Skip to content

Files

Latest commit

b881dd0 · Jun 7, 2024

History

History
66 lines (61 loc) · 3.36 KB

README.md

File metadata and controls

66 lines (61 loc) · 3.36 KB

Mask-Consistent Contrastive Learning

Introduction

The repository contains official Pytorch implementations of training and evaluation codes for Mask-Consistent Contrastive Learning.

Installation

  1. Follow tutorial to install pytorch1.11.0(or newer version) and cudatookit.
  2. Install mmcv, mmengine, mmcls and mmdet using MIM.
pip install -U openmim
mim install mmengine
mim install "mmcv==2.0.0rc3"
mim install "mmcls==1.0.0rc4"
mim install "mmdet==3.0.0rc4"
  1. Install mmsegv1.0.0rc2 from source.
git clone https://github.com/CVIU-CSU/MaskCC.git
cd MaskCC
pip install -v -e .
  1. Prepare datasets following tutorial.

Training

Cityscapes

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 PORT=29513 bash tools/dist_train.sh configs/maskcc/maskcc_r50_8xb2-90k_cityscapes-512x1024.py 8

ADE20K:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29513 bash tools/dist_train.sh configs/maskcc/maskcc_r50_4xb4-160k_ade20k-512x512.py 4

PASCAL-Context

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29513 bash tools/dist_train.sh configs/maskcc/maskcc_r50_4xb4-60k_pascal-context_480x480.py 4

COCO-Stuff10k

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29513 bash tools/dist_train.sh configs/maskcc/maskcc_r50_4xb4-60k_cocostuff_480x480.py 4

Evalution

For single-scale test:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 PORT=29513 bash tools/dist_test.sh configs/maskcc/maskcc_r50_8xb2-90k_cityscapes-512x1024.py 8

For multi-scale test: The multi-scale test for mask2former is not supported in mmsegv1.0.0rc2.

Results

Method Backbone Train Set Eval Set Batch Iters mIoU Config
Mask2Former ResNet50 Cityscapes train Cityscapes val 8x2 90K 79.4 config
Mask2Former+MaskCC ResNet50 Cityscapes train Cityscapes val 8x2 90K 80.9 config
Mask2Former ResNet50 ADE20K train ADE20K val 4x4 160K 47.2 config
Mask2Former+MaskCC ResNet50 ADE20K train ADE20K val 4x4 160K 48.4 config
Mask2Former ResNet50 PASCAL-Context train PASCAL-Context val 4x4 60K 54.8 config
Mask2Former+MaskCC ResNet50 PASCAL-Context train PASCAL-Context val 4x4 60K 55.3 config
Mask2Former ResNet50 COCO-Stuff10k train COCO-Stuff10k val 4x4 60K 40.0 config
Mask2Former+MaskCC ResNet50 COCO-Stuff10k train COCO-Stuff10k val 4x4 60K 41.2 config

Todo

  • MaskCC code
  • Configs
  • Detailed readme
  • Citation