diff --git a/Lab3-policy-gradient.ipynb b/Lab3-policy-gradient.ipynb index 4529e50..d76b099 100644 --- a/Lab3-policy-gradient.ipynb +++ b/Lab3-policy-gradient.ipynb @@ -3,9 +3,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Automatically reload changes to external code\n", @@ -28,14 +26,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "[2017-09-12 22:50:43,560] Making new env: CartPole-v0\n" + "[2017-11-07 13:50:11,632] Making new env: CartPole-v0\n" ] } ], @@ -103,14 +101,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/andrew/miniconda2/envs/cedl/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:95: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + "/Users/Howard/anaconda/envs/cedl/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:95: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" ] } @@ -133,7 +131,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Problem 3\n", + "### Problem 3\n", "\n", "Use baseline to reduce the variance of our gradient estimate.\n", "\n", @@ -152,10 +150,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": true - }, + "execution_count": 4, + "metadata": {}, "outputs": [], "source": [ "class PolicyOptimizer(object):\n", @@ -214,21 +210,25 @@ " Sample solution should be only 1 line.\n", " \"\"\"\n", " # YOUR CODE HERE >>>>>>\n", + " a = r - b\n", " # <<<<<<<<\n", "\n", " p[\"returns\"] = r\n", " p[\"baselines\"] = b\n", " p[\"advantages\"] = (a - a.mean()) / (a.std() + 1e-8) # normalize\n", - "\n", + " p[\"advantage_variance\"] = np.var(a) # My additional code for plotting advantage variance.\n", + " \n", " obs = np.concatenate([ p[\"observations\"] for p in paths ])\n", " actions = np.concatenate([ p[\"actions\"] for p in paths ])\n", " rewards = np.concatenate([ p[\"rewards\"] for p in paths ])\n", " advantages = np.concatenate([ p[\"advantages\"] for p in paths ])\n", + " advantage_variances = np.array([ p[\"advantage_variance\"] for p in paths ])\n", "\n", " return dict(\n", " observations=obs,\n", " actions=actions,\n", " rewards=rewards,\n", + " advantage_variances=advantage_variances,\n", " advantages=advantages,\n", " )\n", "\n", @@ -236,16 +236,25 @@ " def train(self):\n", " loss_list = []\n", " avg_return_list = []\n", + " avg_advantage_variance_list = []\n", + " \n", " for i in range(1, self.n_iter + 1):\n", " paths = []\n", + " \n", " for _ in range(self.n_episode):\n", " paths.append(self.sample_path())\n", + " \n", " data = self.process_paths(paths)\n", " loss = self.policy.train(data[\"observations\"], data[\"actions\"], data[\"advantages\"])\n", " avg_return = np.mean([sum(p[\"rewards\"]) for p in paths])\n", - " print(\"Iteration {}: Average Return = {}\".format(i, avg_return))\n", + " avg_advantage_variance = np.mean(data[\"advantage_variances\"])\n", + " \n", + " print(\"Iteration {}: Average Return = {} | Average Advantage Variance: {}\".format(i, avg_return, avg_advantage_variance))\n", + " \n", " loss_list.append(loss)\n", " avg_return_list.append(avg_return)\n", + " avg_advantage_variance_list.append(avg_advantage_variance)\n", + " \n", " # CartPole-v0 defines \"solving\" as getting average reward of 195.0 over 100 consecutive trials.\n", " if avg_return >= 195:\n", " print(\"Solve at {} iterations, which equals {} episodes.\".format(i, i*100))\n", @@ -253,103 +262,99 @@ "\n", " if self.baseline != None:\n", " self.baseline.fit(paths)\n", - " return loss_list, avg_return_list" + " return loss_list, avg_return_list, avg_advantage_variance_list" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iteration 1: Average Return = 14.85\n", - "Iteration 2: Average Return = 15.59\n", - "Iteration 3: Average Return = 16.61\n", - "Iteration 4: Average Return = 17.43\n", - "Iteration 5: Average Return = 17.08\n", - "Iteration 6: Average Return = 17.24\n", - "Iteration 7: Average Return = 21.3\n", - "Iteration 8: Average Return = 21.42\n", - "Iteration 9: Average Return = 20.62\n", - "Iteration 10: Average Return = 26.82\n", - "Iteration 11: Average Return = 28.0\n", - "Iteration 12: Average Return = 28.41\n", - "Iteration 13: Average Return = 28.96\n", - "Iteration 14: Average Return = 28.15\n", - "Iteration 15: Average Return = 30.64\n", - "Iteration 16: Average Return = 36.2\n", - "Iteration 17: Average Return = 38.13\n", - "Iteration 18: Average Return = 34.5\n", - "Iteration 19: Average Return = 40.37\n", - "Iteration 20: Average Return = 35.78\n", - "Iteration 21: Average Return = 47.81\n", - "Iteration 22: Average Return = 47.21\n", - "Iteration 23: Average Return = 43.34\n", - "Iteration 24: Average Return = 46.1\n", - "Iteration 25: Average Return = 50.25\n", - "Iteration 26: Average Return = 51.02\n", - "Iteration 27: Average Return = 59.81\n", - "Iteration 28: Average Return = 57.49\n", - "Iteration 29: Average Return = 61.39\n", - "Iteration 30: Average Return = 62.26\n", - "Iteration 31: Average Return = 61.98\n", - "Iteration 32: Average Return = 62.16\n", - "Iteration 33: Average Return = 59.89\n", - "Iteration 34: Average Return = 73.46\n", - "Iteration 35: Average Return = 78.51\n", - "Iteration 36: Average Return = 72.79\n", - "Iteration 37: Average Return = 78.74\n", - "Iteration 38: Average Return = 86.95\n", - "Iteration 39: Average Return = 94.08\n", - "Iteration 40: Average Return = 97.58\n", - "Iteration 41: Average Return = 103.42\n", - "Iteration 42: Average Return = 101.17\n", - "Iteration 43: Average Return = 112.39\n", - "Iteration 44: Average Return = 115.09\n", - "Iteration 45: Average Return = 134.65\n", - "Iteration 46: Average Return = 138.92\n", - "Iteration 47: Average Return = 147.15\n", - "Iteration 48: Average Return = 152.35\n", - "Iteration 49: Average Return = 149.66\n", - "Iteration 50: Average Return = 148.15\n", - "Iteration 51: Average Return = 144.82\n", - "Iteration 52: Average Return = 144.43\n", - "Iteration 53: Average Return = 153.21\n", - "Iteration 54: Average Return = 163.66\n", - "Iteration 55: Average Return = 154.28\n", - "Iteration 56: Average Return = 155.07\n", - "Iteration 57: Average Return = 161.53\n", - "Iteration 58: Average Return = 166.28\n", - "Iteration 59: Average Return = 174.05\n", - "Iteration 60: Average Return = 172.8\n", - "Iteration 61: Average Return = 170.78\n", - "Iteration 62: Average Return = 179.58\n", - "Iteration 63: Average Return = 174.84\n", - "Iteration 64: Average Return = 175.74\n", - "Iteration 65: Average Return = 174.99\n", - "Iteration 66: Average Return = 187.7\n", - "Iteration 67: Average Return = 178.94\n", - "Iteration 68: Average Return = 182.74\n", - "Iteration 69: Average Return = 181.42\n", - "Iteration 70: Average Return = 182.19\n", - "Iteration 71: Average Return = 184.58\n", - "Iteration 72: Average Return = 181.9\n", - "Iteration 73: Average Return = 184.29\n", - "Iteration 74: Average Return = 188.8\n", - "Iteration 75: Average Return = 190.46\n", - "Iteration 76: Average Return = 188.89\n", - "Iteration 77: Average Return = 187.9\n", - "Iteration 78: Average Return = 190.19\n", - "Iteration 79: Average Return = 186.28\n", - "Iteration 80: Average Return = 189.1\n", - "Iteration 81: Average Return = 188.16\n", - "Iteration 82: Average Return = 191.32\n", - "Iteration 83: Average Return = 192.03\n", - "Iteration 84: Average Return = 195.45\n", - "Solve at 84 iterations, which equals 8400 episodes.\n" + "Iteration 1: Average Return = 25.59 | Average Advantage Variance: 48.351865612557724\n", + "Iteration 2: Average Return = 24.8 | Average Advantage Variance: 20.65048949168897\n", + "Iteration 3: Average Return = 28.74 | Average Advantage Variance: 22.13545724245825\n", + "Iteration 4: Average Return = 30.85 | Average Advantage Variance: 21.29429545367064\n", + "Iteration 5: Average Return = 31.25 | Average Advantage Variance: 23.602730478502558\n", + "Iteration 6: Average Return = 35.95 | Average Advantage Variance: 30.556859174015543\n", + "Iteration 7: Average Return = 33.98 | Average Advantage Variance: 34.52406210704295\n", + "Iteration 8: Average Return = 34.02 | Average Advantage Variance: 26.42146686387153\n", + "Iteration 9: Average Return = 37.86 | Average Advantage Variance: 28.0064356959493\n", + "Iteration 10: Average Return = 36.7 | Average Advantage Variance: 29.125894655094726\n", + "Iteration 11: Average Return = 39.24 | Average Advantage Variance: 34.92325058502597\n", + "Iteration 12: Average Return = 38.12 | Average Advantage Variance: 24.663745918726278\n", + "Iteration 13: Average Return = 42.16 | Average Advantage Variance: 25.53625249684122\n", + "Iteration 14: Average Return = 43.46 | Average Advantage Variance: 29.64068299230753\n", + "Iteration 15: Average Return = 45.5 | Average Advantage Variance: 30.83696088879085\n", + "Iteration 16: Average Return = 46.07 | Average Advantage Variance: 30.24291413071842\n", + "Iteration 17: Average Return = 46.46 | Average Advantage Variance: 29.51328026333303\n", + "Iteration 18: Average Return = 43.61 | Average Advantage Variance: 25.81055223826167\n", + "Iteration 19: Average Return = 44.4 | Average Advantage Variance: 24.8791987022585\n", + "Iteration 20: Average Return = 46.12 | Average Advantage Variance: 21.62926278843614\n", + "Iteration 21: Average Return = 50.32 | Average Advantage Variance: 28.89130832504027\n", + "Iteration 22: Average Return = 50.97 | Average Advantage Variance: 29.981063663366204\n", + "Iteration 23: Average Return = 50.99 | Average Advantage Variance: 30.533226049515214\n", + "Iteration 24: Average Return = 52.97 | Average Advantage Variance: 27.958060870176336\n", + "Iteration 25: Average Return = 54.41 | Average Advantage Variance: 28.94597635253092\n", + "Iteration 26: Average Return = 51.62 | Average Advantage Variance: 28.633312416525147\n", + "Iteration 27: Average Return = 53.03 | Average Advantage Variance: 31.999785701999205\n", + "Iteration 28: Average Return = 56.47 | Average Advantage Variance: 33.23399687032651\n", + "Iteration 29: Average Return = 58.33 | Average Advantage Variance: 33.04375247199863\n", + "Iteration 30: Average Return = 60.46 | Average Advantage Variance: 38.41737196380684\n", + "Iteration 31: Average Return = 55.87 | Average Advantage Variance: 30.71584113213717\n", + "Iteration 32: Average Return = 54.53 | Average Advantage Variance: 26.270106880027967\n", + "Iteration 33: Average Return = 55.43 | Average Advantage Variance: 24.529012871853457\n", + "Iteration 34: Average Return = 62.98 | Average Advantage Variance: 30.933791732505302\n", + "Iteration 35: Average Return = 64.06 | Average Advantage Variance: 29.75019719598117\n", + "Iteration 36: Average Return = 65.37 | Average Advantage Variance: 34.906276477947955\n", + "Iteration 37: Average Return = 63.68 | Average Advantage Variance: 24.97192303518823\n", + "Iteration 38: Average Return = 67.27 | Average Advantage Variance: 29.10197455101781\n", + "Iteration 39: Average Return = 62.2 | Average Advantage Variance: 23.51568610205659\n", + "Iteration 40: