTTT8/69evz/e9/P0uWLMmWLVtaxz7ykY9k+vTpmThxYvr27ZskOe644w76e3XEN77xjWzbti3Dhw/PFVdc0SXXAAAAAAAAAGjLXXfd1ebnkydPTmNjY6699tqMHDnyMO+Kw6Ur7v8hxwSvvvpqzj777Lz66qtpaGjIokWLMnbs2HbPGTBgQOvxK6+80u7cTZs2tR4PHDiwzTn9+/fPvHnzMm/evGzdujX/+Mc/0q9fv9ZwYMuWLWlqakqSnHbaaQf1vTri1Vdfzb333pskOeuss3L//fe3O3/r1q35xS9+kSQ56aST8vGPf7zT9wQAAAAAAAAA79QhxQTbtm3LOeeckxdeeCFJMn/+/Fx66aVve96+v9D/61//2u7cfceHDRv2tmv3798//fv3L5+tWrWq9bgrfnG/76sa5s6d+7bzN2zYkAkTJiRJJk2aJCYAAAAAAAAA4P8rR7zTE7dv357PfOYzefbZZ5Mks2fPzpVXXnlQ55500kk54YQTkiQrVqxod+7KlSuTJCeeeOI7fn/Hz3/+89bjL33pS+9oDQAAAAAAAIB3m7vvvjstLS1ecfA/6lDu/zuKCXbu3JnPf/7zeeqpp5Ik119/fWbMmHHQ5zc0NOT8889P8p8nD6xZs6bNeWvWrGl9MsH555+fhoaGDu/1j3/8Y5YuXZok+fSnP52hQ4d2eI23M2jQoLS0tLztnzeNGjWq9bO777670/cDAAAAAAAAAIeiwzFBc3Nzxo4dmyeeeCJJctVVV2XWrFkdvvDVV1+dI4/8z1sWpk6dml27dpXxXbt2ZerUqUmSI488MldffXWb67z88ssHvMZzzz2XcePGpaWlJT179swPf/jDDu8TAAAAAAAAAP7XHNnREyZMmJDf/OY3SZKzzjorU6ZMyTPPPHPA+T179syQIUP2+3zIkCGZNm1aZs+enXXr1uUTn/hEZsyYkcGDB+f555/PnDlz8uc//zlJMn369Jxyyiltrn/FFVfkpZdeyqWXXprhw4enT58+2bp1ax577LEsWLAgO3fuTENDQ+68886cdtppB9zn8uXL89prr7X+/OYTEZLk6aefLk8Q6N27d8aNG3fAtQAAAAAAAADg3ayhZd/n7x/MCR181cCHPvShbNy4sc2xvXv35itf+UoWLVp0wPOnTJmShQsX5ogj2n6Iwhe+8IX8+te/PuD573//+3P77bdnwoQJ7e5z9OjRWbFiRbtz3tTed2rPm393o0aNyuOPP97h8wEAAAAAAADgcOjwkwk60xFHHJGf/OQnufDCC7Nw4cI8+eST2bZtW/r27ZsRI0bk8ssvz5gxY9pd49prr82pp56aVatWZdOmTWlqakqfPn0yePDgnHfeefnyl7+cfv36HaZvBAAAAAAAAADvfh1+MgEAAAAAAAAA8N+t7XcHAAAAAAAAAAD/s8QEAAAAAAAAAEAhJgAAAAAAAAAACjEBAAAAAAAAAFCICQAAAAAAAACAQkwAAAAAAAAAABRiAgAAAAAAAACgEBMAAAAAAAAAAIWYAAAAAAAAAAAoxAQAAAAAAAAAQCEmAAAAAAAAAAAKMQEAAAAAAAAAUIgJAAAAAAAAAIBCTAAAAAAAAAAAFP8HHLV9d8UHS1EAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 2500x1000 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"msno.matrix(pop)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "9ab9a866",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are no null values in the table.\n"
]
}
],
"source": [
"# count number of null values in countries dataframe\n",
"nulls_pop = pop.isna().sum().sum()\n",
"if nulls_pop == 0:\n",
" print(\"There are no null values in the table.\")\n",
"else:\n",
" print (\"There are \", nulls_pop, \"null values in the table.\")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "9d755cd9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Granularity</th>\n",
" <th>Country</th>\n",
" <th>Year</th>\n",
" <th>Female</th>\n",
" <th>Male</th>\n",
" <th>Rural</th>\n",
" <th>Total</th>\n",
" <th>Urban</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Afghanistan</td>\n",
" <td>2000</td>\n",
" <td>10090.449</td>\n",
" <td>10689.508</td>\n",
" <td>15657.474</td>\n",
" <td>20779.953</td>\n",
" <td>4436.282</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Afghanistan</td>\n",
" <td>2001</td>\n",
" <td>10489.238</td>\n",
" <td>11117.754</td>\n",
" <td>16318.324</td>\n",
" <td>21606.988</td>\n",
" <td>4648.139</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Afghanistan</td>\n",
" <td>2002</td>\n",
" <td>10958.668</td>\n",
" <td>11642.106</td>\n",
" <td>17086.910</td>\n",
" <td>22600.770</td>\n",
" <td>4893.013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Afghanistan</td>\n",
" <td>2003</td>\n",
" <td>11466.237</td>\n",
" <td>12214.634</td>\n",
" <td>17909.063</td>\n",
