-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspmm_test.py
executable file
·140 lines (113 loc) · 5.25 KB
/
spmm_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import datetime
import os.path as osp
import logging
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid, Reddit, AmazonProducts
from torch_geometric.utils import scatter
from torch_sparse import SparseTensor, matmul
from backend_pim.spmm import prepare_pim_spmm
from backend_pim.grande import prepare_pim_spmm_grande
from backend_pim.spmv import prepare_pim_spmv
device = 'cpu'
def spmm_test(data_adj_t, pim_adj_t, data_x, args):
print("{} Dataset Info: Node({}), Edge({})".format(args.dataset, data_adj_t.size(1), data_adj_t.nnz()))
# scale, data_x_q = symmetric_quantize(data_x)
data_x_pim = data_x.type(args.data_type)
start_torch = datetime.datetime.now()
res_torch = matmul(data_adj_t, data_x)
end_torch = datetime.datetime.now()
print("[DATA]torch_time(ms): ", (end_torch - start_torch).total_seconds() * 1000, flush=True)
if (args.version != "cpu"):
start_pim = datetime.datetime.now()
res_lib = pim_adj_t.mul(data_x_pim)
end_pim = datetime.datetime.now()
res_lib = res_lib.float()
print("[DATA]pim_time_spmm(ms): ", (end_pim - start_pim).total_seconds() * 1000, flush=True)
# print("pim_sum: ", res_lib.sum())
# print("torch_sum: ", res_torch.sum())
def load_datasets(args):
path = osp.join(args.datadir, args.dataset)
if args.dataset == 'PubMed':
dataset = Planetoid(path, "PubMed")
elif args.dataset == "Reddit":
dataset = Reddit(path)
elif args.dataset == "AmazonProducts":
dataset = AmazonProducts(path)
elif args.dataset in ["ogbn-arxiv", 'ogbn-proteins']:
from ogb.nodeproppred import Evaluator, PygNodePropPredDataset
dataset = PygNodePropPredDataset(name=args.dataset, root=path)
else:
print("[ERROR]: load dataset failed!")
exit(1)
data = dataset[0]
transform = T.ToSparseTensor(remove_edge_index=False)
if args.dataset in ["AmazonProducts"]:
from torch_geometric.loader import ClusterData
import math
num_parts = math.ceil(data.num_nodes / 500000)
Cdata = ClusterData(data, num_parts=num_parts, save_dir=osp.join(args.datadir, args.dataset))
data_parts = []
for data in Cdata:
data_parts.append(transform(data))
data = data_parts[1]
else:
data = transform(data)
data.x = torch.randint(-2^6, 2^6, (data.adj_t.size(1), args.hidden_size), dtype=args.data_type)
return data
def get_args():
parser = argparse.ArgumentParser()
# parser.add_argument('--dataset', type=str, default='AmazonProducts')
# parser.add_argument('--dataset', type=str, default='Reddit')
parser.add_argument('--dataset', type=str, default='PubMed')
# parser.add_argument('--dataset', type=str, default='ogbn-proteins')
# parser.add_argument('--dataset', type=str, default='pkustk08.mtx')
parser.add_argument('--datadir', type=str, default='./data')
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--version', type=str, default='spmm', choices=["spmm", 'grande', "spmv", "cpu"])
parser.add_argument('--tune', type=bool, default=True)
parser.add_argument('--lib_path', type=str, default="./backend_pim/spmm_default/build/libbackend_pim.so")
parser.add_argument('--hidden_size', type=int, default=256)
parser.add_argument('--data_type', type=str, default='INT32', choices=["INT8", "INT32", "INT16", "INT64", "FLT32", "DBL64"])
parser.add_argument('--sp_format', type=str, default='COO', choices=["CSR", "COO"])
parser.add_argument('--sp_parts', type=int, default=32)
parser.add_argument('--ds_parts', type=int, default=1)
parser.add_argument('--repeat', type=int, default=3)
parser.add_argument('--nr_dpus', type=int, default=0)
args = parser.parse_args()
print(args, flush=True)
TORCH_TYPES = {"INT64": torch.int64, "INT32": torch.int32, "INT16": torch.int16, "INT8": torch.int8,
"FLT32": torch.float32, "DBL64": torch.float64}
args.data_type = TORCH_TYPES[args.data_type]
return args
def main(args):
data = load_datasets(args)
data = data.to(device)
pim_adj_t = None
if (args.version != "cpu"):
torch.ops.load_library(args.lib_path)
if args.nr_dpus == 0:
if args.version == "grande":
dpus_per_rank = torch.ops.pim_ops.dpu_init_ranks(args.sp_parts)
else:
torch.ops.pim_ops.dpu_init_ranks(args.sp_parts * args.ds_parts)
else:
torch.ops.pim_ops.dpu_init_dpus(args.nr_dpus)
if args.version == "spmm":
pim_adj_t = prepare_pim_spmm(data.adj_t, args)
elif args.version == "spmv":
pim_adj_t = prepare_pim_spmv(data.adj_t, args)
elif args.version == "grande":
pim_adj_t = prepare_pim_spmm_grande(data.adj_t, args, dpus_per_rank)
else:
raise NotImplementedError
for i in range(args.repeat):
print("-------------------- Model=spmm_test Repeat={}--------------------".format(i), flush=True)
spmm_test(data.adj_t, pim_adj_t, data.x, args)
if (args.version != "cpu"):
torch.ops.pim_ops.dpu_release()
if __name__ == "__main__":
args = get_args()
main(args)