Average Return = 64.5 | Average Advantage Variance: 29.397292723362742\n", + "Iteration 41: Average Return = 66.59 | Average Advantage Variance: 30.827112918615736\n", + "Iteration 42: Average Return = 74.06 | Average Advantage Variance: 36.27106717823759\n", + "Iteration 43: Average Return = 71.47 | Average Advantage Variance: 26.904280040963823\n", + "Iteration 44: Average Return = 75.28 | Average Advantage Variance: 32.88512072801452\n", + "Iteration 45: Average Return = 80.71 | Average Advantage Variance: 36.74875583700775\n", + "Iteration 46: Average Return = 75.5 | Average Advantage Variance: 30.2503334654542\n", + "Iteration 47: Average Return = 83.53 | Average Advantage Variance: 38.30691962090316\n", + "Iteration 48: Average Return = 92.73 | Average Advantage Variance: 41.97650402253011\n", + "Iteration 49: Average Return = 94.93 | Average Advantage Variance: 38.0379064308017\n", + "Iteration 50: Average Return = 101.97 | Average Advantage Variance: 41.66995555483244\n", + "Iteration 51: Average Return = 104.87 | Average Advantage Variance: 42.54672396156329\n", + "Iteration 52: Average Return = 121.97 | Average Advantage Variance: 48.900139867641634\n", + "Iteration 53: Average Return = 125.1 | Average Advantage Variance: 36.83724214710699\n", + "Iteration 54: Average Return = 134.13 | Average Advantage Variance: 33.7458095438153\n", + "Iteration 55: Average Return = 139.2 | Average Advantage Variance: 23.045907284422455\n", + "Iteration 56: Average Return = 137.74 | Average Advantage Variance: 14.940458118392126\n", + "Iteration 57: Average Return = 134.88 | Average Advantage Variance: 18.009932982638652\n", + "Iteration 58: Average Return = 137.1 | Average Advantage Variance: 20.751132151412023\n", + "Iteration 59: Average Return = 135.17 | Average Advantage Variance: 15.564235765139122\n", + "Iteration 60: Average Return = 145.11 | Average Advantage Variance: 17.140943990974357\n", + "Iteration 61: Average Return = 150.32 | Average Advantage Variance: 15.342877797472518\n", + "Iteration 62: Average Return = 156.91 | Average Advantage Variance: 14.73913973560266\n", + "Iteration 63: Average Return = 153.94 | Average Advantage Variance: 12.286257958297703\n", + "Iteration 64: Average Return = 165.22 | Average Advantage Variance: 18.768308757568146\n", + "Iteration 65: Average Return = 167.32 | Average Advantage Variance: 7.276832422595179\n", + "Iteration 66: Average Return = 174.24 | Average Advantage Variance: 8.850345262283955\n", + "Iteration 67: Average Return = 173.77 | Average Advantage Variance: 6.451348940935663\n", + "Iteration 68: Average Return = 180.25 | Average Advantage Variance: 8.639755530502491\n", + "Iteration 69: Average Return = 184.07 | Average Advantage Variance: 4.033395584839485\n", + "Iteration 70: Average Return = 189.84 | Average Advantage Variance: 3.832568130570312\n", + "Iteration 71: Average Return = 193.89 | Average Advantage Variance: 2.5091744144243204\n", + "Iteration 72: Average Return = 189.19 | Average Advantage Variance: 2.6248013848304925\n", + "Iteration 73: Average Return = 192.4 | Average Advantage Variance: 2.535109936893029\n", + "Iteration 74: Average Return = 194.18 | Average Advantage Variance: 1.1413285550473464\n", + "Iteration 75: Average Return = 192.26 | Average Advantage Variance: 0.6477926859310129\n", + "Iteration 76: Average Return = 194.8 | Average Advantage Variance: 1.1958804409420545\n", + "Iteration 77: Average Return = 194.09 | Average Advantage Variance: 0.6822225681858246\n", + "Iteration 78: Average Return = 194.31 | Average Advantage Variance: 0.5343218591276616\n", + "Iteration 79: Average Return = 193.96 | Average Advantage Variance: 0.7315534130350639\n", + "Iteration 80: Average Return = 196.09 | Average Advantage Variance: 1.0495728827492738\n", + "Solve at 80 iterations, which equals 8000 episodes.\n" ] } ], @@ -366,19 +371,19 @@ " discount_rate)\n", "\n", "# Train the policy optimizer\n", - "loss_list, avg_return_list = po.train()" + "loss_list, avg_return_list, avg_advantage_variance_list = po.train()" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmYSQhMk2CRACYQubQELUoGDVIEbrbgRs\nUdGi1kqrULH+WtGithTEBeNeqKVq3RVpqlbbGpFQRTQqCUvYN8EAWWYSMtkgM+f3x00GYrZJMpmZ\nJO/neXySuXPvnXeOw7w5u9Jaa4QQQggPMvk6ACGEEN2PJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQ\nQnicJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQQnicJBchhBAeF+jrAHypoKCgXdfFxMRQXFzs4Wi6\nHykn90g5uU/Kyj2dWU5xcXFunSc1FyGEEB4nyUUIIYTHSXIRQgjhcZJchBBCeJwkFyGEEB4nyUUI\nIYTHSXIRQgjhcZJc2si55gOqP8vydRhCCOHXJLm0kV73H6r/97GvwxBCdGPOf72N873XfR1Gh0hy\naStzOM7yY76OQgjRTWmt0Z+8j/74n+jaE74Op90kubRVnzCc5WW+jkII0V0dPgjlZVBdBbu3+Tqa\ndpPk0kbKHIaW5CJEl6VrqtElhb4Oo1l65xbjF6XQW77xbTAdIMmlrfqE4bQfQ2vt60iEEG2ktcb5\nl8dw/vEu9PEaX4fTtJ1bIdICoxPRmyW59Bx9wsDhMKqsQvQA+lgp+tv16FKrr0PpuI0bYFMOVNrR\neTm+jqYRrTV651bUqPGoxDOh4Dt0SVHb7lFVia7xfeLs0Uvut4s5zPhpPwYhob6NRYh20tYiqKxA\nDRra+rnvvY7O/rfxIHYQakwSavR4GDUeFR7ZOfHVnkB/+wUqbrBbMbp1z+oqnG+9AAOHQEU5+su1\nMPFcj9zbYwoPQ5nVKNtR49DvvIje8g0q9RK3Ltda4/zTfIoq7DBpCir1EtSA+E4OummSXNpI9QlD\nA1SUQ99YX4cjRJtphwNnxoNQUojptw+jho5s+fxtm2DEWFTy2ejtm9BfrEGv/dB4ckA8anQi6vKf\noCItHY+tphr9v/+g//tPsBWjh40i4L7HO3xfAP3Bm2AtxvS7e9AbN6A/+QBdUY7qE+aR+3tCfX+L\nGjUeYgdCdD+j38XN5ELBQSg8TMDwUdSu/Qj9yfswJgnTbfd02h8CzZHk0laumku5b+MQop30+k/g\nyCEICcX5/MOY7l+Giohq+lxrERQWoKZciumiq+HH16Bra+HAbvTOreidW9CffYw+uBfTPUtQge5/\npejaE+jPssBWDOVlxkCZ3fnGv61R41Ejx6G/ykaXFKGi+3bsPX9/AJ31HupHaagRYyEoGP3fTPTX\nn7tdK/CKnVsgLAJiB6KUQiWeif7iU/SJE6hevVq9XG/LBSDydw9jtVcY/2/+8Qp63X9QV/y0s6Nv\nQPpc2qpPOAC6QpKL6Hp0TQ36vdchYQyme5ZARTnOPz+MPtH0fAq9fTMAakyS65gKDEQljMF06XQC\nfv0g6pb5sGc7+t2X2xbLV/9Dv/Zn9L/fRW/KgaIjqNFJmO59lID/W4K66jrjvI3r2/lu615Ha5yv\n/RmCQ1HTZxsH44fBgHj0hrUtX1tpR3/7hZFQf/jcke9xvrAMnfdVh+I7NU69cwuMGodSCgA1PgVq\nqmHXVvfukZ8L/eII6DcAFR6J6bJrIWEMeuMGj8TYFn5Tc8nNzeXFF1/E6XRy4YUXkp6e3uD5EydO\n8Oyzz7J3717CwsK466676NevHwD/+Mc/WLNmDSaTiZtvvpnk5OTOC1RqLqIL05+8B6VWTLf9H2rw\ncEw3/xrnikfRry+Hm+50fam5bN9kfOYHDmn2nqaJ5+LctRWd9U/0yLGoMya7F8vXn0F0P0xL/oIy\nNf47V/WPg0HD0N+sh7Sr2/Q+G7zOF2tgVz7qpjtRYcYfh0op1Nmp6MxX0SWFqOh+ja9zOnAufwS2\n5UHfWNTVN6AmngcOB/qjVeiP3oHaWvQ3n2O6436jA74jio+CtRj142knj41JhMBAo99lbMvfa7q2\nFnZuQU2+oMFxdfok9KqXmn2fncUvai5Op5OVK1dy3333kZGRweeff86hQ4canLNmzRr69OnDM888\nw+WXX85rr70GwKFDh1i/fj1PPPEE999/PytXrsTpdHZesKFm42eFzNIXXYu2H0P/+12YcBZq1DgA\nVMq5qMt+YjSfrF/T8Hyt0Ts2w+jEJr/8T6WuvQWGjsT50lPowsOtx1JRDvkbUSk/avHe6sxzYPc2\ntK3EjXfY1OvY0ategoQxqB+lNbz32anGOV9mN33th+/AtjxU2tXQOwT912U4F83H+cd56PffQJ1x\nDqZFz8PAwUbtb8eWdsXoer2dRu1EjRp/MsbewTDKzSHJ+3ZCTTXqtIZJSJ0+ybj/xi86FF9b+UVy\n2b17N7GxsfTv35/AwEDOOecccnIaDhP8+uuvmTJlCgCTJk1iy5YtaK3JycnhnHPOoVevXvTr14/Y\n2Fh2797dabGqgACjA1BqLqKL0R++A9XVmK65qcFxdfX1MHQk+t+rGs7fKjoC1iLU6CRao3r1wnT7\nb0EpnCseaXUOif72C3A4jJpAS/c980fG+e38YtSZr4C9HNP1cxolMRXTH0acht6wttG8Nb1jC/q9\nN1FnpaJ+cgumhRmon/8GjteABtOvHzI6yWMHYbrrDxDTH+czi9D7droXV2UFzpUZ6O2bTh7ctcWY\n6hA3uGGciWfCkUPooiMt3zM/F5QJRic2vL5fHAwc4vWmMb9oFrNarURHR7seR0dHs2vXrmbPCQgI\nIDQ0lPLycqxWKyNHnhztYrFYsFqbHo+flZVFVpaxovHSpUuJiYlpV7zF4RH0qj1ORDuv7ykCAwPb\nXcY9SUfKSWvduCmrCY7CwxR/+iHBUy8jYsIZjZ6vunomx55aRHjBfnpPmAhA5befUw5YJp9PoDvx\nxcRQc9dDlD78W3q9sZyIu//YbGy2vC9xxA4k+oyzW44/Jobi+GGY8r7C8pPZbSqrE7u3Yc3+NyGX\nzSD8jLOaPKfywisoX/EYkXYbvYaNAsBZaqVk5RMEDBiE5a7fYwrpY5x8+XTjvyZidPzpWWz3/RLn\nU38g6uHlBMYPazG2isz/Yt/wKfqrdYTdMo+Qy2ZQsnsbgeNPJ7Jfw6ar2vPSKHnrr4Tu3ESf08Y3\nc0ew7t6KHjGG6CFDG5WT/ZypVLz7MpZeAZiaGbzhaX6RXLwlLS2NtLSTVePi4uJ23Uf1CaO6pJgT\n7by+p4iJiWl3Gfck7S0n5wdvoj/9EHX19ahzL0KZApo8T9eewPnYfRAQyPGLr2nytfToCWAOpzTz\nDQIGGl+Mzm++gAgLtt59UO7GN2w06pqbqFn9MkWW/piunNn4tcrLcG7+BnXJdEpKWm/uciafjeOD\ntyjas4u+CSPdKivtdOB89mEIj6Tm4mnNXqPHTICAAKxLF8CgYaioaPT+XVBehmnuQqwVVVDhzoRp\nhb7rD+ilv6XkD/MxLXis+RF4DgfO99+CEadBnzDK/5pB+cYv4WgBzimXNopVB4XA6ETsq16mMnly\nk0OndWUFzp1bUZfMoLi4uNFnSo9JAqeT4jUfYTrvYjfeT/Pi4uLcOs8vmsUsFkuDD1lJSQkWi6XZ\ncxwOB5WVlYSFhTW61mq1NrrW00xhEcY8FyHcoLfloXfne/aee7aj33sTtEa/8jzOJf+H3ruj6XPf\nXgl7d2C6eR7K0vSQXtUrCHXeRZD3FbqkyOhv2b4JNSbRrZpRg3tdMg01+QL0e6/jzPmscTzfrAen\nE5Xi3gRGdea5xvtsQ9OYXvdfOLAbde0tqNA+zd/bHG70F8X0h8MHjaHR+3ejrr8d1Urto9G9Yvpj\nmrsQysuMJrKa6qZPzN0A1iJMP56G6Vf3oa6YCd8YI+JO7W9x3VcpTDN/DhUV6PfeaPqeO7cYZTp2\nQtPPxw835sx4sWnML5JLQkIChw8fprCwkNraWtavX09KSkqDc84880zWrl0LwIYNGxg3zhiul5KS\nwvr16zlx4gSFhYUcPnyYESNGdGq8prBwSS7Cbc6Xn8H54lMeW49O11Tj/FsGWGIwLV5h9AWUWXE+\n/H84//Yk2nryL1bnF58atZuLr3H1XzRHpV4KaPS6/xgr8x4rbdR+7w6lFOrGO43+jBefRO9r2MSt\nv/7MmCDo7sz7uHiIHWQkJTfoygr0P14xBiKcdX6r55suvJKA+X8k4I/PYXrmTUzPvtXuv+7VkBGY\nfvFb+G4vzhceRzsdjc5xZr1nTMBOSkGZTJiuvh7THfehLryy2TJRg4ahUn+MXvsh+vvvGj2vt+VB\nUG8YPqbp65UyOva35aKrK9v13trKL5JLQEAAt9xyC4sXL2b+/PlMnjyZ+Ph43nrrLb7++msApk6d\nit1uZ+7cuXzwwQfccMMNAMTHxzN58mTuvvtuFi9ezK233oqplZEtHaWk5iLcpG0lUFJoLOtxcK9n\n7rnqJSg6gunmu1AhoZjOTsW06HnUj6ehc9bhXDgH5z9eMSY5vvqc8SU77aZW76ui+0HSRGOG/JZv\njWNjWu/Mb/JevXph+uUCCI/EmfGAqwajS63GcNmU89yuESmljFFjO7ZQ8/Xn6NwvcW5Ya3yhNkF/\n+i+otGO69pa217qUQgW2PlmxxXtMmIi67hdGLfD1FehTRq/qfbtg9zbUhVc2aMZUyZMwzbyt2aZN\nAHXVDRAcgvOtFxoPQMjPNebHtDDRUp0+yRg6vfnbDrw79/lNn8sZZ5zBGWc07Gj86U9PzigNCgri\n7rvvbvLaadOmMW3atCaf6wymsAioqkTX1rZpRrLoefQp+3HonM9QgxM6dr8t36LXfoi6ON1Y36uO\nCg5FzZiNnnIp+h+voj98xxgdFmnB9It7UAHNf2mdyjTlMpx5X6H/9TZE90N1YIkjFR6J6Z7Fxl/w\nf3kU57Zc6DsAtEa1cU0vlXIu+l9vU7r4/1zHNBh/8SdPOnmsuhL98T8haSJqSMfKuiNMF1yG01pk\nDP2uroLZ81CBvdBZ70FIKOpHF7b5niosHHXVDeg3/wJ5X0Ld+9bWYjhyyGjWbMmI04zZ/xu/8Mqa\navLN2A6msAjjl8pyCPfOyAvRRe3ZZjRXJIxB5/wPPe2mNv81XU8fs+F8+WljPa/0WU2eo2L6o277\nDfqiq9CfvI+aeiWqLZ/RscnQbwAUHnbNj+gIFdMf0/89jH7/DfRHq0BrGDgE9YPhtq3eZ9BQTPc9\nTkRIMGU1xyEoGOdfHsX52gpMo5NQdYvI6k8/gopyTF5e6qQpatpNEBJqLL9yrBTTdbejv/kMdcEV\nqOD2LXqrUi9BZ3+E882/ogoOGkOXjxhzAlubZKlMAcb6cDn/c3s5mY7wi2axrsZUN8tX5rqI1ujd\n22DYKGPCXkkh7G/fHCxdZsP5+O+N5p5b70b1CmrxfDV0pHHesJYXpWx0nclU1/eCMTvcA1RgIKZr\nbsQ0/4/QLw419fL23WfYKILGn4EaMgI1YBCmG++AMis681WgbtHLjzNh3OmoumHFvqSUwnTZtaib\nfw07t+D8013g1O1+/1BXlrN+CdVVRtJ69XmjNhQVA3HNr6Lgun7SBagLLoMTnb8kv9Rc2kHV11wk\nuYgW6OoqOLgXdckMVPIkdMDz6K//1+YvfF1agnPZ78FWgmneQ53e3KNSLwWnA3XGOZ6972kTCFi8\n3HP3Gz4aNeUy9Kf/Qk+agt6VbwwhvqLx8GdfMp1zITo8EufyR1BnTO5QUyMYI8oCnnzNmKhaaYcK\nO5jDW11Fwbh2nGt1hs4myaUdXM1i0qkvWrJvpzE8dMRpqD5mGJuM/voz9IybXU1j2umg9tB+CDY3\neQttLTYSS5kN068fQo0c2+lhq969UZc0MVnQD6lrbkRv3IDz5WeMPZbGJKFGnObrsBpR48/E9PBf\noXdvz90zqLfR5BoZ3frJPiDNYu1Q3yym7bK+mGie3rMNlIKE0QDGUifWYqibj6Jra3GueIySudfj\nfO+NxiOADh/C+dgCOGbDNP8PXkksXY0KCcV0/e3w/QEjAftZreVUKizcSAg9hNRc2qF+ZVUq7b4N\nRPg1vXsbxA1G1S12qpLPRgf2Quf8D4Yk4PzLY7BxA71GjePE+29AVQVcewvKZELv2Izz+SUQEIjp\n7j+1uSmtJ1GnT0Kdd7Gxs+bo5pdHEd4lyaUdVHAoBARKn4tolnY6YO8O1MSTk/hUSCiMPwP9zefG\nvui5G1AzbyPq2p9R9PwjRsdsVQV6xFj0q3+GfgMwzV3Y4Tb6nsB0052+DkH8gCSXdlBKGXtcSJ+L\naE7Bd1BVacwtOIVKORed+6WRWK77BaapVxgjtH76cwg1o99/Az7/xNia9pf3umo9QnQ1klzaq0+Y\n9LmIZtVPnvxh57KacJaxodbZUzCdsr2uUgp11XU4o6Kh6DDqqus7PFNcCF+S5NJeUnMRLdm9DSKi\njAURT6GCQwj47dJmL+voirVC+AsZLdZesmGYaIHevQ0STmv3bHwhujpJLu2kzLIysmiaLjUWq/TH\n+RZCeIskl/aqq7l4ahl10Y00098iRE8iyaW9zGHgqIUad3apEz2J3pUPQUHGBk1C9FCSXNqrfoio\n9LuIH9A7NsOIsbIdg+jRJLm0kzLXzdKvkFn64iR9rBS+P4Bqxw6OQnQnklzaq0+Y8bNC5rqIk/SO\nLUD7d3AUoruQ5NJeZiO5aGkWE