" <td>23680.871</td>\n",
" <td>5155.788</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Afghanistan</td>\n",
" <td>2004</td>\n",
" <td>11962.963</td>\n",
" <td>12763.726</td>\n",
" <td>18692.107</td>\n",
" <td>24726.684</td>\n",
" <td>5426.872</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Granularity Country Year Female Male Rural Total \\\n",
"0 Afghanistan 2000 10090.449 10689.508 15657.474 20779.953 \n",
"1 Afghanistan 2001 10489.238 11117.754 16318.324 21606.988 \n",
"2 Afghanistan 2002 10958.668 11642.106 17086.910 22600.770 \n",
"3 Afghanistan 2003 11466.237 12214.634 17909.063 23680.871 \n",
"4 Afghanistan 2004 11962.963 12763.726 18692.107 24726.684 \n",
"\n",
"Granularity Urban \n",
"0 4436.282 \n",
"1 4648.139 \n",
"2 4893.013 \n",
"3 5155.788 \n",
"4 5426.872 "
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# un-pivot data\n",
"pop_trim = pop.pivot(index=['Country','Year'], columns='Granularity', values='Population').reset_index()\n",
"pop_trim.head()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "c16454b1",
"metadata": {},
"outputs": [],
"source": [
"# change units\n",
"pop_trim['female_population'] = pop_trim['Female'] * 1000\n",
"pop_trim['male_population'] = pop_trim['Male'] * 1000\n",
"pop_trim['rural_population'] = pop_trim['Rural'] * 1000\n",
"pop_trim['urban_population'] = pop_trim['Urban'] * 1000\n",
"pop_trim.rename(columns={'Country': 'p_country_name', 'Year':'p_year'}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "fc893867",
"metadata": {},
"outputs": [],
"source": [
"# reorder columns\n",
"population = pop_trim[['p_country_name', 'p_year', 'female_population','male_population','rural_population','urban_population']].copy()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "13cd7852",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pays ayant des donnees de population mais absents du referentiel pays:\n",
"['American Samoa', 'Anguilla', 'Aruba', 'Bermuda', 'Bonaire, Sint Eustatius and Saba', 'British Virgin Islands', 'Cayman Islands', 'Channel Islands', 'China, Hong Kong SAR', 'China, Macao SAR', 'China, Taiwan Province of', 'China, mainland', 'Curaçao', 'Falkland Islands (Malvinas)', 'Faroe Islands', 'French Guyana', 'French Polynesia', 'Gibraltar', 'Greenland', 'Guadeloupe', 'Guam', 'Holy See', 'Isle of Man', 'Liechtenstein', 'Martinique', 'Mayotte', 'Montserrat', 'Netherlands Antilles (former)', 'New Caledonia', 'North Macedonia', 'Northern Mariana Islands', 'Palestine', 'Puerto Rico', 'Réunion', 'Saint Barthélemy', 'Saint Helena, Ascension and Tristan da Cunha', 'Saint Pierre and Miquelon', 'Saint-Martin (French part)', 'Serbia and Montenegro', 'Sint Maarten (Dutch part)', 'Sudan (former)', 'Tokelau', 'Turks and Caicos Islands', 'United States Virgin Islands', 'Wallis and Futuna Islands', 'Western Sahara']\n"
]
}
],
"source": [
"print(\"Pays ayant des donnees de population mais absents du referentiel pays:\")\n",
"countries_out_2 = isInList(population['p_country_name'].unique().tolist(), countries['country_name'].unique().tolist())\n",
"print(countries_out_2)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "87b22ed0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pays du referentiel n'ayant pas de donnees de population:\n"
]