6fasQmCQ2DICF9HIoRPSXJpL3N9zUWSizhJ79gMI8e5va2wEN2V\nz3sc7XY7GRkZFBUV0bdvX+bPn4/Z3Hg9pbVr17J69WoApk2bxpQpUwB44403WLduHXa7nVdeecV7\ngYfWJRepufRIeucWY1fFSMvJY6UlcOR7Y4VeIXo4n9dcMjMzSUxM5OmnnyYxMZHMzMxG59jtdlat\nWsWSJUtYsmQJq1atwm43OtLPPPNMlixZ4u2wjZFAIaFSc+mBnOs/wfnYfThfeLzBcb19MwBqtPS3\nCOHz5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNzARg1ahRRUVFejdmlT5ix+53o\nMfTGDeiXn4HwSNi5xdWBD8COzRDaB+KH+iw+IfyFz5NLWVmZKzlERkZSVlbW6Byr1Up09MmtPC0W\nC1ar1WsxNqtPGFpqLj2G3paH8y+PwpARmB4yEozzX2+dfH77Jhg1HmWS/hYhvNLnsmjRIkpLSxsd\nnzmz4ZakSqlOXegvKyuLrKwsAJYuXUpMTEy77hMYGEhMTAy2KAtOeznR7bxPd1dfTt3BiV352J5f\nQmDcYKL+8DSmsHAqpt2I/aVnCC8qICC6L8XFRwm7+jpC2/ieu1M5dTYpK/f4Qzl5JbksXLiw2eci\nIiKw2WxERUVhs9kIDw9vdI7FYiE/P9/12Gq1MnZs2/cTT0tLIy0tzfW4uLi4zfcAiImJobi4GGdQ\nMLrsu3bfp7urL6euTjudOJ/+E4Sacc59AGvNcagpRqecB+/+HdtrK1w7TlYMGk5lG99zdyknb5Cy\nck9nllNcXJxb5/m8WSwlJYXs7GwAsrOzmThxYqNzkpOTycvLw263Y7fbycvLIzk52duhNtZH9nTp\nETZ9BYf2o66+ocHoMNU7GHVxOmzdaGxRbA6HuME+DFQI/+Hz5JKens6mTZuYN28emzdvJj09HYA9\ne/awfPlyAMxmM9OnT2fBggUsWLCAGTNmuIYrv/rqq8yZM4fjx48zZ84c3n77be8Fbw6Dygq0w+G9\n1xRepbXG+cHb0DcWdXZqo+fVlEuNPzIO7UONTkSZfP5PSgi/4PN5LmFhYTzwwAONjickJJCQkOB6\nPHXqVKZOndrovFmzZjFr1qxOjbFZfeqa8CrtEBbhmxiER2it0Z99bCSIfgNOPrHlWziwG3XTnU1O\njFTBoaiLrkZnvgpjZD0xIer5PLl0aeZTJlJKcunS9Nefo//+LDrCguk3f0INGFRXa3kTLH1Rky9o\n9lp14ZVw/DjqrPO9GLEQ/k3q8B2gZPHKbkGfOI5+9yUYEA/aiXPZ/ejDB2FbHuzdgbp0OiqwV7PX\nq+AQTNfMQoU2XllCiJ5Kai4dYZYlYLoD/fE/oaQQ0z2Ljbkrj9+P8/H7ISIKIi2oH6W1fhMhRANS\nc+mIPvUrI0vNpavSpVb0h6vg9ElGf8uAeEz3LAGl4OA+1CXTUb2CfB2mEF2O1Fw6IjzS+FkuyaWr\n0pmvQu0JTDNudh1TAwZhumcJ+su1sgilEO0kyaUDVO9g6B0MxxqvPiD8nz6wB73+E9RF6Q1HiAEq\ndiDq6ht8FJkQXZ80i3VUWIQkly7K+d7r0CcMdflPfB2KEN2OJJeOCo9El0ty6Wq00wm7tqJSfoQK\n7ePrcITodiS5dJTUXLqmwsNQVSnbEQvRSSS5dJAKj4TyxtsECP+m9+8CQA0d6dtAhOimJLl0VHgk\nlB9DO2V9sS7lwG4ICjImTgohPE6SS0eFRYJ2ykTKLkbv3wXxw5tcL0wI0XGSXDrKNddFmsa6Cu1w\nwHd7kSYxITqPJJcOUvXJRTr1u47DB+F4DQyVznwhOoskl44KN1ZD1pJcugx9YDcgnflCdCZJLh3l\nahaT5NJl7N8FIaHQz73tWoUQbSfJpaNCzRAQIM1iXYjevxsGJ8iukUJ0IvnX1UFKKZlI2YXo2hPG\nlsTS3yJEp5Lk4gnhkehjMlqsS/j+ANTWwhDpbxGiM0ly8YTwSKm5dBF6f31nvtRchOhMPl9y3263\nk5GRQVFREX379mX+/PmYzY23i127di2rV68GYNq0aUyZMoWamhqeeOIJjh49islk4swzz+SGG7y/\nTLoKi0AXHPT664p22L/L2EE0pr+vIxGiW/N5zSUzM5PExESefvppEhMTyczMbHSO3W5n1apVLFmy\nhCVLlrBq1SrsdjsAV155JU8++SSPPvooO3bsYOPGjd5+C66ai9ba+68t2kTv3w1DRhh9ZUKITuPz\n5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNz6d27N+PHjwcgMDCQYcOGUVJS4tX4\nAWMJmNoTxiq7wm/pmhooOICS/hYhOp3Pk0tZWRlRUVEAREZGUlbWuGPcarUSHR3temyxWLBarQ3O\nqaio4JtvviExMbFzA26KLAHTNRzaB04napj0twjR2bzS57Jo0SJKSxt3eM+cObPBY6VUu5orHA4H\nTz31FJdeein9+zfflp6VlUVWVhYAS5cuJSYmps2vBUYt6dRra+IHUwpEKE1QO+/ZHf2wnHytckMB\n5YDl9LMJiPafuPytnPyZlJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlshIeHNzrHYrGQn5/vemy1\nWhk7dqzr8YoVK4iNjeXyyy9vMY60tDTS0tJcj4uLi9vyNlxiYmIaXKudRkIsO3gA1W9gu+7ZHf2w\nnDqDzvsKfXAvpitmtnquc2suRFiwOkF1clxt4Y1y6i6krNzTmeUUF+feyhY+bxZLSUkhOzsbgOzs\nbCZOnNjonOTkZPLy8rDb7djtdvLy8khOTgbgzTffpLKyktmzZ3sz7IbqmsVku2Pv0xvWoj9c5dZ+\nOnrfLhg2SjrzhfACnw9FTk9PJyMjgzVr1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjN\nZkpKSli9ejUDBw7kd7/7HQCXXHIJF154oXffRJixeKXMdfE+XV4GJ45DSRH0jW3+vAo7HP0edc5U\nL0YnRM/l8+QSFhbGAw880Oh4QkICCQkJrsdTp05l6tSGXwzR0dG8/fbbnR5ja1RAgDF3QpKL99mP\nGT+PHGoxuXCgblvjYaO8EJQQwufNYt1GWKTxV7Twrrrkog8favE0vc9ILgyRkWJCeIMkF0+RJWC8\nTmvdsObS0rn7dkLsIFRoHy9EJoSQ5OIhKjwSZPFK76qqAIfRkd9SzUVrDft2oobJ5EkhvEWSi6eE\nR8qGYd5WX2vpHdxyzcVWbNQqpb9FCK+R5OIpYRFQVYk+cdzXkfQc5XXJJWEM2I+h6x//UF1/ixoq\nyUUIb5Hk4in1S8BI05j31NVc1Ii6CbXN1F70vp0QGAiDhnopMCGEJBcPUa7kIk1j3qLrk8tII7no\nw01ve6D374L44ahevbwWmxA9nSQXT5GJlN5XP/R7yAjoFdRkzUU7HbB/N2qodOYL4U2SXDxFloDx\nPvsxCOwFwSHQfyD6yPeNzzn8PdRUSWe+EF4mycVTwqRZzOvsxyAswlhNe8AgaKJZTO/bASDDkIXw\nMkkuHqJ694beIbKnixfp8mPGsjsAsYOgpBB9vKbhSft2QUgf6OfeSq5CCM+Q5OJJ4RFSc/GmupoL\nAAMGgdZQWNDgFL1/JwwdgTLJR10Ib5J/cZ4UHomW5OI95WUos7H/jxowCGg4U18fr4FD+2WxSiF8\nQJKLJ4VFSrOYN9nLoS650C8OlIJTk0tejrGtccIYHwUoRM8lycWDlCxe6TW6ttZYWyysruYS1Bui\n+7mGI2uHA/3e6zAgHsaf4ctQheiR3E4uW7ZsobCwEACbzcazzz7L888/T2mpfJm6hEcay5A4Wt8V\nUXRQ/bpi5lO2xR4Q72oW0xvWwpFDmNJnoUwB3o9PiB7O7eSycuVKTHWdon//+99xOBwopVixYkWn\nBdflREQZncrWIl9H0v3Vz86v79AHVOxAOPo9+sRx9PtvGJMrT5/kqwiF6NHc3onSarUSExODw+Eg\nLy+P559/nsDAQG6//fbOjK9LUSPHogG9fROqpV0RRcfV922dWnOJHQQnjqMzX4WSQkw33oFSyjfx\nCdHDuV1zCQkJobS0lPz8fAYNGkRwcDAAtbW1nRZclxM3GCKj0Vu/9XUk3Z62lxu/mE+puQyIN577\n+J8wajyMTfZFaEII2lBzueSSS1iwYAG1tbXMnj0bgO3btzNw4MAOBWC328nIyKCoqIi+ffsyf/58\nzGZzo/PWrl3L6tWrAZg2bRpTpkwBYPHixZSWluJwOBgzZgw///nPXc133qaUQo1LRm/cgHY4UAHS\n1t9p7HWKgB70AAAgAElEQVQ1l7Cwk8dijeHIaI3pmllSaxHCh9xOLunp6Zx11lmYTCZiY40mH4vF\nwpw5czoUQGZmJomJiaSnp5OZmUlmZiazZs1qcI7dbmfVqlUsXboUgHvvvZeUlBTMZjPz588nNDQU\nrTXLli3jiy++4Ec/+lGHYuqQcWfC55/A/l3GPiOic9Tv3RJ6MrmosHCIjIb4YSeX4RdC+ESb/sSP\ni4tzJZYtW7ZQWlrK4MGDOxRATk4OqampAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQUgNDQU\nAIfDQW1trc//WlVjJ4AyobdI01insh+DUDMqsOHfR6bfLcX0i3t8FJQQop7byeXBBx9k+/btgFHb\neOqpp3jqqadcTVXtVVZWRlRUFACRkZGUlTWehGi1WomOjnY9tlgsWK1W1+PFixdz2223ERISwqRJ\nvh0dpPqEwdAR0u/S2ezHGnbm11Ex/VHBoT4ISAhxKrebxQ4ePMioUcYyGp988gkPPvggwcHBLFy4\nkGnTprV47aJFi5qcDzNz5swGj5VS7ap53H///Rw/fpynn36aLVu2kJSU1OR5WVlZZGVlAbB06VJi\nYmLa/FoAgYGBLV5rn3guFatewtI7CFNY4y/AnqK1cuoIW00V2hKNpZPu702dWU7djZSVe/yhnNxO\nLlprAI4cOQLAoEFG52lFRUWr1y5cuLDZ5yIiIrDZbERFRWGz2QgPb/xlbLFYyM/Pdz22Wq2MHduw\nTT0oKIiJEyeSk5PTbHJJS0sjLS3N9bi4uLjV2JsSExPT4rV62GhwOin+bA2miee26zW6g9bKqSMc\n1mKI7tdp9/emziyn7kbKyj2dWU5xce6tMO52s9jo0aP529/+xiuvvMLEiRMBI9GEnTpapx1SUlLI\nzs4GIDs723XvUyUnJ5OXl4fdbsdut5OXl0dycjLV1dXYbDbA6HP59ttvOzx6zSOGjTKWeZemsc5j\nP+ZatFII4X/crrnccccdvP/++4SHh3PVVVcBUFBQwGWXXdahANLT08nIyGDNmjWuocgAe/bs4eOP\nP2bOnDmYzWamT5/OggULAJgxYwZms5nS0lIeffRRTpw4gdaacePGcdFFF3UoHk9QAQEwdgJ660a0\n1j4fZNDdaK0bLrcvhPA7Ste3d/VABQUFrZ/UBHeqnM7//Rf992cxPfQMauCQdr1OV9dZVXNdVYlz\n3kzUjJsx/fgaj9/f26Spx31SVu7xh2Yxt2sutbW1rF69mnXr1rn6SM4//3ymTZtGYKDbt+kx1LjT\njaVgtn7bY5NLp6lftLIHD5YQwt+5nRVeffVV9uzZw2233Ubfvn0pKiri3XffpbKy0jVjX5ykLH2N\nVXq35sLFXf+va79St66Y9LkI4b/c7tDfsGEDv/3tb5kwYQJxcXFMmDCBe+65hy+++KIz4+vSVMIY\nOLjX12F0P66ai/S5COGv3E4uPbhrpv3iBkN5GVp2p/QoXd7EXi5CCL/idrPY5MmTeeSRR5gxY4ar\ns+jdd9/1+Yx4f6YGxKMBDh+Uv7I9qamNwoQQfsXt5DJr1izeffddVq5cic1mw2KxcM455zBjxozO\njK9ri6tbAr7gIGrUeB8H043Yj0FgIASH+DoSIUQzWkwuW7ZsafB43LhxjBs3rsHcje3btzN+vHxx\nNikqBnqHGDUX4TnlZWAOl/lDQvixFpPLn//85yaP1/+jrk8yzz77rOcj6waUUhAXjy74ztehdCva\nfqzBJmFCCP/TYnJ57rnnvBVHt6Xi4mX5fU+zH5M5LkL4Od9s2diTDBgMZTZ0RbmvI+k+ymVdMSH8\nnSSXTqbqOvWl38WDmtnLRQjhPyS5dLYBJ0eMiY7TtbVQaZfkIoSfk+TS2Sx9Iai31Fw8pbKueVHm\nDQnh1yS5dDJlMhlrjMmIMc+Q2flCdAmSXLxAxcWDNIt5Rt3sfCWjxYTwa5JcvGHAYCgtQVe2viW0\naJn+/oDxS4TFt4EIIVokycULZMSYZ2inA/3J+zB0JMT6wXbWQohmSXLxhvoRY5JcOmbjBig8jOmS\n6bL0ixB+TpKLN8T0g6Agqbl0gNYa50fvQr84OP1sX4cjhGiFJBcvUKYAiB3U7UeM6Zrqzrv59k1w\nYDfqx+lGeQoh/JrbS+53FrvdTkZGBkVFRfTt25f58+djNpsbnbd27VpWr14NwLRp05gyZUqD5x95\n5BEKCwtZtmyZN8JuMzUgHr0r39dhdBq9exvOR34HY5IwXXQ1jD/To/d3/ns1hEeiJk/16H2FEJ3D\n5zWXzMxMEhMTefrpp0lMTCQzM7PROXa7nVWrVrFkyRKWLFnCqlWrsNvtrue//PJLgoODvRl22w2I\nB2sRurrS15F0Cl1QN4rr+wM4n1mE88E7qP4syzP3/m4v5G9EpV2F6hXkkXsKITqXz5NLTk4Oqamp\nAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQWgurqaDz74gOnTp3s17rZScYONXw5/79tAOktZ\nKQCmh/+K+vlvoFcQZRkPob/b0+Fb6/+shuAQVOolHb6XEMI7fJ5cysrKiIqKAiAyMpKyssb7zVut\nVqKjo12PLRYLVqsVgDfffJMrr7ySoCA//4u2Lrnow9203+WYDcxhqN69MZ2diumexZjCInC++me0\n09nu2+rv9qJzPkOdfwkqtHFzqRDCP3mlz2XRokWUlpY2Oj5z5swGj5VSbRpiun//fo4ePcrs2bMp\nLCxs9fysrCyysoymmqVLlxITE+P2a50qMDCwzdfqqCgKAwMJOWYjrJ2v689KqyqpjYo5pVxiOH7r\nXdieeJA+uV8QevHVbb6ndjiwPvoXCI8getbtmLrprPz2fJ56Kikr9/hDOXkluSxcuLDZ5yIiIrDZ\nbERFRWGz2QgPb/wFYrFYyM8/2RlutVoZO3YsO3fuZO/evdxxxx04HA7Kysp46KGHeOihh5p8rbS0\nNNLS0lyPi4uL2/V+YmJi2ndthIWq7w9S087X9WeO4qNgDm9QLtHnpsEH71D+8nNUjByPauNik85P\n/4XelY/6+W+w1hyHmu5XbtCBz1MPJGXlns4sp7i4OLfO83mzWEpKCtnZ2QBkZ2czceLERuckJyeT\nl5eH3W7HbreTl5dHcnIyF198MStWrOC5557jj3/8I3Fxcc0mFr8QaUGXlvg6is5RZkNFRDU4pJTC\ndMMcqKlCv/tym26nS0vQq/8OY5NRZ53vyUiFEF7g8+SSnp7Opk2bmDdvHps3byY9PR2APXv2sHz5\ncgDMZjPTp09nwYIFLFiwgBkzZjQ5XNnvRVqgGyYXrbXR5xIe1eg5FTcYdVE6+vMs9G73h2I733wB\namsx3TBHZuML0QX5fJ5LWFgYDzzwQKPjCQkJJCQkuB5PnTqVqVObn+PQr18/v53jUk9FRqO3bPR1\nGJ5XXQXHj0NEZJNPqyt+aiSXNf9CjRjb6u30phz4Zj0qfRaqn3tVcCGEf/F5zaVHiYo2moiqutlc\nlzKb8bOJmguA6h0MI8eiD+xu9Vb68EGcLz4FA+JRP77Gk1EKIbxIkos3RdYNp+5uTWN1yeWHfS6n\nUoMToPBwi9sO6OKjOJ94AEwmTHfejwrs5fFQhRDeIcnFi1R9crF1r+Sij7VccwFQQ+qaOA/ubfoe\nZTacGQ/A8WpM8/8gzWFCdHGSXLwpytjgqtuNGKtvFmumzwWAwUZy0Qcaz9jXlXacTz4IpVZM8x5E\nDRrWGVEKIbxIkos3ddOaC8dsEBAILcygV+GREBUDTSWXj/8J33+H6Vf3oRLGdGakQggvkeTiRSqo\nt/EFXGr1dSieVVZqrFhsauXjNCShybXG9NaNMGwkatzpnRSgEMLbJLl4W1R0t2sW08dsEN5Ck1gd\nNTgBjn7fYGVoXWGH/btRY5M7M0QhhJdJcvG2SEv3axYrs0ELI8XqqcEJoDUc3H/y4PZNoJ2osVJr\nEaI7keTiZSoyuvs1ix0rbXEYssuQ+k79k/NddH4uBIfAsFGdFZ0QwgckuXhbVDQcK0U7HL6OxCO0\n0wHHytyruURajPNO6XfR23JhdCIq0OeLRQghPEiSi7dFRoN2nhy+29XZjxnvp4U5Lg0MTnANR9ZF\nR6DoCOo06W8RoruR5OJlqrvN0i+tn53feoc+1E2mPHwIXVNjNImBdOYL0Q1JcvG2uomU3Sa5uDE7\n/1RGp74TDu0zkktUDMQO7MQAhRC+IMnF2+pqLtrWPTr1dVndDqPudOjDyU79/btg+ybU2AmypL4Q\n3ZAkF28zhxuz2btdzcW9ZjGiYsAcjv7ff6HSDtLfIkS3JMnFy5TJ1L02DSuzQXCIsay+G5RSRu3l\n+wPG49MmdGZ0QggfkeTiC5EWdHeZSHms1P2RYnVU3SKWxA8z1hwTQnQ7klx8IdLSbSZS6jJby6sh\nN0ENGWH8lFFiQnRbklx8wJilX2LsPd/VHbOh2lhzYdQ4GDQUdVZq58QkhPA5mRbtC1HRUFMNVZUQ\n2sfX0XRMWSmMs7TpEhUWQcCDT3dSQEIIf+Dz5GK328nIyKCoqIi+ffsyf/58zObG+4KsXbuW1atX\nAzBt2jSmTJkCwEMPPYTNZiMoKAiA3//+90RERHgt/nY5dSJlF04u+ngNVFW4P1JMCNFj+Dy5ZGZm\nkpiYSHp6OpmZmWRmZjJr1qwG59jtdlatWsXSpUsBuPfee0lJSXEloXnz5pGQkOD12NtLRUajwUgu\ncYN9HU77uXagbGOzmBCi2/N5n0tOTg6pqUbbe2pqKjk5OY3Oyc3NJSkpCbPZjNlsJikpidzcXG+H\n6jn12x139YmUx4wJlG3ucxFCdHs+r7mUlZURFWV8OUVGRlJWVtboHKvVSnR0tOuxxWLBaj35xfz8\n889jMpk4++yzmT59erMzvrOyssjKygJg6dKlxMTEtCvmwMDAdl8LoMPCKARCj1dh7sB9fK16t4My\nIHLIUHo18T46Wk49hZST+6Ss3OMP5eSV5LJo0SJKS0sbHZ85c2aDx0qpNi8FMm/ePCwWC1VVVSxb\ntox169a5akI/lJaWRlpamutxcXFxm16rXkxMTLuvdQk1U1lwkOq6++hvv0Dv2orppz/v2H29yHnI\nmAhZ6lSoJsrDI+XUA0g5uU/Kyj2dWU5xcXFuneeV5LJw4cJmn4uIiMBmsxEVFYXNZiM8PLzRORaL\nhfz8fNdjq9XK2LFjXc8BhISEcO6557J79+5mk4tfiYp2TaTU1mKcLz0FVZXoK2eiQhsPaPBLZaWg\nFIT5+QAKIYTX+bzPJSUlhezsbACys7OZOHFio3OSk5PJy8vDbrdjt9vJy8sjOTkZh8PBsWPHAKit\nreWbb74hPj7eq/G3W91ESq01zlefN4YlAxzY0/J1/uSYDczhqIAAX0cihPAzPu9zSU9PJyMjgzVr\n1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjNZqqrq1m8eDEOhwOn00liYmKDZi9/piKj\n0Yf2o79cC5u/Rl32E/SHb6O/2+PR9bZ0dRX68yzUlMs8ngSM2fnSmS+EaMznySUsLIwHHnig0fGE\nhIQGw4unTp3K1KlTG5wTHBzMI4880ukxdor67Y7f/CskjEFdfR16w6cer7noT95HZ76KGhAPnl5u\npR3rigkhegafN4v1WJHRoDXUVGH62VyUKQCGJKAP7PbYS2iHA73u38bvhw+1/fq9O3C+8Dj6xImm\nTyizub0DpRCiZ5Hk4iMquq/x88rrjFoFdQs6Fh5GV1Z45kU25YC1bsTI4e/afLn+ap3xX87/Gj/n\ndBp9LhFtW/pFCNEzSHLxldOSMd25EHXJNNchVbdLI995pmnMufZDY3OuYaPaV3Opi0Nn/bPRIpv6\n68+gthY1dKQnQhVCdDOSXHxEBQSgJkw0msPq1S1Frz3Q76KPfA/5uajzf4waOAQOH2zb9U4nfLfP\nWDfs4D7YueWU5xzo9980lq45fVKHYxVCdD+SXPyICosASwx4oN9Fr/0QAgJR518MA+KhvAxdfsz9\nGxQehpoq1BU/BXM4zo//efLeX/0PjhzCdNX1xs6aQgjxA/LN4G8Gj+hwzUXXVKPXr0GdeQ4qPMrV\np9OW2os+uBcAlXAaKvUS2JSDLiwwBgm8/yYMGia1FiFEsyS5+Bk1JAEKCzrUqa+/zIaqCtSUy4wD\ncUZy0Ufa0DR2YA8EBkJcvHEfUwA6631jXk5hAaarr5NaixCiWfLt4GfqtwCmruYAoEsKcdx/O3p3\nfjNXNaTXfgiDhsKI04wDUTEQ1BsK2lBz+W4PxA1BBfZCRVpQZ52HXv8J+r03YHACTDjb7XsJIXoe\nSS7+pm7E2KnzXXTmq8YQ5c3ftHq5riiHg/tQZ6W6FgFVJhMMiHd7xJjWGg7uPTl6DVBpVxu7Z5YU\nGn0tbVxgVAjRs/h8hr5oSIVHGjWNun4X/d0e9Ia1rt9bdbTAuM+AQQ3vO2AQeseWpq5ozFoM9nKI\nH37y+sHDYfwZUF0NSSnu3UcI0WNJcvFHQxJcnfrOd1+GPmEwahzs3obWusVag65LLvT/wbLYA+Jh\nw1p0VSUqJLTl1z9ovLYaPLzBYdMdvwdafn0hhABpFvNLakgCHP0e/c16Y67K5T9BjUmC8jKwtbJH\nQ2EBKBPExDa8Z/2IsSOtN43pA3uNewwa1vAegYGowF5tei9CiJ5Jkosfqu/Ud/79GYjuZ6xoXN/R\n31rT2NECiO6L6vWDJFCXXLQbw5H1d3sgdiCqd+82xy6EECDJxT/Vd6RXVqDSZxmJYtAwUKZW58Do\nwsPQr4md4vrGGkOL3Rkx9l3DznwhhGgrSS5+SIVHQXQ/GDwcddb5xrHevWHAoBaTi9Yajn6P6j+g\n8T0DAqD/QHQrzWL6mA1KSxp05gshRFtJh76fMv36QQgJbTBRUQ1JQOfnNn9ReSlUV0H/gU0+rWIH\ntT7i7Lu9rtcSQoj2kpqLn1ID4lGR0Q0PDhkBZTZ0aUnTFx09bFzbVLMYGP0uxYXo4zXNvq6uSy7E\nD2v2HCGEaI0kly5EDa6rTRzY2+TzurB+GHLjZjHAWAZGO11zYZq8x3d7oG8sKtTckVCFED2cJJeu\nJH4YKNX8bpVHCyAgAKL7N/l0/cTKFkeMfbcXBkt/ixCiY3ze52K328nIyKCoqIi+ffsyf/58zObG\nfzWvXbuW1atXAzBt2jSmTJkCQG1tLStXriQ/Px+lFDNnzmTSpO65Wq8KDjE65ZvpN9FHCyC6v9F5\n35T+A435K80kF11ZAUVHUD9K81TIQogeyufJJTMzk8TERNLT08nMzCQzM5NZs2Y1OMdut7Nq1SqW\nLl0KwL333ktKSgpms5nVq1cTERHBU089hdPpxG63++JteI0aktD8Mi6FBY1n5p96ba8g6Nu/+ZrL\n/p3GebK7pBCig3zeLJaTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnONUVOffvop6enp\nAJhMJsLDw70XvC8MGQGlJcaQ4VNoraHwMKqF5AIYnfrNzHXRu/KNmk3CaE9FK4TooXxecykrKyMq\nKgqAyMhIysrKGp1jtVqJjj45cspisWC1WqmoMPY8eeutt8jPz6d///7ccsstREZGeid4H1CDE9Bg\ndOonnnnyiVIrHK9pegLlqdfHD0dv+hpdYUf1adj8qHflQ/wwVHAra48JIUQrvJJcFi1aRGlpaaPj\nM2fObPBYKdWmRREdDgclJSWMHj2an/3sZ3zwwQe88sorzJ07t8nzs7KyyMrKAmDp0qXExMS04V2c\nFBgY2O5rO8oZOpEiIKS4AHPMj13Hjx/5DhsQMXIMvVuI7fjk87F98CZhBfsJnjzFdVzX1lK4bych\nF11FuIfemy/LqSuRcnKflJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlsTTZrWSwW8vNPbpRltVoZ\nO3YsYWFh9O7dm7POOguASZMmsWbNmmZfKy0tjbS0k53VxcWtLALZjJiYmHZf6xH9B1KxbTPVp8Tg\n3GmUz7EQM6qF2LQlFnqHcOzLddhHjj95fN9OOF5DzaBhHntvPi+nLkLKyX1SVu7pzHKKi2ul6b2O\nz/tcUlJSyM7OBiA7O5uJEyc2Oic5OZm8vDzsdjt2u528vDySk5NRSnHmmWe6Es+WLVsYNGhQo+u7\nGzV4uGu/F5ejhyGwl7EXTEvXBgbC6PGNZvrrXXXJu373SiGE6ACfJ5f09HQ2bdrEvHnz2Lx5s6tz\nfs+ePSxfvhwAs9nM9OnTWbBgAQsWLGDGjBmu4co33HAD77zzDvfccw/r1q3jpptu8tl78ZqhI8Fa\n1GDUly4sMCY/urGvvRqbDEVH0EVHTl6/O9+4/oerAgghRDv4vEM/LCyMBx54oNHxhIQEEhJOrm81\ndepUpk6d2ui8vn378oc//KFTY/Q3avIF6PfeQP/zddSc3xkHj7Y8DLnB9WOT0YDelofqG2uMNNu9\nDTX+jM4LWgjRo/i85iLaToVFoC66Cv3N58Y2yE4HFB1ufk2xH4odBJHRUN80drTA2IhsxNjOC1oI\n0aNIcumi1EXpEGrGmfmased9ba37NReljNrL9k1opwO9a6txfOS4zgxZCNGDSHLpolRoH9Sl02Hz\n1+j1nxjH3EwuAIxNhopyYy2x3dvAHAaxTS/VL4QQbSXJpQtTF1wBEVHoD98xDrjbLAao05IAo99F\n786HEWPbNMdICCFaIsmlC1O9e6Mu/yk4HBDUGyIt7l8bHgWDhqK/zDaWjZH+FiGEB0ly6eLUeRcZ\nWyLHDmpzzUONTYbvDxi/y/wWIYQH+XwosugYFdgL0/w/Gh36bb32tGT0fzOhVxDItsZCCA+S5NIN\ntKkj/1Qjx0FgIAwbhQrs5dmghBA9miSXHkz17o2a+QtU31hfhyKE6GYkufRwptRLfB2CEKIbkg59\nIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nNJaa18H\nIYQQonuRmks73Hvvvb4OoUuQcnKPlJP7pKzc4w/lJMlFCCGEx0lyEUII4XGSXNohLS3N1yF0CVJO\n7pFycp+UlXv8oZykQ18IIYTHSc1FCCGEx8l+Lm2Qm5vLiy++iNPp5MILLyQ9Pd3XIfmN4uJinnvu\nOUpLS1FKkZaWxmWXXYbdbicjI4OioiL69u3L/PnzMZvNvg7X55xOJ/feey8Wi4V7772XwsJCnnzy\nScrLyxk+fDhz584lMLBn//OsqKhg+fLlHDx4EKUUv/zlL4mLi5PP0w988MEHrFmzBqUU8fHx/OpX\nv6K0tNTnnyepubjJ6XSycuVK7rvvPjIyMvj88885dOiQr8PyGwEBAdx4441kZGSwePFi/vOf/3Do\n0CEyMzNJTEzk6aefJjExkczMTF+H6hc+/PBDBg4c6Hr86quvcvnll/PMM8/Qp08f1qxZ48Po/MOL\nL75IcnIyTz75JI899hgDBw6Uz9MPWK1WPvroI5YuXcqyZctwOp2sX7/eLz5PklzctHv3bmJjY+nf\nvz+BgYGcc8455OTk+DosvxEVFcXw4cMBCAkJYeDAgVitVnJyckhNTQUgNTVVygwoKSnh22+/5cIL\nLwRAa83WrVuZNGkSAFOmTOnx5VRZWcm2bduYOnUqAIGBgfTp00c+T01wOp0cP34ch8PB8ePHiYyM\n9IvPU8+ud7eB1WolOjra9Tg6Oppdu3b5MCL/VVhYyL59+xgxYgRlZWVERUUBEBkZSVlZmY+j872X\nXnqJWbNmUVVVBUB5eTmhoaEEBAQAYLFYsFqtvgzR5woLCwkPD+f555/nwIEDDB8+nNmzZ8vn6Qcs\nFgtXXnklv/zlLwkKCmLChAkMHz7cLz5PUnMRHlVdXc2yZcuYPXs2oaGhDZ5TSqGU8lFk/uGbb74h\nIiLCVcsTTXM4HOzbt4+LL76YRx99lN69ezdqApPPE9jtdnJycnjuuedYsWIF1dXV5Obm+josQGou\nbrNYLJSUlLgel5SUYLFYfBiR/6mtrWXZsmWcd955nH322QBERERgs9mIiorCZrMRHh7u4yh9a8eO\nHXz99dds3LiR48ePU1VVxUsvvURlZSUOh4OAgACsVmuP/2xFR0cTHR3NyJEjAZg0aRKZmZnyefqB\nzZs3069fP1c5nH322ezYscMvPk9Sc3FTQkIChw8fprCwkNraWtavX09KSoqvw/IbWmuWL1/OwIED\nueKKK1zHU1JSyM7OBiA7O5uJEyf6KkS/cP3117N8+XKee+457rrrLsaPH8+8efMYN24cGzZsAGDt\n2rU9/rMVGRlJdHQ0BQUFgPElOmjQIPk8/UBMTAy7du2ipqYGrbWrnPzh8ySTKNvg22+/5eWXX8bp\ndHLBBRcwbdo0X4fkN7Zv384DDzzA4MGDXU0V1113HSNHjiQjI4Pi4mIZOvoDW7du5f333+fee+/l\n6NGjPPnkk9jtdoYNG8bcuXPp1auXr0P0qf3797N8+XJqa2vp168fv/rVr9Bay+fpB95++23Wr19P\nQEAAQ4cOZc6cOVitVp9/niS5CCGE8DhpFhNCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFx\nklyEcMPdd9/N1q1bffLaxcXF3HjjjTidTp+8vhDtIUORhWiDt99+myNHjjBv3rxOe4077riD22+/\nnaSkpE57DSE6m9RchPAih8Ph6xCE8AqpuQjhhjvuuINbbrmFxx9/HDCWgI+NjeWxxx6jsrKSl19+\nmY0bN6KU4oILLuAnP/kJJpOJtWvX8sknn5CQkMC6deu4+OKLmTJlCitWrODAgQMopZgwYQK33nor\nffr04ZlnnuGzzz4jMDAQk8nEjBkzmDx5MnfeeSdvvPGGa62oF154ge3bt2M2m7n66qtde6a//fbb\nHDp0iKCgIL766itiYmK44447SEhIACAzM5OPPvqIqqoqoqKi+PnPf05iYqLPylV0X7JwpRBu6tWr\nF33NSBIAAAMxSURBVNdcc02jZrHnnnuOiIgInn76aWpqali6dCnR0dFcdNFFAOzatYtzzjmHF154\nAYfDgdVq5ZprruG0006jqqqKZcuW8c477zB79mzmzp3L9u3bGzSLFRYWNojjqaeeIj4+nhUrVlBQ\nUMCiRYuIjY1l/PjxgLHy8m9+8xt+9atf8eabb/K3v/2NxYsXU1BQwH/+8x8efvhhLBYLhYWF0o8j\nOo00iwnRAaWlpWzcuJHZs2cTHBxMREQEl19+OevXr3edExUVxaWXXkpAQABBQUHExsaSlJREr169\nCA8P5/LLLyc/P9+t1ysuLmb79u3ccMMNBAUFMXToUC688ELXYo4AY8aM4YwzzsBkMnH++eezf/9+\nAEwmEydOnODQoUOu9bpiY2M9Wh5C1JOaixAdUFxcjMPh4Be/+IXrmNa6wcZyMTExDa4pLS3lpZde\nYtu2bVRXV+N0Ot1efNFms2E2mwkJCWlw/z179rgeR0REuH4PCgrixIkTOBwOYmNjmT17Nu+88w6H\nDh1iwoQJ3HTTTT1+eX/ROSS5CNEGP9ycKjo6msDAQFauXOna+a81b7zxBgDLli3DbDbz1Vdf8be/\n/c2ta6OiorDb7VRVVbkSTHFxsdsJ4txzz+Xcc8+lsrKSv/zlL7z22mvMnTvXrWuFaAtpFhOiDSIi\nIigqKnL1VURFRTFhwgT+/ve/U1lZidPp5MiRIy02c1VVVREcHExoaChWq5X333+/wfORkZGN+lnq\nxcTEMHr0aF5//XWOHz/OgQMH+PTTTznvvPNajb2goIAtW7Zw4sQJgoKCCAoK6vE7OYrOI8lFiDaY\nPHkyALfeeiu/+93vALjzzjupra3l7rvv5uabb+aJJ57AZrM1e49rr72Wffv28bOf/YyHH36Ys846\nq8Hz6enpvPvuu8yePZv33nuv0fW//vWvKSoq4vbbb+fxxx/n2muvdWtOzIkTJ3jttde49dZbue22\n2zh27BjXX399W96+EG6TochCCCE8TmouQgghPE6SixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPE6S\nixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPO7/AdYWXsNU6TlEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXl4m+WZ7/95ZMer5EWWY8fO7oRA\nQkIKSQt0OoGQbtBO05ChlKFn6DalUDiFMz0l0wPtGYaUlkKAAoXpMF1gfrQ0QM4pZ2YoKSW0ZWjD\nkpAQErKThcSLNsu7pef3x6NXlqzFkixbsn1/ritXLOmVdNuW3+9770prrREEQRCEHGLLtwGCIAjC\n5EPERRAEQcg5Ii6CIAhCzhFxEQRBEHKOiIsgCIKQc0RcBEEQhJwj4iIIgiDkHBEXQRAEIeeIuAiC\nIAg5R8RFEARByDnF+TYgn5w8eTKr57lcLtrb23NszegpVLugcG0rVLtAbMuGQrULCte2TO1qampK\n6zjxXARBEIScI+IiCIIg5BwRF0EQBCHniLgIgiAIOUfERRAEQcg5Ii6CIAhCzhFxEQRBEHLOlO5z\nEQRBmIzoUBBOv4c+dgi6OlGrPo6yja8vIeIiCIIwSdC93YQe3AiH34G+3sj9as4CmL9oXG0RcREE\nQZgsnHgX9r6JWvEXcPZ5qLJyQg/fiW47hRJxEQRBELKi0weA+uinUXMXovv6zP3tp8fdFEnoC4Ig\nTBJ0WFxwVAOgSkuhqgY6WsfdFhEXQRCEyYIlLvbqoftcDei2U+NuioiLIAhCARPa8jihxx5K7+BO\nP5SUGo8ljHI1SlhMEARBiEXvfh390n+ij+wf+eCALxISi+BqAHcbOhgcGwOTIOIiCIJQyAT8AIT+\n7xMjHqo7E4nLdAiFwN02FtYlRcRFEAShkAn4obwCdr2KPrQv9bGd/jhxUfWN5otxDo2JuAiCIBQo\nur8P+npRF10KdgehX4/gvQR8KHtV7H2uBvNaIi6CIAgCEAmJ4WpAfWQd7H4dfXBvwkO11gk9F2pd\nYLOJ5yIIgiCE6TTiohzVqIsvBUd18txLXw8M9IMj1nNRRUVQN13ERRAEQQhjeS6OKlRZOeqj62DP\nG+gDe+KP7bSOrY5/zNUgYTFBEATBEOm4D+dR1EWXQoUd/fvn4w+2Rr/Y48VFuRpgnBspC2a22I4d\nO/jJT35CKBTikksuYe3atTGPDwwM8MADD3Do0CEcDgdf//rXmT59OgDPPPMML7zwAjabjc9//vMs\nX748H9+CIAhCbgkkGOcyYyY60TiXziEvJw5XA3T60H29qNKyMTI2loLwXEKhEI8++ij/8A//wKZN\nm/jjH//I8ePHY4554YUXqKys5Ic//CGXXXYZ//Zv/wbA8ePHefnll7nnnnv41re+xaOPPkooFMrH\ntyEIgpBbOjtNMr68MnKXctaDpz3uUD1MiGIIV4zRPn4zxgpCXA4cOEBjYyMNDQ0UFxdz4YUXsn37\n9phjXn31VS666CIAzj//fHbv3o3Wmu3bt3PhhRcybdo0pk+fTmNjIwcOHMjDdyEIgpBjAj6odMQu\n+qp1gafDVIdF05lcXFREXMYvNFYQ4uJ2u6mrq4vcrqurw+12Jz2mqKiIiooKOjs7457rdDrjnisI\ngjAR0QF/JN8SwekyVWFWst+i0w/TSiBR2CvcSDmeSf2CybmMB1u3bmXr1q0A3Hnnnbhcrqxep7i4\nOOvnjiWFahcUrm2FaheIbdlQqHZBdra5e7vB6cIZ9bze2fPwATWhQaZF3e8b6KO/upb6+vq419F1\ndbSVlVPe5ccxzIax+pkVhLg4nU46Ojoitzs6OnA6nQmPqaurIxgM0t3djcPhiHuu2+2Oe67FmjVr\nWLNmTeR2e3t83DIdXC5X1s8dSwrVLihc2wrVLhDbsqFQ7YLsbAt63NA0K+Z5uthMPPYe3o+qHora\nBNtOQ4U96Xvouul0HztC37DHM7WrqakpreMKIizW0tLCe++9R2trK4ODg7z88susWLEi5pjzzjuP\nF198EYBXXnmFJUuWoJRixYoVvPzyywwMDNDa2sp7773HggUL8vBdCIIg5JjOBONcnMbL0O72uGMT\nVopZjHM5ckF4LkVFRXzhC1/gjjvuIBQKcfHFFzNr1ix++ctf0tLSwooVK1i9ejUPPPAAN9xwA3a7\nna9//esAzJo1iwsuuICbb74Zm83GF7/4RWy2gtBMQRCErNGhIHQF4hP0jmooKobh4hLwo2bMTPp6\nytWA3rsLrTVKqTGwOJaCEBeAc889l3PPPTfmvs985jORr0tKSrj55psTPnfdunWsW7duTO0TBEEY\nV7q6QIfiEvrKZoPaOvB0xB6faNx+NK4GMyIm0Jnaw8kRcokvCIJQiARiu/NjcLrQnqH9LLqvD/r7\nUorL0Oj98QmNibgIgiAUIpGhlfHiompcsWGxVEJkMc6j90VcBEEQCpGIYCTwRpwu8LrR1jQSa65Y\nqrBYnRmXNV7TkUVcBEEQChAdSDHl2OmC4CD4veZ2qonIYVRZuXl8nCrGRFwEQRAKEUswEoS6VG24\n6TE8Y0x3hkVmpET9OI7eF3ERBEEoRAJ+KCtHTZsW/1i41yWSd4kIUYqwGOEZYyIugiAIU5hOX/IE\nfa0Z8aKt6cidPtP7Ul6R+jVdDeBuMz00Y0zB9LkIgiAIQ+hOf/Icit1hhlRa4hIwPS4jNUeqM86G\n3m7o74ey8hxbHIuIiyAIQiES8EN1bcKHlFKmkdJt5Vz8aTVGqrPPRZ197ojH5QIJi2VI6D+foueF\nf8+3GYIgTHYCCeaKRVPrig2LpSpDzgMiLhmiX3mRvu1/yLcZgiBMdgIpwmKAckY1Ugb8qBGS+eON\niEumlJSi+3rzbYUgCJMY3ddr8iIpPZd600gZDI48ETkPiLhkioiLIAhjTaSBMoVgOF1msGXHaejt\nkbDYhKekFN0v4iIIwhhijXNJ4bmo2vCisHcPmf/Fc5nYqJJSM4FUEARhrEhjnEtkadi7BwFQjpqx\ntiojRFwyRcJigiCMAj04QOiPvx0aOpnomEDy0S8RrEbKo+K5TA5KS0HERRCELNF/fgn90/vg6IHk\nB4XDYikFo6ISSssg7LmMNPplvBFxyRQJiwmCMBr2vmn+7+5KfkzAD0VFUF6Z9BDTSOmKSv6LuExs\nwgl9rXW+LREEYYKhtUbv22Vu9PYkPzDgB3vVyLvurQGWRUXGkykgRFwypaQUQiEYHMy3JYIg5Al9\n9CD64N7Mn9h+emhkSwpx0Z3+1PmWMJGKsXSEaJwRccmUklLzf7+ExgRhKqKP7Cd01wZC/9/DmT/X\nConBCJ5LionI0YST+mkdO86IuGSKiIsgTFl060lC9/+jKeqxyoUzYd8uqHSYr/tSiEunP/XKYgsr\nLFZg+RYQcckcERdBmJJov5fQvd8xXfHnvB+6MhMXK9+iFi83OZI0ci4jYW2kTEuIxhkRlwxRIi6C\nMOXQvT3GY/G5sX3tVtT8RdDfj87gPBB87zh43bBoqSkhTiIuOhiErs70+lbEc5lEiLgIwpRDP/c0\nvHsI2999E9VyplnWBdAVSPs1+ne/BoBadLZZ1JXMc+nqNP+nGxYrKoKaurTtGC9kWVimiLgIwtTj\n9ElwTUedsxIAVelAgxGC2vRO7P27XodqJzQ0Q2k5OlnOpTON7vwwqqwC2ze+C02z07JhPBFxyRQR\nF0GYcmifxwiDhZWUt7yMkZ6vNQO7X0ctWmpKhsvKoTfJpI9wU2TKRWFRqJYz0zpuvJGwWKaExSWT\nWKsgCBMcnwdVk724cOoEIa8bFp1tbpeVJ68WC6Qx+mUCIOKSKeK5CMLUw+uO3WdfaQdAB9L0XPaZ\n/hZ15lJzR2nynIu25ooV2KywTBFxyRQRF0GYUujeHuNlxITFwl5Fugn9vbuw1U2H+hkAqFQJ/chE\nZEeWFhcGIi6ZIuIiCFMLn8f8H+25lJRA8bS0el201uh3dlOy9NyhES0pxaUTyitQxdNGaXh+EXHJ\nlGnhX7hMRhaEqYHPDRCTc1FKGc8iHc+l7T3o9DHtrHOG7kuVc+kKQIV9NBYXBCIuGaJsNnPVIp6L\nIExYdDBI6Fc/QXe0jnys14hLTFgMoNKRXs7F0wFAUWPz0H1l5TA4iB4ciH+/nq6Cm3CcDSIuWaBK\nykRcBGEic+wQ+jfPoHf8eeRjrbBYTW3s/ZUO6B5ZXCxxKoruhyktM/8nCo11Tw7PJe99LoFAgE2b\nNtHW1kZ9fT033XQTdnv8D/bFF1/k6aefBmDdunVcdNFFADzxxBO89NJLBAIBHnvssXGxWZWWSSmy\nIExg9LHD5gur7DcVPrfJrww/4VfaTXPliM834mSrrYPefnNfWbn5v7cnvlmyuyuS+J/I5N1z2bJl\nC0uXLuX+++9n6dKlbNmyJe6YQCDA5s2b2bhxIxs3bmTz5s0EAibWed5557Fx48ZxtVmViuciCBOa\nE0fN/51piEu4DHn4vhRlr0ov5+Jzw7QSVOVQ9ZeKFpfh9HSjyitGft0CJ+/isn37dlatWgXAqlWr\n2L59e9wxO3bsYNmyZdjtdux2O8uWLWPHjh0AnHHGGdTW1sY9ZyxRpaXiuQjCBMbyXHQaY/O1zwM1\nzvgHKuzQ5R95K63XEy9Olrj0JejSl5xLbvD5fBFxqKmpweeLv5Jwu93U1Q3FK51OJ263e9xsHI54\nLoIwcdFaw/FMwmKe2DJkC7vDbKQd4Vygfe745yfxXHQoCD3dk0JcxiXncvvtt+P1euPuv/LKK2Nu\nK6XGdFXn1q1b2bp1KwB33nknLpcrq9fxlpUzrbcHZ5bPHyuKi4uz/p7GmkK1rVDtArEtG9KxK9h+\nmvbuLgCKurtGPL7V76XsfR+gathx3Q0z6AScpdMoSvEa7QE/xbPnxdg20DkDN+AoKaYs6rmhgJ82\noLK+gcpx+vmO1e9yXMTl1ltvTfpYdXU1Ho+H2tpaPB4PVVXx83ScTid79uyJ3Ha73SxevDhjO9as\nWcOaNWsit9vb2zN+DYDiaSUMdLRl/fyxwuVyFZxNFoVqW6HaBWJbNqRjl975uvmieQ5Brzvl8bq/\nD93VSW9JGf3DjtPaXAi73z2KoijpawTd7YQWLWVwcDDyXrrXeDv+1lYCUa+r204B0BWCnnH6+Wb6\nu2xqakrruLyHxVasWMG2bdsA2LZtGytXrow7Zvny5ezcuZNAIEAgEGDnzp0sX758vE0dorQM+vvz\n9/6CIGSNDofE1JnLoKvThKKSESlDTpBzSWN4pe7rMzmUNMNi9HQb2yShP3rWrl3Lm2++yY033siu\nXbtYu3YtAAcPHuThhx8GwG63c/nll7NhwwY2bNjA+vXrI+XKjz/+ONdeey39/f1ce+21PPnkk2Nu\ns+RcBGECc/wIuBqgvhG0Tl3xZXXnJ8u5QOrJyL4kDZgRcemOvb/HhOsk55IDHA4Ht912W9z9LS0t\ntLS0RG6vXr2a1atXxx139dVXc/XVV4+pjcMRcRGyQXs6UGkulhLGDn38CMycN9Rf0ulLvvUxpecS\nnozcFSBppjj8/DhxKp5mNkgOrxbrnjziknfPZSKiSktFXISM0Af3Evqfn0db/RVCXtD9fXD6JGrm\nXJQlKCnKkZOOfoGhsFggRTmz5bkMEyellAmvD68Ws8SlXMRlSqJKy2CgHx0K5dsUYYKgw53c+viR\n/Boy1Tn5LugQatbcIW8lVTmyz208jMr48fdqWomZkt6dPKyWUpwSTUaeRGExEZcsUCXhuUADktQX\n0sTqBA9XAwn5ITL2ZebcyKZHnapL32qAtCU5VdodZkR+MnweKCpOvJultBw9fDKy5bmUTfyEft5z\nLhMRZQ2d6+8bGkAnCKnoDPd5tZ/Orx1TnRNHzd+sqxGsKrFUYTGfO7HXYVHhQI+U0K+uSdy/l8xz\nKStHFSUvbZ4oiLhkgSqVhWFChvjN1bEWcRkzQs89gz/ghcs/n/QYfewwNM8xnojNZnIbqTwXn8dU\nlSXD7khdiuzzJBensvLECf1JEBIDCYtlRYznIghpoCUsNuboXa/S96eXkj+uNRw/gpo5d+hOR9WI\nCfmEZcgWlfbUpczeFJ5Pabznoru7JkUyH0RcskLERcgYS1w87QkXRAk5wOch5HWjg0maIj3tJvk+\nc97QfY7qpDkXPTBg8imJypDDqErHCOLkQQ3fA2M9N1lYTMRlCmOJi6w6FtKl02t6G7SGjrZ8WzM5\n8XnMz7czfo4hYJonIdZzsVclD4v5wz0uqXIulQ7oDiScjKwHBkzILJnnk0xcJCw2dVElknMpFHTA\nj3YX3oyraLTW4PfCnHBTsITGco7u7xsq4/UmnpgeqRRrnhO5Tzmqk3se3hTd+RaVDggGE+9lGUmc\nEolLdxdKxGXqImGxwkE/+Sihh8Z3WVzG9HTD4CBq/iIAdLuIS86xOumHfx3NiaNQNz325B3OuSTc\nyeJLw3NJNQLGEqdkYbWycggOxoZJJecytbHERRaG5R/d0WZi6YWMFXaZOc+ExtqkYizn+Ia8FZ3K\nc5k1L/ZOe7XxPKz+kujjU41+CaPCI2ASiktkrlgSz8e6SA17L1prcyEi4jJ1Ec+lgOj0JTwxFBTh\nHICqrgVXg3guY4EvKs+SQFx0MAitJ1FNs2MfiIyASZB38bpB2SLNlgmpDD+WQFz0SJ7P8MnIfT2g\nQ5JzmcpIn0sBEfDD4EBhe5HhHhcc1aZnQnpdco62vITiaTFeTARvB4RCUDc95m5lCUeiETA+N1TV\noGwpGhqt4ZWJuvS9HtNLk0Sc1HBxmURDK0HEJSvEcykMdCg0dMVYwN5LpNS1qhrlaoC2UyPvXRcy\nw2dO5MUz5yQOi3W0AqCGiQsphldqnydlSAyIyrkk6HXxdaQWpyTiIgn9qUzxNOMui7jkl54uczUK\nKYcH5h2rNNZeZTyXnu7Ctnci4nODowZbXX1Cz0Vb5d919bEP2I24JOx18bqT50ssKqycSxJxSlUM\nYImL1aU/iSYig4hLViilzDRUEZf8En21WcCeC34fVNhRxdOM5wJSjpxjtM8L1bUU1boSV4u5w+Li\nHCYujqidLsMZqTsfUMXTjEgk8lzCQy+TMtxzCW+hFHGZ6pSUiLjkm+g4eSF7Ap0+qAqHX+qNuGip\nGMstPuNl2Jz14PfGd+l3tIKjeqhHLYwqKTVVW8N6XXQwaO5L5XlYVCaZjOxzJy9DBjP+BdBWtVhP\n+DMsYbEpjngu+SfqhKAL2HPR0ZsOLc9FKsZyi8+DqnFiq61L2KWvO9rivRaLRF36fq95nZFyLgCV\n8ZOR9eCgec1MPBdJ6AsAlJQWdoXSFEDHhMUK2HPxe8FRA4AqqzBCI2GxnKGDwciJ3OZ0mTuHJ/Xd\nrXGVYhEc1bGfpajnjxQWA8LDK4d5Lv6wuKWTc+kNh8MiOZeJv8sFRFyyp6QU+mVZWF4JTJCcS6cP\nVRW1o93VIKP3c0ln2MuorqUogbhorcHdhhqezLdwVMeXIkcaIEf2XJS9Kj7nEs77pBSn4mlmy6WV\n0O/pgpISk8eZBIi4ZEuphMXyTsBvRH6EVbP5RAeD5qrWMSQuqr5RPJdcEm6gVFW12GqNuOjopH6n\nz1wIJvFclL0qrhRZWwUAaYXF7PHVYpY4peruVyp27H5PN5TbR36/CYKIS7ZIziX/dPpNvLzCXrie\nS5ffXFWHw2KA2YLobks+Gl7IjKgxK7aaWlAqNiwWFgqVLOfiqIZOX2zv0eF3oKom7ZwLXV2m7ypM\npNdmJM+nrGxo/Et3YNLkW0DEJXtEXPKODljiUmn+MAuRcHd+TFisvsH057hl9H4uiJ4BpoqKjShE\n97ok63GxcFTB4IAZv2K95v49sGBx4vXEw6l0mLEtVikxmLCYUsaWVJSWo/uiEvoiLoIScck/Ab85\nMRSy59IZNfoljLLW5kreJTdYQlIVzm9U18Z06etwd36qhD4QCY1pdzt0tKIWnpXe+1cmmIzsc4O9\nClWUYnQMxI7dn0QTkUHEJXtEXPJPp8/EyysqCzfnYlUNDQ+LAVryLrnB54FKB2paOBFe7Yz1XNxt\nJrdRkTifocJd+laBiD74trl/weK03l4lEJe0RseAEZdIQr8bNUkqxSADcdm9ezetreYKwOPx8MAD\nD/DQQw/h9SbZ+jbZEXHJPwG/aYybCJ5LdFis1glFxdLrkiO0zxMTflI1zpgufd3RCnX1yUNcw7v0\n9+8xjZWz5qdnQKKx+yONfrGI9lwm0RZKyEBcHn30UWw2c/jPf/5zgsEgSikeeeSRMTOuoBFxySt6\nYMD8UUY8lwIWl6KimHCHshWZ+L906eeG4V5CtTO2S7+jNXkDJUTCYlaviz6wB+YvGjmkZREeXhkz\nGdk78ugYABWuFtNaT92ci9vtxuVyEQwG2blzJ1/5ylf48pe/zDvvvDOW9hUuJaUQDJpOXGH8sXpc\nrGqx3u6Yap2CodMH9mqUbdifmqtRwmK5wueJPZHXOE2FnhWSdLcn73GBIc8l4DOTHo4fRS1IM98C\nUTkXE5oNvfSfZsWxK0mOJxrLc+nvh+DgpCpFLk73wPLycrxeL8eOHWPmzJmUlZUxODjI4FQ9uZZE\n7XQpTvvHKOSKsLgoR5WZlGBt8assrD9O7ffGJPMtVH0D+uiBPFg0udBaR+aKWajqWjSAz40urzDh\nqmTJfDD5mOJp5kLg0D7QobTzLcBQLsfXQejnD6B//xtY8j7U6k+M/FxLXKy5YpMo55L2WfFjH/sY\nGzZsYHBwkGuuuQaAvXv30tzcPFa2FTbR4jKJXNkJQ7TnYpWAdgcKTlxihlZG42qArk70JEvijjvd\nARgcjM1vWCEyrxumhf9OU4TFlFLhXhe/CYnZbDD/jLRNUOGwp37uGQiFUJf+NepTV6VeMmZRVm48\nFquJcxKdS9IWl7Vr1/L+978fm81GY6OpdnE6nVx77bVjZlxBUyLbKPOJjirxVV0Bc6VaiHmXTt9Q\n6XE0Vtms3zuprlbHHStxH91PEhYX7XVH8iZxS8KG46gyn6mOVpg138yAy4TqGvCEsH3hv6POvTD9\n51nzxdztxs6pKC4ATU1Nka93796NzWZj8eIM3MdJhCopNSc0EZf8EJNzCcfWC7Ec2e+LLUMOoxzV\n5vMT8ENDU9zjQppYM7yiE/qOGtPA6POgCXfdp0rog1ka5nPDqeOoD300YzNsX/4GlFckvpBIRXir\nrfaEGz2nYp/Lt7/9bfbu3QvAli1buO+++7jvvvt4+umnx8y4gkY8l/zS6TcnkEr7UMy7wDwX3ddn\nur4ThcVSLanKtR2Dg6YxcBKio0a/WKiioqEu/Y42U61XM8LSL0cVHDsM/f2ohZlfMKvZ8zMXFkBZ\nnounw/yfpBdnIpK2uBw7dowzzjBxyN/+9rd8+9vf5o477uD5558fM+MKGhGX/BLwQ6XdxLXDoYSC\nGwFj7RRJkNAfKn8dW3HRfX2E7vsOoVuvHWronExYYbHhPSXVTtOl726DWtfI+Q9HtSkKAWjJoFJs\ntAwLi02mEGna4mINdTt1ypRPzpw5E5fLRVdXYV0tjhsiLvnFmisGBeu5WF6JShAWY1hX+Fig+/sI\nPfhPsPdN6O9H735tzN4rb3g95m/ROklbVNeaarGOFHtcorE+S/WNqbdH5pqw3doTFpepmHNZtGgR\n//qv/4rH42HlypWAERqHwzEqAwKBAJs2baKtrY36+npuuukm7PZ41/DFF1+MhODWrVvHRRddRF9f\nH/fccw+nT5/GZrNx3nnn8Td/8zejsidtRFzyiu70DZ0QSstA2QpPXPwJuvPDqNLwqoAx8lx0fx+h\nB4ywqM9/Hf3Mz9E7t8OFl4zJ++UNv9lTP7z7XtU4Tam3rQh11jkjv07Yk8yovyUXRMJi7aalYVrJ\n+L7/GJK253L99ddTUVHBnDlzuOKKKwA4efIkl1566agM2LJlC0uXLuX+++9n6dKlbNmyJe6YQCDA\n5s2b2bhxIxs3bmTz5s0EAiYE8slPfpJ7772X73//++zbt4833nhjVPakTYn5EMg2yjwR8Eeu/pXN\nZq74egorLKZThcWs+4dvQMzF+w4MEHrwDiMs19yI7cLVqGUr4a03zGSDSYT2eRKvEq5xGuH2udPy\nXJT1O8qkvyUXlEblXMor05vCPEFIW1wcDgdXXXUVV1xxBWVlpsLh3HPP5bLLLhuVAdu3b2fVqlUA\nrFq1iu3bt8cds2PHDpYtW4bdbsdut7Ns2TJ27NhBaWkpZ599NgDFxcXMmzePjo6OUdmTNqXiueSV\nQKdJwlpUVEKhhWgTTESOwV6FHr4BMRfsfg327EBddS22sKeilr3fFBe8szv375dPhjVQRqgOd+lr\nDdZ2ylS0LIJlK1HL3597G1NheS4D/ZOqUgwyCIsNDg7y9NNP89JLL+HxeKitreUv//IvWbduHcWj\n6FD3+XzU1poPR01NDT5f/B+b2+2mrq4uctvpdOJ2x+7I7urq4rXXXkvpSW3dupWtW7cCcOedd+Jy\npfGhS0BxcTF1M5poAyqnFVOZ5evkmuLi4qy/p7Eml7ZprWnt8lM+vRFH+DU7qmqwBfupzfA9xvJn\n1jnQR09ZOfXNMxM+7nG6CPm91CV5/2xt6+7voRNwffgT2MInXv0Xq2n95+9Tun8XVas+nPFr5sq2\nXNPq91J23gVUhW2x7OqbPRerfKF6/kJKR7LV5YL/fd+Y2proZ6arHLRaj1dVJ/0sjLddOXnddA98\n/PHHOXjwIF/+8pepr6+nra2Np556iu7u7kjHfjJuv/32hNOTr7zyypjbSqms3MJgMMh9993Hxz/+\ncRoaGpIet2bNGtasWRO53d6eXXmmy+Wiw29CMF0eNz1Zvk6ucblcWX9PY00ubdPdXTA4SI+tmL7w\nawZLSsHryfg9xvJnFmo9hbZXJX39UGk52nMw6ePZ2hY6eRxsNjr6BlDRzz9zGT2vvETfpz436vBL\nIXzWdF8furuL3pJy+sO2WHZp29CpzV9cGvtzyBOJfmZaa1MqHQwyWFKal59ppr/L6H7HVKQtLq+8\n8gp33XVXJIHf1NTEvHnz+MY3vjGiuNx6661JH6uuro54Qh6Ph6qqqrhjnE4ne/bsidx2u90xzZuP\nPPIIjY2Now7RZYIqKjIJOAnDnx8EAAAgAElEQVSLjT9WKMk+LCzmdSc+Pk/oTl/ykBiYXpexqBbz\nuaGqJm5YpjpnJfrN7XDyXWiek/v3zTFaa3h7J5y5LH7wJ5hkPiQebR8dKksnLJYnlFIm79IdQE2y\nsFjGpci5ZsWKFWzbtg2Abdu2RSrRolm+fDk7d+4kEAgQCATYuXMny5cvB+AXv/hFWt7TmFBSaqaZ\nCuNLpzW0Mmq7Y4W98Dr0/b7Ua24d1dDfZ5otc4j2eROecNVS87eld/45p+83Zryzm9Cm20wpdSLC\nDZSqOsHP2FFjKgira1GFXoEVzmFPpjJkyMBzueCCC/je977H+vXrI27UU089xfnnnz8qA9auXcum\nTZt44YUXIqXIAAcPHuT555/n2muvxW63c/nll7NhwwYA1q9fj91up6Ojg6effprm5ma++c1vAmbA\n5iWXjFO5pex0yQ/W3ozhnkuhlSJ3+lBzFyR/3D406p3SNHox0sWfeFGVqq2D2S3Ge7n0r3P3fmOE\nNTVad7SSMIiXrIESq0u/euSxL4WAVTE2yTyXtMXl6quv5qmnnuLRRx/F4/HgdDq58MILWb9+/agM\ncDgc3HbbbXH3t7S00NLSErm9evVqVq9eHXNMXV0dTz755Kjef1SUlEKOrzqFkYlUWEVXi5VXwkA/\neqA/5ko19H+fQJ25DHXGktG/7+AAaJ3WlbAOhYxopAiLReaLdfrSa/RLF58HNbsl4UPqnJXoZ3+J\n7vTFeH4FyfEj5v+orZLRaK8lLolHu6gzzp4Y4mJVjE0lz2X37tiyxSVLlrBkyRK01pGE4N69eyPl\nwFOOklLpc8kH0UMrLSqjuvSrwz1IvT3oXz+BPnGEolyIy88fQLvbKfr7O0Y+uDsAwWDiuWIW1sk9\nh70uOhQMh+OSnHDPeT/6179A73oVVeANlfrYEfNFEnHB5zbj8e3xeVoA2999Y2wMyzVTUVx+9KMf\nJbzfEhZLZB544IHcWzYRkLBYfuj0m+VO4YmywFBIoTswdCXbetL8v39PzAVRtui334SAHx0MplyB\nq/1eQv98FwCqKUXiPOx56U5f4rBPNgT8oEPJBzXOmm/mbhV4t74eHIT3jpmvkxVqeDugxpk42T+R\nKJuCYbEHH3xwvOyYmIi4ZIU+dRx9eL85OXjaTUPkJz6Dapqd3guEw03RYqEq7HE7XfSpE+aLTh+c\nPgGNiftN0rLZ6zb2ghGtGbMSH3doH6GHvwcBP+rzX0ctXp78RSPzxXLYSBkOFalknovNhlq2Ar39\n9yOKZF45ddws0YJI4n442uuGmrqEj00kVFk5GiZdtZjs5x0NJaWFl0SeAITu+oeh/eZWIr6xGfVX\nV6X1fB3oBPuwmXYVUZ6LhSUugN6/BzUKceHowaHXOn4ElUBcQn/cin78Iah2Yrvle0nzHhHKK6Co\nOLcjYCLluSmq1M46B37/G3j3IMxLf+PieKKtfMvsluRhMU8HNKd5QVLIlE7OsNgE9yfzixLPJWP0\nQD/4vaiPfBrbA09SdN8TZuXv6ZPpv0j00EqL8GRkHS32p0+YhK6jGvbvYTToo/tNaWtR0VCiOfrx\n3m70Yw/C/DOx/a97RhYWwuFle1VOh1dqX1i0E/V+WO+7yORIdbIS30Lg+GEoLja2+j2JWyE8HahJ\n4LlM1pyLiMtoEHHJHMtjaWxGWTmThiZ0JuIS8MdXOlXGey76VDgUtuAssxt9FOgjB2DGTGiciT52\nOP6AIwcgGMT28fWoJAnmhDiq0LlspLRCSCn6a1RVLTTNLmhx0cePQNNs0wA5OAhdnbGP93SbWWm1\nk0hcJllYTMRlNIi4ZE5YXFT05sCGZmg9mX6jbvQuF4vy2J0uWms4fRLV2IxauATaTqG92Q011VrD\nuwdRcxagZs6FE0fijzm0z3yRaZjJUZ3bLn2/F8rKh4Q7CerMZXBgjymvLkSOH0E1z4XqsHgMD41Z\n+08mgeeiZreYHF6hl4ZniIjLaBBxyRzrJBF9Zd3QBD3dQ5sbU6AHB42AOGLFRU2bZtYgWJ6L122u\nbBubI2trdbahMa/b2D13AcycC+52dFfsNAB9aB80zkRVxu8iSoXKcVgMX+IGyrj3PXOZmS5x6J3c\nvXeO0H6v+T5mzRu6CBme1A9fKKhJ4LmopedR9I8Pms/wJELEZTSExWWsRuNMRrSVcK4a5rkAnEoj\nNNaVoDvfotw+VGBx6vjQa8+ab8qW97+VndFH95vXsjwXiPFetNZwaB9q/qLMXzvHO120z506mW9x\nxtmgVGGGxsI5LTVzbqSkeng5svaEb9cW7tywqY6Iy2iwtlEOyHyxtLESztHNhQ1myqo+fSLBE4YR\nDiElzGtUVKLDnkvktRqbTbnt/EXo/W9nZbI+csA0682aZzwXoqqZANpPG+8jm8orRxX0dOUuPOXz\nJi1DjkZV2s0omH2FJy6Rn+3MeUNeWNKw2DiuJBYyQsRlNMiq48zxe8DuQBVHhQCcLjNhOp2kfqoF\nXNHzxU6dML+fcExeLVwCJ45ExCcT9NED0DTbVAdWO00ZdJS4WPmWrDyXSK9LjrwXf5LNjAlQi5bC\noX05H5w5ao4fNs2RjiqTOyorjxcXb4f5HBX6UMopjIjLaAivOhZxSR/t88SNJlG2IqifkV7FWKLR\nLxZRk5H16RPQ0BTp3lYLF5uthAf3Zmav1nDkAGqOGUCplILmubGey+F3jJBlMcZe5XAEjO7rhd6e\n9MXlzGWmEutgrEenD+83/0KhUduUDfr4kYiHCBhBjwuLdUCNhMQKGWmiHA3iuWSO35v45NfQbPpS\nRkBbJ2FHvLioikp0eGQIp06gosNU8xZBUTF6/1uopSvSt9fdZgQtarqxmjkX/fvfoEMhlM1mPJe5\nC7PrdrdEMhdJfV98PislC8+CoiL03jcjkwT0wb2myTU4aHbCLF2BWrYSznn/mHTzh557BjV3gfGi\nGBr7opacO3RQda25KInG2zE5ypAnMeK5jAJVKuKSMT4PKkEPhmpogrb3zODFVFgn4QpH/GNhz0UP\n9ENHqxEs6/VLS2FOS+YVY0fM2Hc1Z+HQfTPnmt95+ynzXu8eyi4kBjHzxUZNuFhCpeu5lFXA3IXo\nfbuMDX6vGV3jdKE+/99Ri5aiX/8vQj/6LvrFfx+9fcPQoSD6mZ8T+tGdQ2Xip44bbyrKc1E1zvhq\nMU/HpKgUm8yIuIwG8VwyQmudwnNpMieVjrbUL9L2njn5FSdwuisqTUnz6RMmBNbYHPOwWrgYjuw3\ngpCuzUf3mxEt0Sc76+tjR+DdQxAcHIW4WDmXztTHpUNkv0mangvh0NiR/eiuAKEf/wC6OrFdewu2\nCy/B9nffwHbPY8bGBFMJRo3XbSZHd3US+sl96FAoEm5UM+cNHVddC76hLn09MGAuMiZBj8tkRsRl\nNIi4ZEZfj/lZJfRcwkIwQt5FnzyWdGgkFXbQ2lR3AWq4uCxYbATscPq9HfrIAWieE9uD0DQblA19\n/Ej2zZMWlXZQKm54pX7jFXpe+H8ZvVQkdJROKXIYtWgphEKEHrgd9r6J+puvombPH3q8uBgam4eG\ngOYS60Li3Atgzw70C89Gxr7EXBhUO83nprfH3La8GKkUK2hEXEaDiEtmRMqQE1xZN1rlyMnFRYdC\ncOoYakaSYYXWbCbrhB8ucY6wcAmUlKC3/Wda5mqt4ehBhm+TVCWlZmTN8SPmveqmm9BNFihbEVQ6\n4nIuoWcew//ARvSeHem/mM+bcr9JQlrONOsLDryN+tBHsH0wfgy/apyZVj4sU3THaQBsaz8Hy1ai\nn/qZWQXQNDs2v2N5YlZS32M1UEpCv5ARcRkNYXGxSjn1oX0E//4agndtIPSbLejW9/JpXeHhs3IC\nSXael1ekPol1tJqu8qbEnouyhlcefseUspZVxD5eaUd9eC36zy8NeRypaD9tqs/mxK8qtsbA6Gyb\nJ6NxVA8VKgC6qzOyyyT06D1Djacj4XODo8YIVpqoklJY8j6Ydwbqs3+X+KDGZuj0GbtyieW51NVj\n+9sbzO//1PHYkBjEdelH8jOScyloRFxGQ5Tnoo8fJnTf/zZTc7sC6F/9K6FvfYXg7V9Hj5RHmCok\n6M63UErB9BEGWIZPuEn3vliey4l3Y5L5Me/zscuhupbQk4+OOFkhEl6bGy8uzJwLbadMNdn8UY6t\nd1TFhsUOmHJpx5duhp5uQo/em1ZZsPZ7MwqJWdiu24Dtm99L2jOiGsKrCnIdGutoNXt5SkpRVTXY\n/vZGc/+cYROlw15hJOznEXGZCIi4jAZLXI4fIbTp21BSiu0bGyn6zg+xbfxn1Ge+CKdPEnr8oTEf\nEaNPvEv7teuzHs44HgyNg0+yyKqhaWh7ZKLnn3zXfDEjyV4WS1x0KC7fEnmPsnLUp/7G9Lu8/nJq\ng48dNMn8BGKmohP880bpudhjR8Dog3ugqIjySz6B+syXYM8b6OeeHvl10pwrNhxlK0pdZhz+WeY6\n76I7Ws26BcuOc1Ziu+0+1Ic+EntgpEs/KixWUjrppghPNkRcRoMVFnvhWQiFsN18Oyr8x6LqG7Gt\n+RRq7dWw+zX0q38YU1P0kXcInj5ZkIMII/g9JidQmaCMGEyOpKPVVAMl4uQxE+6qSDIcMvr+JOIC\noD54CTTPIbT5p6krx9pbw5VpCQYKWuJSXGwWWo0C5YgdXqkPvA2zW1Clpai//CjqvA+itzxu7k9F\nkjLvUeNqMCIbnteWMzraUM76mLvUrHnxHlR5hWlYtjwXbwfU1I16bbUwtoi4jIZpJabSp7wS203/\nG5XgilqtvgzmLEA/8c9xk3RzSniUvc71CSCX+L2mMS/ZzvOGZlNC3JY4V6XfS1EpBjHLliKhnAQo\nWxG2K74A7afp/vfNSY/TnnazbCwRznpz0ps1f/TTbO1V0NVp+j4GB8xEgJazjK1Kof7b18BRQ+g/\nn0puayhopkpnUIacLqqoCKbPyKnnokMhExZzTR/5/ZUKd+kbcdGedgmJTQBEXEaBUgr12b/D9j9u\nT7p5UNmKsP23r5mTx1M/HTtjrKu6sSgZzRGJRr9Eo6zqrgR5F6216dxOlm8BKKswYg8pPRcAtfh9\ncPZ5dD350+SJand70ookpRTqr67C9rHLU75PWjiqjah2Bcw65YF+1IKzht6rohJ19vvgwNvJcy+B\nTgiFxkRcgLQnKKRNpw8GB6BuZHEBwl364bCY1y0NlBMAEZdRYrv4ssjcqWSo2fNNldLvf4Petzvu\ncd1+mtD/+TeC//MLBH90Z3aGWJ7LGJSM5oyw55KU6SmmI7vboa83peeibDbjTRRPg7okHkcUto+v\nN4MsE3Tt61DQhF+cyctdbWv+CnXuBSO+z4hYpcMBP9qafRYlLoApo+7qhPeSeKa+zLrzM0U1NkPr\ne+jgCBMU0qWj1byuM31xwec24up1i+cyAZDZYuOE+uRn0a/9kdC//MA085WWQmm5CTW8He5lcFTD\nW29EZlZlgrbWB586gda6MOPRPg9qZvLhjqqi0ohPooqx90wyX6UKi4HJu9SUpleOayWqO9qI+2n5\nvcYTGIdeCuWoRoMp9z34NtQ3xomEWrgYDWY2WnMC7y3TuWKZ0jjTzBtrPx3fP5QFOiwu6YTFAFS1\n0/T8BHzGDunOL3jEcxknVGkpti/eDM569PHD6D070a+8CK0nUZ/4DLbv/gtq3d+aLvZM9slbWCeX\n7kBuNxvmCB0KmZzASCe/hqaEnos+GR5ImaTHJULzHNQZS9IzylFtloiFm/licJt9ISqF55Izoicj\nH3gb1XJm/DH1M8zVe5LZaJFemLH0XCB3YVdLXNLwMAHzffV0w2mTj1MiLgWPeC7jiFpwFkUb7kp+\nwJwWc3V6dH/C4oCU+L0UzZhJ8L3j5gSQw6ohPTCAfubnqI//talsyuY1An4zR2qEk5+a3oTe9Wr8\nAyffNcUAI3SfF33tf6Vd9q2Uomj6DILWiS4aaxnVeHSBW8MrD+8zHlPLWXGHKKVQCxajDyTZpplo\nfXQuiZQjH0eds3L0r9fRChX2uEbXpFi9LuGtoLKBsvARz6WQmDHLlFwePZjR0/TAAHQHmGaNTU90\n5X/0AKGXX8jOrncPop//P+jX/pjd84GQ1fg2oufSDH4v2lr6FWbESrEoMgkJFk1vNKGeYeiw55Iq\n55IzwoKp3/gTQEwyP4aFS8Ddnrgp1+eB0nJUWfmYmKgqHcbDylFOT3e0pR0SAxMWAyJTqqmVuWKF\njohLAaGKimDmPLP5MBPC+ZZpZyw2yewEoYvQ/30C/ZN70Yf3Z25YT/hEf+xQ5s8NE0w1+iWKRBVj\nQ5Vi6YlLJhTVzzD9LMNxt5s+pmQ9NTlEFU8zDYGtJ01BQpKKOLVwMWDyLnEkmzadSxqac1fq3tEK\n6SbzIfK9RVZOj5WHJuQMEZcCQ81pgXcPZ7YFMCwuRbX1Jmcx7ASgQ6HIBsZkY09CLz2XVHis/hz9\nbvbikrbnMu8MsNnQf942dJ/XbeLtyQZWjoKi6TPMDpjhnpKnzTRQjldhhBVunL8oeTHHzDlGfBJV\nt/ncWY1+yQTV2JyTnIvWGjpaUenmW2CoS//0Cah2ZjQ/TcgPIi6FxpwFmSf1w8lcW63ThJWGnwBO\nnzBlrAsWw4E98Pp/xTwc+sPz6MceNJMGEmF5LieOZl2KGrLG0oyUc6mtQ71/Ffql54aGOVqVYmPh\nuUyfYb5wD/Ne3O3jG9cPh8aShsQIT1BuOTOx5+LzosaqUsyicWZ4gOUom4G7Ok1ZeQZhMewOMyUA\nZNT+BEHEpcBQ4aF9mYTGrIF+thqnubpsP2U6va3Hw2NDbJ+7zow9eeqnkREr+vB+9L/9yHzdneSk\nYV3VD/RnPQIk5HGbiQZp5ATUxy43w0DDYhepFEsz55IJRdMbzRfDQ2OejvGpFLMIV4ypBMn8aNSC\nxfDeMVMgEY3fM+Yn3aGKsVGGxsI5o7R7XLC69MOemSTzJwQiLoXGjNnmJJxJUj8cFrNV15qry1AI\n2qKS1AfeNlfGM2aZsSdtp9AvPGvW2v7ouybkMGueKWNORFTIKNvQWMjbYaq90ggzqebZsPwDxsbe\nbjMN2e4YKtnNIZbnoqMqxnQwaBLk43gSU45qk0sYYXy/Whgusz4wFBrTfX0mbDjWeYiGHA2wtEq/\n0+3OtwiHxqQ7f2Ig4lJgmKT+XPS7GST1/R5T1jmtJOHVpT7wNiw4y5SzLn4fLF2B/n+/JPTQRgj4\nsV23AeobzfiRRHQHzMl9WolZ65sFIa87o4Sz7ePrTS7kpeci2yfHIv+hqmpMr0u05+J1gx6fBsqI\nHRdfivrc9ajSstQHzlsIxcXo/VFDLI8fNv+PdULfGmB5enSeS6TaLZOwGAzlXURcJgR573MJBAJs\n2rSJtrY26uvruemmm7Db4yt0XnzxRZ5+2owdX7duHRdddBEAd9xxB16vl2AwyJlnnsmXvvQlbBl2\ntxcaas4C9Cu/S7tTX0dXCkVdXSrrsdaTqL8cGmNu++vPE/rODXBwL+qLN6Fmt6Aq7HFJ7QjdXcbz\nqa9EZ1kxFvJ0ZFQdpOYvgkVL0b/5PzDQh1rxoazed8T3UQrqpqOjy5E9VthmHMVldkvS+XQxx00r\ngblnRPIu+vB+Qj+83SS5F79vbG0sLob6xhx4Lq1QWp5xJZ6qqTWTDKSBckKQ97Pwli1bWLp0Kfff\nfz9Lly5ly5YtcccEAgE2b97Mxo0b2bhxI5s3byYQMFfZN910E3fddRd33303fr+f//qv/4p7/oRj\nTovZF55it0kMvqGZXaqi0giNdXUZzrdEx/LVjFmoz/4d6jNfxHb+xebOCnvSsJju6YLyStSs+XDs\nUFa7aYJe94hlyMOxXbre7PDo7hq5M3801E2P6dKP9LjUZlDNNI6ohYtN79GuVwnd/b+gvALbN+8c\nn3BRDirGdEcr1NVn7omGL6CkO39ikHdx2b59O6tWrQJg1apVbN++Pe6YHTt2sGzZMux2O3a7nWXL\nlrFjh5nHVVFhOnyDwSCDg4OFOVMrQ6xBmDrdvIt/2B6PhubI1aU++LbpfRk2XNN20aXY1nxq6I5K\nOwz0J95v0t1lHp8933ydoOkwFXpwEN3py3zu1VnLI3annIY8SpRr+tA4Ehjqzh/PhH4GqIWLIRgk\ndP8/gtNlhKW+cXzeu3FmeIDloMnZPftLgvf/Y3yBQSo6WjPPtwC4Gs3U66gFY0LhkvewmM/no7bW\nnHRqamrw+eLnYrndburqhq5WnE4nbrc7cvuOO+7gwIEDLF++nPPPPz/pe23dupWtW7cCcOedd+Jy\nZXfyKC4uzvq56aBramidVkJ56wkcabxPa6eP8samiF3+uS30vvw7XC4X7iP7YcFZOGfMSPka3dMb\n6QScpSUUDTuptvf1UjxzDpVLz8UNOLztlJ11dtrfT9DdRrvW2JtnUZHhz63vmuvpfOQHON+3EtsI\no1+yobi4mMrZ8wn87t9xlpdiq3Tg7+mit7yC+lljJ2jp2pbocxZ6/1/QVlJK8ex51N66CVtV7gsd\nktGzYBH+/xzEf/dthF592VQQAuV/fB7733wlrddodbdTtuR9VGX4WdAfX8vgmUuYlqJce6z/NkdD\nodo2VnaNi7jcfvvteL3euPuvvPLKmNtKqaw8j29961v09/dz//33s3v3bpYtW5bwuDVr1rBmzZrI\n7fb29ozfC8DlcmX93LSZOZfuvbvpG+F9dF8vuqebnmllOAYHaW9vJ1Rdhw74aXtnL6GD+1Br/mpE\ne0PhSJf7+LuoYf2bwU4foaJiBuymosn/1g4CC9MXF33U5Gm6iorpzvTnNrMFbv8R7t5+6M39z9zl\nctEdXpfb8c5e1Kx5BE8eg5q6sf8dp2FbMhts3/khoRon7v4BGEc7dbW5yOt740+oD65Brf4EoS2P\n0/X/fkXPhz6afEuo9fyebnRXJ72VDvqzsbumPuX3Oy5/m1lSqLZlaldTU3pTscdFXG699dakj1VX\nV+PxeKitrcXj8VBVFX916nQ62bNnqPTS7XazePHimGNKSkpYuXIl27dvTyouE4m0k/rWqP2osJia\nMdMMwPzTNggOpmzMizynwm6SpcPyLlpr00RZUYkqKYXGmZmXI1sTex0FOrLDCtF0nDYl2e72gg2J\nWYxXGCzufecuxPb3d1C3fAXunj4AbJddQej1l9EvPIv6xJWpXyAyDVlCW5OdvOdcVqxYwbZtZtTH\ntm3bWLkyfuLq8uXL2blzJ4FAgEAgwM6dO1m+fDm9vb14PObEFQwGef3112luTr2BcMIQSeonXvkb\nISwuMclyq2LsjyYEmGjKbhzWFWfXsIqx/j4zzTj8uJo9P+MZY1aT55iXymZLOIYfqRjztMftdheG\nUIuWYqt0DN2ePR/OeT96669NX1IqrCVhmYx+ESYkec+5rF27lk2bNvHCCy9ESpEBDh48yPPPP8+1\n116L3W7n8ssvZ8OGDQCsX78eu92O1+vl+9//PgMDA2itWbJkCR/+8Ifz+e3kDDVnQXj8/oGh3pVE\nJBq17poOxcVm7Etjc3pj8itNaEh3B2IXZ1nlydZ++lnz4ZUX0X5vbBFBKsZ6HPxoqXSY0tj2VjO5\nwO+VLvAMsV32GUIb/wf6d/+B+njy1c+RZtVsEvrChCLv4uJwOLjtttvi7m9paaGlZajuf/Xq1axe\nvTrmmJqaGr773e+OuY15YcYsKJ6G/tM29BlnJy0zjSyJiqrEUrYis1zqvWMjjhOJYHkuw8uRrdvl\nQ56LBtNMefa56b12pw9VYTdhtQJEKQWu6eiOVpQ1A63Aw2KFhpq3EJa8D/38FvTqy5I3g3a0mmbc\nQr3QEHJG3sNiQmJUcTFqzV/B7tcJbfgSoUfvSVya7Pea8szho1GsZWNp5FuAIc+kqzP2/rDnoqI9\nF8ismdLnMUM1C5m66aZLP1yGLCNGMsf2ic+YwZYvPZf0GN3RCs4selyECYeISwFju/xvsd3xMOqi\nS9Fv/InQP91E6L9+F3uQzwv2KjM2JgoVzrukk8yHsLdTXhEzRwyIC4upSrs5EaeZ1NehEPq9Y9gK\nvPFN1Zlel0JvoCxk1ILFZqrCc88kXxnRdlpCYlMEEZcCR9U3Yrvyy9i+/69mTMnrL8c8rv3ehCEG\n9aGPoNZfE0nup0WFPW6+mO4JDD1mMXt+2hVj+jfPwImjlF/88fTtyAeu6aYq7sRRc1vCYlmhLrjY\nTFVIMF1CDw7CyXdRM+eOv2HCuCPiMkFQFZWoM5bAwb2x41f8noRVWKq+EdtH12UWfqiojB+7Pzyh\nT7g6qPVk8hH9YfTRA+gtj8O5F1K2+rL07cgDKlwaq/e/ZYaAjjRAUkiINR8t4cXHqeMwOGDKvYVJ\nj4jLRGLBWdDpi10k5vOkX7U1Eonmi0US+hWRu9RZy0EpQv9yT8zemGh0Xy+hH98Njhps/+36wo+x\nWyNFjhwQr2U0zJhlKhUTiIslOGr2/PG2SsgDIi4TCNUS3qEeXlmstYZOb+Yzu5JRGR8Wo7sLSkrN\nnveIHWeirv4q7HoV/egmdCh+O6X+5b9A60lsX7wJFdUTUbBY49+Dg1KGPApUcTE0zUG/m6D45Nhh\nKCkxwy+FSY+Iy0RixkwTnjoY3uXR2wP9/Tkr61QV9sQJ/QQjPWx/+THU+mvQr/4B/fiPIqE63XaK\n0LO/RP/+N6iPrkOdOUGmJVTYI1sylYjLqFBzWhJOz9bHDkHzXFM8Ikx68t7nIqSPstmg5azI2uJI\nc2KGo+yTUhkfFtPh0S+JsH10HaHuLvS//wrtbjPra60lZYuWoj51VW7sGgesvS6cOCphsdEyaz78\n/jemrDs86UBrDccOjdleHqHwEHGZYKiWM9G7XkV3dQ6NfslVWKxiaOy+mlZi7utOLi4Aau3V0NeL\n3vYfcMZS1KqPoc4+DxqaCj/PMhxXgxEX8VxGxVCj7cGIuNDRaj5Lkm+ZMoi4TDDUgsXmD/fAXhgw\ngwNz1u0cmS8WgJpw0zLjODAAABE9SURBVGN3YGi9bCJ7lEJd+WX0FV+Y8OEOVTcdzfhuoJyUzJwL\nyoZ+9xBqeXgFhpXMl0qxKYPkXCYacxdCURH64B7T4wK5GwhZmWAETHfXUHd+Cia6sABDFWMiLqNC\nlZZBY3NMObI+dgiUDZrn5s8wYVwRz2WCoUpLYdZ89MG9qAVLwGYzgxdz8dqJxu4nSehPRtT5F5ut\nnfWpF6sJI6NmzTc9Q2H0scNmiGppYc6XE3KPeC4TELXgLDi8Hzxt4KhJve8lE4aN3dehEPR0p8y5\nTCaUowrbxZdOvFxRITJnPnja0Z3h9cfvHkLNknzLVELEZQKiFpxlEu9vvZG7SjGIGbsPmFJnHZoy\n4iLkjoiQHDtoBMbTLsn8KYaExSYi1hh9vze3f7DDx+73hHteykVchAwJfy710UOo8IYg6cyfWoi4\nTEBUjdMkn9tP564MGaLG7ofFxRq3Xzk1ci5C7lCVDtM3dOwQ2hYOM0ql2JRCxGWCohacZdby5jAs\nNjR2P1ZcxHMRsiI8PVspGzhdKHsaG1GFSYPkXCYqVmgs1xv9osfuJxq3LwhpombPh9Mn0Af2RJbM\nCVMHEZcJilq0FJQNVd+U2xeOGruvu+LH7QtCuljj93G3SaXYFETCYhMUNWMmtjseHmr8yxXRY/cj\nnouIi5AFUQl8SeZPPcRzmcCo+sbc92REj92P5Fwqkh8vCMmodoKj2nwtyfwph4iLEEPM2P3uLiiv\nmByjXYRxRykFc1qM51s3Pd/mCOOMhMWEWKLH7ncHpFJMGBW2tVeDp0OmHkxBRFyEWKLG7usRxu0L\nwkioOQtgzoJ8myHkAQmLCbFEj91PsShMEAQhFSIuQizRY/en0ERkQRByi4iLEIOqiBUXJTkXQRCy\nQMRFiCV67H53QMJigiBkhYiLEIs1dj/gNyP3RVwEQcgCERchFstz6Tgde1sQBCEDRFyEWCxPpf10\n7G1BEIQMEHERYrDG7uuwuCgRF0EQskDERYinwg5tYc+lXMJigiBkjoiLEE9FJfjcQ18LgiBkSN7H\nvwQCATZt2kRbWxv19fXcdNNN2O3xV8svvvgiTz/9NADr1q3joosuinn8e9/7Hq2trdx9993jYfbk\npsIOWg99LQiCkCF591y2bNnC0qVLuf/++1m6dClbtmyJOyYQCLB582Y2btzIxo0b2bx5M4FAIPL4\nn/70J8rKysbT7MlNZZSgiOciCEIW5F1ctm/fzqpVqwBYtWoV27dvjztmx44dLFu2DLvdjt1uZ9my\nZezYsQOA3t5enn32WS6//PJxtXsyoyod4S9sUCqiLQhC5uRdXHw+H7W1tQDU1NTg8/nijnG73dTV\n1UVuO51O3G6TE/jFL37BJz/5SUpKSsbH4KmA5a2UV6Bsef+ICIIwARmXnMvtt9+O1+uNu//KK6+M\nua2Uymjvw5EjRzh9+jTXXHMNra2tIx6/detWtm7dCsCdd96Jy+VK+72iKS4uzvq5Y0mu7OqqbyAA\nFDmqcvZ9Tvaf2VggtmVOodoFhWvbWNk1LuJy6623Jn2suroaj8dDbW0tHo+HqqqquGOcTid79uyJ\n3Ha73SxevJh33nmHQ4cOcf311xMMBvH5fHznO9/hO9/5TsL3WrNmDWvWrIncbm9vz+r7cblcWT93\nLMmVXSFtBD5YWp6z73Oy/8zGArEtcwrVLihc2zK1q6mpKa3j8l4ttmLFCrZt28batWvZtm0bK1eu\njDtm+fLlPPHEE5Ek/s6dO7nqqquw2+185CMfAaC1tZXvfe97SYVFyAAroS/JfEEQsiTv4rJ27Vo2\nbdrECy+8EClFBjh48CDPP/881157LXa7ncsvv5wNGzYAsH79+oTlykJuUBV2NIi4CIKQNXkXF4fD\nwW233RZ3f0tLCy0tLZHbq1evZvXq1UlfZ/r06dLjkivCvS2yy0UQhGyRUiAhnvDY/Zh+F0EQhAwQ\ncRHisbryyyvya4cgCBOWvIfFhAKk0oFaezXqvA/m2xJBECYoIi5CHEop1GVX5NsMQRAmMBIWEwRB\nEHKOiIsgCIKQc0RcBEEQhJwj4iIIgiDkHBEXQRAEIeeIuAiCIAg5R8RFEARByDkiLoIgCELOUVpr\nnW8jBEEQhMmFeC5ZcMstt+TbhIQUql1QuLYVql0gtmVDodoFhWvbWNkl4iIIgiDkHBEXQRAEIecU\nfUf2AmfF/Pnz821CQgrVLihc2wrVLhDbsqFQ7YLCtW0s7JKEviAIgpBzJCwmCIIg5BzZ55IBO3bs\n4Cc/+QmhUIhLLrmEtWvX5s2Whx56iNdff53q6mruvvtuAAKBAJs2baKtrY36+npuuukm7PbxXVXc\n3t7Ogw8+iNfrRSnFmjVruPTSSwvCtv7+fr797W8zODhIMBjk/PPP54orrqC1tZV7772Xzs5O5s+f\nzw033EBx8fj/aYRCIW655RacTie33HJLwdh1/fXXU1ZWhs1mo6ioiDvvvLMgfp8AXV1dPPzwwxw7\ndgylFF/96ldpamrKq20nT55k06ZNkdutra1cccUVrFq1qiB+Zs8++ywvvPACSilmzZrFddddh9fr\nzf1nTQtpEQwG9de+9jV96tQpPTAwoP/+7/9eHzt2LG/2vPXWW/rgwYP65ptvjtz32GOP6WeeeUZr\nrfUzzzyjH3vssXG3y+1264MHD2qtte7u7tY33nijPnbsWEHYFgqFdE9Pj9Za64GBAb1hwwa9b98+\nfffdd+s//OEPWmutH3nkEf3cc8+Nu21aa/3rX/9a33vvvfq73/2u1loXjF3XXXed9vl8MfcVwu9T\na61/+MMf6q1bt2qtze80EAgUjG1am/PGl770Jd3a2loQdnV0dOjrrrtO9/X1aa3NZ+x3v/vdmHzW\nJCyWJgcOHKCxsZGGhgaKi4u58MIL2b59e97sWbx4cdxVz/bt21m1ahUAq1atyot9tbW1keRgeXk5\nzc3NuN3ugrBNKUVZWRkAwWCQYDCIUoq33nqL888/H4CLLrooL7Z1dHTw+uuvc8kllwCgtS4Iu5JR\nCL/P7u5u3n77bVavXg1AcXExlZWVBWGbxa5du2hsbKS+vr5g7AqFQvT39xMMBunv76empmZMPmsS\nFksTt9tNXV1d5HZdXR379+/Po0Xx+Hw+amtrAaipqcHn8+XVntbWVg4fPsyCBQsKxrZQKMQ3v/lN\nTp06xUc/+lEaGhqoqKigqKgIAKfTidvtHne7fvrTn3L11VfT09MDQGdnZ0HYZXHHHXcA8OEPf5g1\na9YUxO+ztbWVqqoqHnroIY4ePcr8+fO55pprCsI2iz/+8Y988IMfBArj79PpdPLJT36Sr371q5SU\nlHDOOecwf/78MfmsibhMUpRSKKXy9v69vb3cfffdXHPNNVRUVMQ8lk/bbDYbd911F11dXfzgBz/g\n5MmTebEjmtdee43q6mrmz5/PW2+9lW9z4rj99ttxOp34fD7+6Z/+iaamppjH8/X7DAaDHD58mC98\n4QssXLiQn/zkJ2zZsqUgbAMYHBzktdde46qrrop7LF92BQIBtm/fzoMPPkhFRQX33HMPO3bsGJP3\nEnFJE6fTSUdHR+R2R0cHTqczjxbFU11djcfjoba2Fo/HQ1VVVV7sGBwc5O677+ZDH/oQH/jABwrK\nNovKykqWLFnCO++8Q3d3N8FgkKKiItxu97j/Xvft28err77KG2+8QX9/Pz09Pfz0pz/Nu10W1vtW\nV1ezcuVKDhw4UBC/z7q6Ourq6li4cCEA559/Plu2bCkI2wDeeOMN5s2bR01NDVAYfwO7du1i+vTp\nkff+wAc+wL59+8bksyY5lzRpaWnhvffeo7W1lcHBQV5++WVWrFiRb7NiWLFiBdu2bQNg27ZtrFy5\nctxt0Frz8MMP09zczCc+8YmCss3v99PV1QWYyrE333yT5uZmlixZwiuvvALAiy++OO6/16uuuoqH\nH36YBx98kK9//eucffbZ3HjjjXm3C4wHaoXqent7efPNN5k9e3ZB/D5ramqoq6uLeJ+7du1i5syZ\nBWEbxIbEoDD+BlwuF/v376evrw+tdeRnNhafNWmizIDXX3+dn/3sZ4RCIS6++GLWrVuXN1vuvfde\n9uzZQ2dnJ9XV1VxxxRWsXLmSTZs20d7enrdSx71793Lbbbcxe/bsiNv/2c9+loULF+bdtqNHj/Lg\ngw8SCoXQWnPBBRewfv16Tp8+zb333ksgEGDevHnccMMNTJs2bVxts3jrrbf49a9/zS233FIQdp0+\nfZof/OAHgAlD/cVf/AXr1q2js7Mz779PgCNHjvDwww8zODjI9OnTue6669Ba59223t5errvuOh54\n4IFIWLhQfmZPPvkkL7/8MkVFRcydO5drr70Wt9ud88+aiIsgCIKQcyQsJgiCIOQcERdBEAQh54i4\nCIIgCDlHxEUQBEHIOSIugiAIQs4RcRGENLj55pvz1j3f3t7O5z73OUKhUF7eXxCyQUqRBSEDnnzy\nSU6dOsWNN944Zu9x/fXX85WvfIVly5aN2XsIwlgjnosgjCPBYDDfJgjCuCCeiyCkwfXXX88XvvCF\nSLd6cXExjY2N3HXXXXR3d/Ozn/2MN954A6UUF198MVdccQU2m40XX3yR3/72t7S0tPDSSy/xkY98\nhIsuuohHHnmEo0ePopTinHPO4Ytf/CKVlZX88Ic/5A9/+APFxcXYbDbWr1/PBRdcwNe+9jWeeOKJ\nyOynH//4x+zduxe73c6nPvUp1qxZAxjP6vjx45SUlPDnP/8Zl8vF9ddfT0tLCwBbtmzhP/7jP+jp\n6aG2tpYvfelLLF26NG8/V2HyIoMrBSFNpk2bxqc//em4sNiDDz5IdXU1999/P319fdx5553U1dXx\n4Q9/GID9+/dz4YUX8uMf/5hgMIjb7ebTn/40Z511Fj09Pdx999386le/4pprruGGG25g7969MWGx\n1tbWGDvuu+8+Zs2axSOPPMLJkye5/fbbaWz8/9u7f5fW1TiO42/8EaoUY7RDRjcdxIKDIFQXJ+ni\n0knQSFFBFEEH/wLpov4BgkWEqiAuOjm5Obi4iLqICqWIDbaItGJsvcPhBHrPvfdUTi73cvi8pvx6\nkpDlQ54neb42vb29wLdZlpeXl5mbm2N/f590Os3q6iq5XI6TkxNSqRQdHR08PT1pHEf+NeoWE/kF\nxWKRi4sLHMchFAphmibxeJyzszP/GMuyGB0dpbGxEcMwsG2bvr4+mpubaWtrIx6Pc3V1Vdf1XNfl\n5uaG8fFxDMOgq6uLkZERf0JEgJ6eHvr7+2loaGB4eJj7+3vgW7kBz/PIZrP+XFy2bQf6PES+05uL\nyC9wXZdKpcLMzIy/7fPzs6awXCQSqWlTLBbZ3t7m+vqat7c3qtVq3RMYFgoFwuEwLS0tNee/vb31\n103T9JcNw8DzPCqVCrZt4zgOBwcHZLNZotEoExMT/7vSEfJ7ULiIfMGfCzx1dnbS1NTE1taWX8nv\nZ/b29gBYX18nHA5zfn5OOp2uq61lWby+vlIul/2AcV237oCIxWLEYjFKpRKbm5tkMhkWFhbqaivy\nFeoWE/kC0zTJ5/P+WIVlWUSjUXZ2diiVSlSrVR4fH/+xm6tcLhMKhWhtbeX5+Znj4+Oa/e3t7T+M\ns3wXiUTo7u5md3eX9/d3Hh4eOD09ZWho6Kf3nsvluLy8xPM8DMPAMIz/tFqp/N4ULiJfMDg4CEAy\nmWRlZQWA+fl5Pj4+WFpaYmpqio2NDQqFwt+eI5FIcHd3x+TkJKlUioGBgZr9Y2NjHB4e4jgOR0dH\nP7RfXFwkn88zOzvL2toaiUSirn9iPM8jk8mQTCaZnp7m5eXlL0vwigRBnyKLiEjg9OYiIiKBU7iI\niEjgFC4iIhI4hYuIiARO4SIiIoFTuIiISOAULiIiEjiFi4iIBE7hIiIigfsDtud47YgH2zAAAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -386,9 +391,19 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX+///H+7CoiOwooljikrmvKS5hilZqZk1atjg6\nlRplk61On9/Y9DULM8I0GRtbHHOmtEWsmcrCBSfNRMUyzS2XIBdAFtkFrvfvj1OnyIWL5XAd4HW/\n3bzJuc65zvXi7ZEn1/t9Xe+30lprhBBCiMuwWV2AEEII1ydhIYQQolISFkIIISolYSGEEKJSEhZC\nCCEqJWEhhBCiUhIWQgghKiVhIYQQolISFkIIISolYSGEEKJS7nVxkMzMTJYuXUpOTg5KKaKiohgz\nZgz5+fnExcWRkZFBcHAws2fPxtvbG601b731FikpKTRp0oTo6GjCw8MrPc7JkyerXWNQUBCZmZnV\n3r+xkHYyR9rJHGknc5zZTqGhoaZeVydnFm5ubtxzzz3ExcUxf/581q9fT1paGgkJCfTo0YPFixfT\no0cPEhISAEhJSeH06dMsXryY6dOn8/rrr9dFmUIIIS6hTsLC39/fcWbQrFkz2rRpQ1ZWFsnJyURG\nRgIQGRlJcnIyADt37uTaa69FKUXnzp0pKCggOzu7LkoVQghxEXXSDfVb6enpHDt2jI4dO5Kbm4u/\nvz8Afn5+5ObmApCVlUVQUJBjn8DAQLKyshyv/UViYiKJiYkAxMTEVNinqtzd3Wu0f2Mh7WSOtJM5\n0k7muEI71WlYFBcXExsby9SpU/Hy8qrwnFIKpVSV3i8qKoqoqCjH45r06UnfqTnSTuZIO5kj7WRO\noxmzACgrKyM2NpZhw4YxcOBAAHx9fR3dS9nZ2fj4+AAQEBBQoWHOnj1LQEBAXZUqhBDid+okLLTW\nLFu2jDZt2jBu3DjH9v79+5OUlARAUlISAwYMcGzfsmULWmsOHTqEl5fXBV1QQggh6k6ddEMdPHiQ\nLVu20K5dO5544gkAJk+ezIQJE4iLi2Pjxo2OS2cB+vTpw+7du3n44Yfx9PQkOjq6LsoUQghxCaoh\nLasq91k4n7STOdJO5kg7mXOpdtIFeejk/6Fa+KL6DanWe5sds6jzq6GEEEJUnz5fAvtTML7aBN8m\nQ1kZDBhW7bAwS8JCCCF+pg0DMk5Dy9ZVvjrzsu97NgP9yRrUyJtQoe2qtm9xEUWbPsX4Jhl97BD8\ndALKy6GFL2r4GFTEdRBW+QwXNSVhIYQQP9P/eRf98bsQHIIaMAx1zbWoNlfU7D2/2YHx5iIozEcf\nPYjt/2JR7h6V75d/Dr3xP+iN/+VcQR4084IrO6GuvxXVqStc3Rvl5laj2qpCwkIIYQm9P4XclO3o\nm+5A+dTd1Y7G10koL29Uj34V6zn5I/qT96FLT7C5oT/9AP3Je9C5G7Z7H0UFBFfpOLqsDL32bfTn\na6FdOGrwZPS7y9GfvI8aP7nia8+cRH//DRQVQlE+5Oagd22FkmLodQ3+d9xLbkArlM26uV8lLIQQ\n1aaNcjjxA7TrUKXfcnVuNsbylyjOz4M9X2Ob8RSq49W/Pn8uG528FdVrACqoVcV9tUb/dw2cSkPd\ndAcqpI3p4xrbN6HfiEO7uWF7+BlU194/fx8GxttLoWkzbNOfQLXwRZ/LQe9IQq/7N8a8R+yB0b3f\nZd9faw0nU9G7tqKTt8Dpn+xdRZP+hPLwxDh6CP3JGnTfQai27e377E/BiI+BkiL7m7i5QbPmqD6D\nUDf8AdXmCjyDglAWXwggV0P9TK7KMEfayZz62k5aa/jpOPpkKqp5C/D2gRY+4BeAsl0YBsY7/0Bv\n/A/4+KEGDUcNjoLQMMjOhNM/oTNOo67qUeEHutYaY+l82JeC7yNzyf3nUsjKRN1+L6pzd/QX69Bf\nJ0FZKXi3wDZzDuqqHvZ9y8rQby9Fb9sAbu6ARl17gz00Wvhe/ns7uBcj7hno0AUK8iArA9uTMai2\nV2IkfYZeFY+a+mdsQ0ZW3O/0TxjLYuDkj6gxE1HjJ1+0LfQ3yRjvvwWn00Ap6NQV28jxqL4Rv74m\n/xzG3AfBPwjbXxaid2xBr1wCrcOwzXgS/IPB0/OC8RJXuINbwuJn9fU/d12TdjLH6nbS57LRmz61\n/3DzuHz/uDYM2LsT/c0O9N5dkHP2whe174ztz8/YA+SX/XZ+ifHai6gBw9ClpbA32T7w6ukJ58//\num+TZthmPIHq0R8AY9sG9FuvoCb+iZZ33kfGieMYb7wMe3faX+/piRo8EtVnEMa7r0P6SdQd96MG\nXYfx2ovw3S7U+DtRkdejP34XvWU9NGmKuvlu1IixFx2Y1qdSMWKeBN8AbE8tgJJijBceB2XDFv0X\njJfnQrtwbI89d/H9S0rQ7yxDb90APfrbzz6aNvv1+b277AEY0gYVeSOqbwTK9+Jda3rXNnv4dO4G\nh/bB1b3sgejV/JL/RhIWtUzCwvmkncyxup2MN+LQ2zehpj6MbUjUJV+nT/yA8e9lcPQgNG0GXfug\nuvdFte8ERUWQfw6dcQq9dhW0bovt0Xkobx/7b9vzH4XQdtieeB7l7oHOy7WfEZxNh1ahqJC20LwF\nxopXIPU46vb7UL0HYjw7C8LaY3tsPsEtW5KZmYk2DPSGj6GsFDVsNMrbPvWPLizAeD3WHiS+AXAu\nB3VPNLZho3/9Hk6lYaxeDvtSoFsfbFP/jPL7dXogfeYkRtxcOF+C7emXHN1aOvUYxotz4HwJ2Nyw\n/W0JqtXlf3Aamz9B//sf9mB5+K8oH3/7Gcsrz9rPDh6bh/LyrvzfZ9kC9K6tqIGRqKkPVzrgLWFR\nyyQsnE/ayRwr20n/+APGc4+C1nBFR/vVN7/7bVkX5KPXrUJv/gy8W6Bum4a6Ztglf2jp73Y7fnO2\nPfRXjCX/D3KzsP11UaUDv7q4yH7msOdr8PWH4iJszyxGBYeYaidtlKMTVqGT1mP70yOoXtdc+Bqt\n0Umfot97EzyboG6bBtln0SlfwY9HwbMJtseft4fgb/fbl4Lx6jzUzXdhu+EPl63Dsc83OzD+8SL4\n+KNuvgu9Kh4CgrE98QKqhY+59yguhIPfQY/+pgatJSxqmYSF80k7mWNlO5XHzYUTP6BG3YxOWGX/\nbbp9Z8fzuqQE4/89DBlnUMNvRE24y9Rvw3p/Csar8+0PykqxPTy30gFfx75GOfqDlejP16KmPOQ4\nM6hKO2mtK733QZ9Ks5+J/PiDfUOHLqg+Eaj+Q1CBLS++T3FRhS4lU7UcO4SxZB7k5ULL1vag8HPe\nZKeuEBZyNZQQDYjelwL799gHi4eMsl/+uem/FcNi/YeQfso+BmHyhz2A6toH26y/YsQ/j7rxtqrt\na3NDTZyGvuHWSgeiL/keJm6SU63bYvvLi3DgW2h7JcovsPJ9qhgUAKp9Z2xzFqC/WIe64TanBoWr\nkLAQooHQhoHx/goIbImKHIPy8EBFXIf+8gv0xHtRLXzQZ9PRn32A6j+0Sj/sf6Gu7oUt7l8o9+r9\n6KhuUFTpGO4eUI3vrcrHaRmKuusBpx/HVVh3h4cQwhRtGOjTaRhfbcL49H30N8no7LP8vgdZf50E\nacdQt9zjuAJKDR8DZaXorV/YX/PeW6Cw9+lXU3WDQtRv8q8uhAvSpaXolK/QX22CowegsODX5375\nooUv+AfaB7I1cPYMXNERNWCY47WqTTvo3B29+VP0FR3tV+CMvxMVWLW7kYWQsBCijumsDMg/Z780\ntagAysvAw9P+x80NvXcXemuiffA0qBWq/1D7nEDhV9nD4acf0T8ehdQf0Pl5jvdVrUJR426/4Ooa\n23VjMF57EWPZAnsX1fW31PW3LBoACQsh6ojOysB4Zzns2X75F9ps0OsabJE3wtW9Lry0slNX+0Ry\nZvUeZL9HITcL2x8fQnk2qXrxotGTsBDCyXRZGXrjx+iP3gFtoG6ajAprb59FtJmXfS6g0lIoPW//\nO7Qdyr/yq3jMUu7uqFunwPFD0Cei8h2EuAgJCyGcSGeewfj7C/Ybw3oOwDZ5+gUT49UF2+ARMHhE\nnR9XNBwSFkI4if7hgP2u57IybA/MgT4RtbqgjhB1ScJCCCco/jIR45V54B+IbdZcVOu2VpckRI3U\nSVjEx8eze/dufH19iY2NBSAuLs4xPUdhYSFeXl4sXLiQ9PR0Zs+e7bgFvVOnTkyfPr0uyhSiWozk\n/6ETVoG7h30Mwt2D3IN7oWNXbNFPm54vSAhXVidhMXz4cG644QaWLl3q2DZ79mzH1ytXrsTLy8vx\nOCQkhIULF9ZFaULUiD5+GP3mImgVav9TVAhFhTQbcxsl4yZXOj24EPVFnYRF165dSU9Pv+hzWmu+\n+uor5s6dWxelCFFrdF6uffDax8++DsJvprLwkQkXRQNj+ZjF999/j6+vL61bt3ZsS09P58knn6RZ\ns2bccccdXH311Zd5ByFqn047jj52CHXNtagmTS98vrwc4x8L4VwutjkL6mTOIyGsZHlYbN26lSFD\nhjge+/v7Ex8fT4sWLTh69CgLFy4kNja2QjfVLxITE0lMTAQgJiaGoKCgatfh7u5eo/0bi8bQTmWn\n0siKm4s+lwMfrqTZmNvwGvMHbL7+9sn6zuVQuG4VhQe+xWfW/9Gs36AL3qMxtFNtkHYyxxXaydKw\nKC8vZ8eOHcTExDi2eXh44PFzP294eDitWrXi1KlTdOjQ4YL9o6KiiIr6dRWwmpz2yzoN5jT0dtIF\nefblN8vLsc14EuPrJArWvElBwir7XdDZmVBWBtgn6SvoOZCCi7RHQ2+n2iLtZE6jX89i7969hIaG\nEhj4692q586dw9vbG5vNxpkzZzh16hStWtX9TUyi8dGlpRjxL0DmGWyz56E6d8Ot/1D0qVT7kp9F\nhdA3AvyDUS1DoFsfq0sWos7USVgsWrSI/fv3k5eXx8yZM5k0aRIjRoy4oAsKYP/+/axZswY3Nzds\nNhv3338/3t6Vr+IlRE1ow0CvfBUOfYe67zFU526O51TrMNTd0RZWJ4T1ZFnVn8npsDkNrZ10brZ9\ncaD/fQ5n01E334lt3B01ft+G1k7OIu1kTqPvhhLCKlpr9Kq/2xcFKi+HLj2xTZwGfQdbXZoQLknC\nQjROPx5Fb/kMNWg4auwkVIhMxyHE5UhYiEZJ79oKNhvq9vtQ3jIdhxCVkTW4RaOjtUbv2gZdekpQ\nCGGShIVofH46AeknUTI+IYRpEhai0dG7toGyofoMtLoUIeoNCQvR6OhdW6FzN5SPv9WlCFFvSFiI\nRkWf/BFOpaL6SReUEFUhYSEaFb17GyiF6nPh5H9CiEuTsBCNit71FXTogvILrPzFQggHCQvRYOmS\nEvTB79AF+fbHZ05C2jHpghKiGuSmPNEg6cICjEXPwLFDoGzQLhyaNgNA9ZGwEKKqJCxEg6ML8zEW\n/Q1+PIqaPB3y89DffwNH9kPn7qjAYKtLFKLekbAQDYouzMeIewZSj2Gb+RSq98/3UoyfjC4uAjc3\nawsUop6SsBANhi4t/TUoHpiD6nVNhefVz91QQoiqkwFu0XB8vweOH0ZNnXVBUAghakbCQjQYeu9O\naNIU1W+o1aUI0eBIWIgGQWuN/nYnXN0L5eFhdTlCNDgSFqJhOPkjZGWgevS3uhIhGiQJC9Eg6L07\nAVDd+1lciRANU51cDRUfH8/u3bvx9fUlNjYWgDVr1rBhwwZ8fOyLz0yePJm+ffsCsHbtWjZu3IjN\nZmPatGn07t27LsoU9ZjeuxPatkcFBFldihANUp2ExfDhw7nhhhtYunRphe1jx45l/PjxFbalpaWx\nbds2Xn75ZbKzs5k3bx6vvPIKNpucBImL0wX5cOR71A1/sLoUIRqsOvkJ3LVrV7y9vU29Njk5mcGD\nB+Ph4UHLli0JCQnhyJEjTq5Q1Gd6/x4wDFQP6YISwlksvSlv/fr1bNmyhfDwcKZMmYK3tzdZWVl0\n6tTJ8ZqAgACysrIsrFK4vL3J0LwFhF9ldSVCNFiWhcXo0aO57bbbAFi9ejUrV64kOjq6Su+RmJhI\nYmIiADExMQQFVb+/2t3dvUb7Nxau1k7aMMjYl0LTfhH4tmxldTkOrtZOrkrayRxXaCfLwsLPz8/x\n9ciRI1mwYAFgP5M4e/as47msrCwCAgIu+h5RUVFERUU5HmdmZla7nqCgoBrt31i4WjvpowfR53Io\n6dTdpepytXZyVdJO5jiznUJDQ029zrJR4+zsbMfXO3bsICwsDID+/fuzbds2SktLSU9P59SpU3Ts\n2NGqMoWL03t3gbKhuve1uhQhGjRTZxb5+fl89NFHnDhxguLi4grPPfvss5Xuv2jRIvbv309eXh4z\nZ85k0qRJ7Nu3j+PHj6OUIjg4mOnTpwMQFhZGREQEjz76KDabjXvvvVeuhBIO+ttk9Feb0Hm5kJcL\nmachvDPK28fq0oRo0JTWWlf2ovnz51NWVkZERASenp4Vnhs+fLizaquykydPVntfOR02x6p20uXl\n6LUr0evXgl8ABIVACx+Utw9q8AhUx651XtPlyOfJHGknc1yhG8rUmcWhQ4d4/fXX8ZA5d4QFdE4W\nxvKFcGgfaviNqEn3yfxPQtQxU2HRrl07zp49S0hIiLPrEaICffonjIV/geIi1L2PYhs03OqShGiU\nTIVF9+7def755xk+fHiFq5gARowY4ZTChNBGOcaKV6CsDNvTL6HaXGF1SUI0WqbC4sCBAwQGBrJ3\n794LnpOwEM6iN30CPxxA/Wm2BIUQFqs0LLTWzJw5k6CgINxk/WJRR3TGafSHK6F7P5R0PQlhuUqv\nSVVK8fjjj6OUqot6hEBrjbHyVbDZsN0TLZ89IVyAqRsYrrzySk6dOuXsWoQAQP/vczjwLWriNFRA\nsNXlCCEwOWbRrVs3nn/+eSIjIy+Yn0TGLERt0kWF6PdXwFU9UMOut7ocIcTPTIXFwYMHadmyJd9/\n//0Fz0lYiNqkt22EogJsf5gq3U9CuBBTYfHMM884uw4h0IaB3vRfaN8Z1b5T5TsIIeqMqTELwzAu\n+UeIWrN/D5z5CTVinNWVCCF+x9SZxeTJky/53OrVq2utGNG4GRv/Az5+qP5DrC5FCPE7psLi1Vdf\nrfA4OzubhIQE+vfv75SiROOj00/Bd7tQY29Hucu8T0K4GlPdUMHBwRX+dO7cmYceeoh169Y5uz7R\nSOjNn4DNhoqUK6CEcEXVXiiisLCQc+fO1WYtopHSJcXorYmovoNRfoFWlyOEuAhT3VBLliypcBlj\nSUkJ33//PcOGDXNaYaLx0Ns3Q2EBasRYq0sRQlyCqbD4/dTkTZo0YdSoUfTs2dMpRYnGQxcWoP+7\nBq7oCB2utrocIcQlmAqL3r1706nThde9HzlyRNbHFjWi338LcrKwPfAXuQlPCBdmasziueeeu+j2\n+fPn12oxonHR+1LQ//scdf0tchOeEC7usmcWv9x0p7V2/PnFmTNnZMpyUW26qBBj5RIIaYsaf+n7\neIQQruGyYfHbm/HuuOOOCs/ZbDZuueUWUweJj49n9+7d+Pr6EhsbC8Dbb7/Nrl27cHd3p1WrVkRH\nR9O8eXPS09OZPXu2YxHxTp06MX369Cp9U8L16fdXQHYWtqdiUB6eVpcjhKjEZcPi1VdfRWvN3/72\nN5599lm01iilUErh4+ODp6e5/+TDhw/nhhtuYOnSpY5tPXv25M4778TNzY1Vq1axdu1a7r77bsA+\noL5w4cIafFvClelD+9BbPkONvgXVoYvV5QghTLhsWAQH29cSiI+PB+zdUrm5ufj7+1fpIF27diU9\nPb3Ctl69ejm+7ty5M9u3b6/Se4r6S2/fBM28UDffaXUpQgiTTF0NVVBQwOuvv8727dtxd3fn7bff\nZufOnRw5cuSC7qnq2LhxI4MHD3Y8Tk9P58knn6RZs2bccccdXH21XFLZUGit0d/uRHXtg/JsYnU5\nQgiTTIXF8uXLad68OfHx8Tz66KOA/Wxg5cqVNQ6LDz/8EDc3N8cNfv7+/sTHx9OiRQuOHj3KwoUL\niY2NxcvL64J9ExMTSUxMBCAmJuaChZmqwt3dvUb7NxY1bafSHw6SlZtFi8HX0awBt7d8nsyRdjLH\nFdrJVFjs3buX1157DXf3X1/u4+NDbm5ujQ6+efNmdu3axdy5cx3X2Ht4eODhYZ9ILjw8nFatWnHq\n1Ck6dOhwwf5RUVFERUU5HmdmZla7lqCgoBrt31jUtJ2M/30BSpF/ZWcKGnB7y+fJHGknc5zZTr9c\nTFQZU/dZeHl5kZeXV2FbZmZmlccufmvPnj2sW7eOp556iiZNfu2OOHfunOOS3TNnznDq1ClatWpV\n7eMI16K/3QlXdkL5+FldihCiCkydWYwcOZLY2FjuuOMOtNYcOnSId955h1GjRpk6yKJFi9i/fz95\neXnMnDmTSZMmsXbtWsrKypg3bx7w6yWy+/fvZ82aNbi5uWGz2bj//vvx9vau/ncoXIY+lwPHD8t9\nFULUQ6bC4uabb8bT05M33niD8vJy/v73vxMVFcWYMWNMHeSRRx65YNul1u4eNGgQgwYNMvW+on7R\n3+0CrVE9BlhdihCiiioNC8Mw2Lx5M6NGjTIdDkLo4iLw8ET99i7/b3eCXwC0C7euMCFEtVQ6ZmGz\n2Vi5cqVj0FmIyuiSEoz/92eM5x9DFxbYt5WVofenoHr0lwkDhaiHTA1w9+vXj507dzq7FtFA6PUf\nQsZp+OkExqvz0CUlcGQ/FBWieshSvELUR6bGLEpLS3n55Zfp3LkzgYGBFX4zfOihh5xWnKh/9NkM\n9PoPUP2HQt8I9PKXMF5bgGrZGtzd4epelb+JEMLlmAqLsLAwwsLCnF2LaAD0+28BoG6bhgoMxigs\nQK+KRwN07YNq2szS+oQQ1WMqLCZOnOjsOkQDoA9+h975JeqmyahA+7xitsgbMAry0GvfRvUeaHGF\nQojqMhUWQlRGG+UY7y6HgGDU9bdWeE7deBuqe19o296i6oQQNWVqgFuIyuikzyDtGLaJ01BNKk4Q\nqJRCteuAssnHTYj6Sv73ihrT6Sftixl17Q39hlhdjhDCCSQsRI3o8nKMN+LA3R3b1D/LPRRCNFCm\nxiy01mzYsIGtW7eSl5fHSy+9xP79+8nJyamwDoVofPRnH8DRg6j7H0f5B1pdjhDCSUydWaxevZpN\nmzYRFRXlmCY3MDCQdevWObU44dr0iSPoj99BDRiG7ZprrS5HCOFEpsIiKSmJp556iiFDhji6GVq2\nbHnBUqmi8dDFhRivvwwt/FB3zbS6HCGEk5kKC8MwaNq0aYVtxcXFF2wTjYM+lYbx/BNw5iS2aQ+j\nmrewuiQhhJOZCos+ffqwcuVKSktLAfsYxurVq+nXr59TixOup/irTRjzH4O8XGyzn0V17WN1SUKI\nOmAqLKZMmUJ2djZTp06lsLCQKVOmkJGRwV133eXs+oSL0FpjfPBPcl/8PwgNw/bXOJTM8yREo2Hq\naigvLy+eeOIJcnJyyMzMJCgoCD8/WRazsdBao/+9DL35U5qNvpmSCVNQMmW9EI2KqbD4ZU1sHx8f\nfHx8HNtsckdug/fboFDX30qLGY9x/uxZq8sSQtQxU2ExefLF10x2c3PD39+fgQMHMmnSJBnwbmB+\nHxTqD3+Um+6EaKRMhcW0adNITk5mwoQJBAYGkpmZyUcffUTfvn0JDQ3lvffeY8WKFcycKZdQNiR6\n7UoJCiEEYDIs/vvf/7JgwQK8vLwACA0NpUOHDsyZM4clS5bQrl07nnrqqcu+R3x8PLt378bX15fY\n2FgA8vPziYuLIyMjg+DgYGbPno23tzdaa9566y1SUlJo0qQJ0dHRhIfLus11SZ/4Af3ZWtTQURIU\nQghzV0MVFhZSUlJSYVtJSQmFhYUA+Pn5cf78+cu+x/Dhw3n66acrbEtISKBHjx4sXryYHj16kJCQ\nAEBKSgqnT59m8eLFTJ8+nddff930NyRqThvlGKvioYUPauI0CQohhLmwiIyM5LnnniMxMZE9e/aw\nYcMG5s+fT2RkJADffPMNoaGhl32Prl274u3tXWFbcnKy4z0iIyNJTk4GYOfOnVx77bUopejcuTMF\nBQVkZ2dX+ZsT1aO3rIfjh1ET/4Ty8q58ByFEg2eqG+ruu+8mJCSEbdu2kZ2djZ+fH9dffz1RUVEA\ndOvWjWeffbbKB8/NzcXf3x+wn53k5uYCkJWVRVBQkON1gYGBZGVlOV4rnEefy0Z/+DZ06YkaGGl1\nOUIIF2EqLGw2G6NHj2b06NEXfd7T07PGhSilqtzdkZiYSGJiIgAxMTEVAqaq3N3da7R/Q5G7ainF\npSUEPjgH9+DgC56XdjJH2skcaSdzXKGdTC+rmpOTw5EjR8jLy0Nr7dg+YsSIah/c19eX7Oxs/P39\nyc7OdtzDERAQ4JjdFuDs2bMEBARcsH9UVJTj7AaosE9VBQUF1Wj/hkAf3o+RtB41ZhI5Tb3hIu0h\n7WSOtJM50k7mOLOdKhtC+IWpsNixYwdLliyhdevWpKamEhYWRmpqKl26dKlRWPTv35+kpCQmTJhA\nUlISAwYMcGz/7LPPGDJkCIcPH8bLy0u6oOqA3vwpeHmjxky0uhQhhIsxFRarV68mOjqaiIgIpk2b\nxosvvsimTZtITU01faBFixaxf/9+8vLymDlzJpMmTWLChAnExcWxceNGx6WzYJ+4cPfu3Tz88MN4\nenoSHR1dve9OmKaLC9F7vkINGnHBGtpCCGEqLDIzM4mIiKiwLTIykunTpzNlyhRTB3rkkUcuun3u\n3LkXbFNKcd9995l6X1E12igHQNncKm7fvR3On0dFDLegKiGEqzN16ayPjw85OTkABAcHc+jQIc6c\nOeOYM0rUH8aiv2G8tvCC7Xr7JghqBR2utqAqIYSrM3VmMXLkSA4cOMCgQYMYO3Yszz77LEopxo0b\n5+z6RC3SZaVwaB+Ul6H3pzjWotA5Z+HAt6ixk+QGPCHERZkKi/HjxztmmI2MjKRbt24UFxfTtm1b\npxYnatmpNCgvA2XDWPMmtr8uQrm5ob/eAlqjBl1ndYVCCBdVaTeUYRjcc889jlXywH4ZlwRF/aN/\nPAqAmnAkt/EjAAAWbElEQVQX/HQC/eUX9u3bN0H7zqhW5i6hE0I0PpWGhc1mIzQ0lLy8vLqoRzhT\n6lFo0hR1w63QuRt63b/Qh/dD2nHUoOFWVyeEcGGmuqGGDh3KggULuPHGGwkMDKzQr929e3enFSdq\nl049Cm2vRNncsE26F2P+Yxjxz4ObG2rAtVaXJ4RwYabC4vPPPwfgvffeq7BdKcWrr75a+1WJWqcN\nA1KPoQYOB0Bd0REVMQK9bQP0ugbVwsfaAoUQLs1UWCxdutTZdQhnO5sORYUQ1t6xSd1yN/roQWwj\nxlpYmBCiPjA9N1RZWRmHDx8mOzubwYMHU1xcDCBLqdYXvwxut/t1ESnlF4jbvHirKhJC1COmwuLH\nH39kwYIFeHh4cPbsWQYPHsz+/ftJSkpyTNEhXJv+8SjYbNDmCqtLEULUQ6bu4F6+fDm33347ixYt\nwt3dni9du3blwIEDTi1O1B6dehRah6E8aj6dvBCi8TEVFmlpaQwbNqzCtqZNm1a6lKpwIalHUWGy\njrkQonpMhUVwcDBHjx6tsO3IkSOEhIQ4pShRu/S5HMjJqjC4LYQQVWFqzOL2228nJiaGUaNGUVZW\nxtq1a/niiy+YMWOGs+sTtSH1GFBxcFsIIarC1JlFv379ePrppzl37hxdu3YlIyODxx9/nF69ejm7\nPlELfpnmQ84shBDVZerM4ty5c7Rv317WmKivUo9CYEtU8xZWVyKEqKdMhUV0dDTdunVj6NChDBgw\nQO6tqGd06lGQwW0hRA2Y6oaKj4+nb9++fP7550yfPp1Fixaxc+dOysvLnV2fqCFdXARnTqKkC0oI\nUQOmzix8fHy4/vrruf7668nIyGDr1q28++67/P3vf+eNN95wdo2iJtKO29eqkMFtIUQNmJ7u4xe5\nubnk5OSQl5dH8+bNnVGTqCFdVAgZpyDjtH1tbZBuKCFEjZgKi7S0NL788ku2bt3K+fPniYiI4Ikn\nnqBjx441OvjJkyeJi4tzPE5PT2fSpEkUFBSwYcMGfHzsM6FOnjyZvn371uhYDZ3WGn44gPHFOkjZ\nDvo366Nf0RECgqwrTghR75kKi7/+9a8MHDiQ6dOn061bN8cSqzUVGhrKwoULAfuKfDNmzOCaa65h\n06ZNjB07lvHjx9fKcRo6vXcXxsfvwLFD4OWNGn0zqv1VEBwCQa1QXnIGKISoGVNhsXz5csecUM6y\nd+9eQkJCCA4OdupxGhqdcRrj1Xn2S2PvnIkaPALVRK5WE0LULlMJ4O7uTk5ODkeOHCEvL8/e5fGz\nESNG1EohW7duZciQIY7H69evZ8uWLYSHhzNlyhS8vb1r5TgNjf7sQ7DZsD35Asov0OpyhBANlNK/\n/cl/CTt27GDJkiW0bt2a1NRUwsLCSE1NpUuXLjzzzDM1LqKsrIwZM2YQGxuLn58fOTk5jvGK1atX\nk52dTXR09AX7JSYmkpiYCEBMTEyNJjZ0d3enrKys2vtbofxsBpkzb6PZyHH4zHyiTo5ZH9vJCtJO\n5kg7mePMdvL0NDcTtakzi9WrVxMdHU1ERATTpk3jxRdfZNOmTaSmptaoyF+kpKTQvn17/Pz8ABx/\nA4wcOZIFCxZcdL+oqCiioqIcjzMzM6tdQ1BQUI32t4Kx+g0wyikZPqbOaq+P7WQFaSdzpJ3McWY7\nhYaGmnqdqZHqzMxMIiIiKmyLjIxky5YtVa/sIn7fBZWdne34eseOHYSFhdXKcRoSfS4HveUz1KDr\nUEGtrC5HCNHAmb4pLycnBz8/P4KDgzl06BAtWrTAMIzKd65EcXEx3377LdOnT3dsW7VqFcePH0cp\nRXBwcIXnhJ1OXAelpagb/2B1KUKIRsBUWIwcOZIDBw4waNAgxo4dy7PPPotSinHjxtW4gKZNm/Lm\nm29W2DZr1qwav29Dpgvy0Zs+QfUfigppa3U5QohGwFRYTJgwwfF1ZGQk3bp1o7i4mLZt5QeVFfQX\nCVBchBpzm9WlCCEaiWrdPBEUJHcDW0V//w36k/dR10Si2srkgEKIulE7t2KLOqGzMjD+sRBC2qDu\necDqcoQQjYiERT2hS0sxli2AslJsD/wF1dTL6pKEEI2IhEU9od/9Bxw7hG3aI6jWMlYkhKhbEhb1\ngN79FXrLetSNf0D1jah8ByGEqGUSFi5Oa43xn3ft4xQT7ra6HCFEIyVh4er2pUDqMdT1t6JsblZX\nI4RopCQsXJzx2QfgF4gaNNzqUoQQjZiEhQvTPxyAg3tRoyeg3D2sLkcI0YhJWLgw47MPoHkL1LDR\nVpcihGjkJCxclD75I+z5GjViLKppM6vLEUI0cs5dK1WYprWG8+ehvAzKy9GfvAeeTVDX1XyyRiGE\nqCkJCxdhvPI3+5VPv6FG3oRq4WNNQUII8RsSFi5Apx2HfSmoAcPgyk7g5g6enqh+QyrdVwgh6oKE\nhQvQW9aDuzvqzhkobzmTEEK4HhngtpguKUFv34zqO0SCQgjhsiQsLKZ3/g+KClCR11tdihBCXJKE\nhcX0lvXQOgw6dbO6FCGEuCQJCwvptGNw9CDq2tEopawuRwghLsklBrgffPBBmjZtis1mw83NjZiY\nGPLz84mLiyMjI4Pg4GBmz56Nt7e31aXWKp20Htw9UBEjrC5FCCEuyyXCAuCZZ57Bx+fXAd6EhAR6\n9OjBhAkTSEhIICEhgbvvbjhTdOuSYvTXm1H9h6Cat7C6HCGEuCyX7YZKTk4mMjISgMjISJKTky2u\nqHbpr5OgqBB17Q1WlyKEEJVymTOL+fPnAzBq1CiioqLIzc3F398fAD8/P3Jzc60sr1bp8yXo/6yG\nKzpCx6utLkcIISrlEmExb948AgICyM3N5bnnniM0NLTC80qpiw4AJyYmkpiYCEBMTAxBQUHVrsHd\n3b1G+1dFwQcryc/OxP/Rv+EZHFwnx6wtddlO9Zm0kznSTua4Qju5RFgEBAQA4Ovry4ABAzhy5Ai+\nvr5kZ2fj7+9PdnZ2hfGMX0RFRREVFeV4nJmZWe0agoKCarS/WfpcDsb7/4Re13AupB3UwTFrU121\nU30n7WSOtJM5zmyn3/9yfimWj1kUFxdTVFTk+Prbb7+lXbt29O/fn6SkJACSkpIYMGCAlWXWGv3x\nO3C+BNttU60uRQghTLP8zCI3N5eXXnoJgPLycoYOHUrv3r3p0KEDcXFxbNy40XHpbH2nT6Wit6xH\nRd6ACmlrdTlCCGGa5WHRqlUrFi5ceMH2Fi1aMHfuXAsqch7j/RXQpCnqpslWlyKEEFVieVg0Bjr1\nGMbH78C3yahb/4hq4Wt1SUIIUSUSFk6kf/oR46N/we6voJkX6qY7UKNutrosIYSoMgkLJ9GFBRgL\nngK0PSRGjkc1b1jTlQghGg8JCyfRWxOhqADb/8WiruxkdTlCCFEjll862xBpoxy94WPo1BUJCiFE\nQyBh4Qx7dsDZdGwjx1tdiRBC1AoJCycwNnwEgS2h90CrSxFCiFohYVHL9I8/wKF9qBFjUW5uVpcj\nhBC1QsKilunEj+033g0dZXUpQghRa+RqqBrQJSXob3eggkIgNAyKi9DJW1DDrkd5yWWyQoiGQ8Ki\nBvTq5ej/fY7+ZUPzFlBWhhoxzsqyhBCi1klYVJPel4L+3+eo68aguvRCnzwBaSegdRgqpI3V5Qkh\nRK2SsKgGXViAsXKJPRgm/gnl4YnqG2F1WUII4TQywF0N+v23IDsL29SHUR6eVpcjhBBOJ2FRRY7u\np9ETUOFXWV2OEELUCQmLKtCHvsNYsdje/XTznVaXI4QQdUbGLH5H79qK8dmHqF4DUAOuRbUKRedk\noT9Ygd6+GQKCsd33qHQ/CSEaFQmL39DnSzDeXQ4lJeh1/0av+ze0C4f0U1BWiho7CXXjRFSTJlaX\nKoQQdUrC4jf0pk8gJwvb489DcAh655fo3dugSy9st01FtQq1ukQhhLCEhMXPjIJ89KfvQ7c+qKu6\nA6BGT4DREyyuTAghrGdpWGRmZrJ06VJycnJQShEVFcWYMWNYs2YNGzZswMfHB4DJkyfTt29fp9ZS\nuO4dKMjDdssUpx5HCCHqI0vDws3NjXvuuYfw8HCKioqYM2cOPXv2BGDs2LGMH18360HoczkUfvwu\nqt8Q1BUd6uSYQghRn1gaFv7+/vj7+wPQrFkz2rRpQ1ZWVp3XoT95D33+PLYJd9X5sYUQoj5wmfss\n0tPTOXbsGB07dgRg/fr1PP7448THx5Ofn++04+qzGeikT2k6YgwqpK3TjiOEEPWZ0lrryl/mXMXF\nxTzzzDPceuutDBw4kJycHMd4xerVq8nOziY6OvqC/RITE0lMTAQgJiaG8+fPV/nYZT+dIO+NRfjP\n+v/AP7Bm30gj4O7uTllZmdVluDxpJ3OkncxxZjt5epq7Z8zysCgrK2PBggX06tWLceMunNo7PT2d\nBQsWEBsbW+l7nTx5stp1BAUFkZmZWe39GwtpJ3OkncyRdjLHme0UGmrulgBLu6G01ixbtow2bdpU\nCIrs7GzH1zt27CAsLMyK8oQQQvzM0gHugwcPsmXLFtq1a8cTTzwB2C+T3bp1K8ePH0cpRXBwMNOn\nT7eyTCGEaPQsDYsuXbqwZs2aC7Y7+54KIYQQVeMyV0MJIYRwXRIWQgghKiVhIYQQolISFkIIISol\nYSGEEKJSlt+UJ4QQwvXJmcXP5syZY3UJ9YK0kznSTuZIO5njCu0kYSGEEKJSEhZCCCEqJWHxs6io\nKKtLqBekncyRdjJH2skcV2gnGeAWQghRKTmzEEIIUSlLJxJ0BXv27OGtt97CMAxGjhzJhAkTrC7J\nJWRmZrJ06VJycnJQShEVFcWYMWPIz88nLi6OjIwMgoODmT17Nt7e3laXaznDMJgzZw4BAQHMmTOH\n9PR0Fi1aRF5eHuHh4cyaNQt390b/342CggKWLVtGamoqSikeeOABQkND5TP1O//5z3/YuHEjSinC\nwsKIjo4mJyfH0s9Uoz6zMAyDN954g6effpq4uDi2bt1KWlqa1WW5BDc3N+655x7i4uKYP38+69ev\nJy0tjYSEBHr06MHixYvp0aMHCQkJVpfqEj755BPatGnjeLxq1SrGjh3LkiVLaN68ORs3brSwOtfx\n1ltv0bt3bxYtWsTChQtp06aNfKZ+Jysri08//ZSYmBhiY2MxDINt27ZZ/plq1GFx5MgRQkJCaNWq\nFe7u7gwePJjk5GSry3IJ/v7+hIeHA9CsWTPatGlDVlYWycnJREZGAhAZGSntBZw9e5bdu3czcuRI\nwL6o1759+xg0aBAAw4cPl3YCCgsL+f777xkxYgRgXyq0efPm8pm6CMMwOH/+POXl5Zw/fx4/Pz/L\nP1ON+rw4KyuLwMBf190ODAzk8OHDFlbkmtLT0zl27BgdO3YkNzcXf39/APz8/MjNzbW4OuutWLGC\nu+++m6KiIgDy8vLw8vLCzc0NgICAALKysqws0SWkp6fj4+NDfHw8J06cIDw8nKlTp8pn6ncCAgK4\n6aabeOCBB/D09KRXr16Eh4db/plq1GcWonLFxcXExsYydepUvLy8KjynlEIpZVFlrmHXrl34+vo6\nzsLEpZWXl3Ps2DFGjx7Niy++SJMmTS7ocpLPFOTn55OcnMzSpUt57bXXKC4uZs+ePVaX1bjPLAIC\nAjh79qzj8dmzZwkICLCwItdSVlZGbGwsw4YNY+DAgQD4+vqSnZ2Nv78/2dnZ+Pj4WFyltQ4ePMjO\nnTtJSUnh/PnzFBUVsWLFCgoLCykvL8fNzY2srCz5XGE/cw8MDKRTp04ADBo0iISEBPlM/c7evXtp\n2bKlox0GDhzIwYMHLf9MNeoziw4dOnDq1CnS09MpKytj27Zt9O/f3+qyXILWmmXLltGmTRvGjRvn\n2N6/f3+SkpIASEpKYsCAAVaV6BLuvPNOli1bxtKlS3nkkUfo3r07Dz/8MN26dWP79u0AbN68WT5X\n2LuYAgMDOXnyJGD/odi2bVv5TP1OUFAQhw8fpqSkBK21o52s/kw1+pvydu/ezT//+U8Mw+C6667j\n1ltvtbokl3DgwAHmzp1Lu3btHN0CkydPplOnTsTFxZGZmSmXOf7Ovn37+Pjjj5kzZw5nzpxh0aJF\n5Ofn0759e2bNmoWHh4fVJVru+PHjLFu2jLKyMlq2bEl0dDRaa/lM/c6aNWvYtm0bbm5uXHnllcyc\nOZOsrCxLP1ONPiyEEEJUrlF3QwkhhDBHwkIIIUSlJCyEEEJUSsJCCCFEpSQshBBCVErCQjRKjz76\nKPv27bPk2JmZmdxzzz0YhmHJ8YWoDrl0VjRqa9as4fTp0zz88MNOO8aDDz7IjBkz6Nmzp9OOIYSz\nyZmFEDVQXl5udQlC1Ak5sxCN0oMPPsif/vQnXnrpJcA+XXZISAgLFy6ksLCQf/7zn6SkpKCU4rrr\nrmPSpEnYbDY2b97Mhg0b6NChA1u2bGH06NEMHz6c1157jRMnTqCUolevXtx77700b96cJUuW8OWX\nX+Lu7o7NZuO2224jIiKChx56iHfeeccxz8/y5cs5cOAA3t7e3HzzzY41l9esWUNaWhqenp7s2LGD\noKAgHnzwQTp06ABAQkICn376KUVFRfj7+3PffffRo0cPy9pVNFyNeiJB0bh5eHhwyy23XNANtXTp\nUnx9fVm8eDElJSXExMQQGBjIqFGjADh8+DCDBw9m+fLllJeXk5WVxS233MLVV19NUVERsbGxvPfe\ne0ydOpVZs2Zx4MCBCt1Q6enpFep45ZVXCAsL47XXXuPkyZPMmzePkJAQunfvDthntn3ssceIjo7m\n3Xff5c0332T+/PmcPHmS9evX88ILLxAQEEB6erqMgwinkW4oIX4jJyeHlJQUpk6dStOmTfH19WXs\n2LFs27bN8Rp/f39uvPFG3Nzc8PT0JCQkhJ49e+Lh4YGPjw9jx45l//79po6XmZnJgQMHuOuuu/D0\n9OTKK69k5MiRjon1ALp06ULfvn2x2Wxce+21HD9+HACbzUZpaSlpaWmOuZZCQkJqtT2E+IWcWQjx\nG5mZmZSXlzN9+nTHNq11hUWygoKCKuyTk5PDihUr+P777ykuLsYwDNMT4WVnZ+Pt7U2zZs0qvP8P\nP/zgeOzr6+v42tPTk9LSUsrLywkJCWHq1Km89957pKWl0atXL6ZMmSLToQunkLAQjdrvF9oJDAzE\n3d2dN954w7EqWWXeeecdAGJjY/H29mbHjh28+eabpvb19/cnPz+foqIiR2BkZmaa/oE/dOhQhg4d\nSmFhIf/4xz/417/+xaxZs0ztK0RVSDeUaNR8fX3JyMhw9PX7+/vTq1cvVq5cSWFhIYZhcPr06ct2\nKxUVFdG0aVO8vLzIysri448/rvC8n5/fBeMUvwgKCuKqq67i3//+N+fPn+fEiRNs2rSJYcOGVVr7\nyZMn+e677ygtLcXT0xNPT89Gv8qccB4JC9GoRUREAHDvvffy1FNPAfDQQw9RVlbGo48+yrRp03j5\n5ZfJzs6+5HtMnDiRY8eO8cc//pEXXniBa665psLzEyZM4IMPPmDq1Kl89NFHF+z/5z//mYyMDGbM\nmMFLL73ExIkTTd2TUVpayr/+9S/uvfde7r//fs6dO8edd95ZlW9fCNPk0lkhhBCVkjMLIYQQlZKw\nEEIIUSkJCyGEEJWSsBBCCFEpCQshhBCVkrAQQghRKQkLIYQQlZKwEEIIUSkJCyGEEJX6/wG3Vkil\nyo892QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlcVmX+//HXdVhUQHYUcSlxKTW1\nTFPc0MQWtTKnTMvMFs1wmbTN6TvT8jMLR0mzcGxsG21xqZG2aSxcU3NE0TT3Pc0FWQUBBc71++Ou\nOwmVG+XmHODzfDx6xH3uc+7zvuGWD+e6znVdSmutEUIIIS7BsDqAEEII+5NiIYQQokxSLIQQQpRJ\nioUQQogySbEQQghRJikWQgghyiTFQgghRJmkWAghhCiTFAshhBBlkmIhhBCiTJ5WB6hIx44du+xj\nQ0NDSUtLq8A0FcOuucC+2eyaC+ybza65wL7Z7JoLypctIiLCpf0qpVikpaWRkJBAVlYWSiliYmLo\n168fubm5zJgxg1OnThEWFsaECRPw8/NDa83777/P5s2bqVWrFrGxsURGRlZGVCGEEBdQKc1QHh4e\nPPjgg8yYMYMpU6awdOlSjh49SmJiIm3btmXWrFm0bduWxMREADZv3syJEyeYNWsWo0aN4p133qmM\nmEIIIS6iUopFUFCQ88qgTp06NGzYkIyMDJKTk4mOjgYgOjqa5ORkADZu3EjPnj1RStGyZUvOnDlD\nZmZmZUQVQghxAZXewZ2amsrBgwdp3rw52dnZBAUFARAYGEh2djYAGRkZhIaGOo8JCQkhIyOjsqMK\nIYT4VaV2cBcUFBAfH8+IESPw8fEp8ZxSCqVUuV4vKSmJpKQkAOLi4koUmPLy9PS8ouPdxa65wL7Z\n7JoL7JvNrrnAvtnsmgvck63SikVRURHx8fH06NGDzp07AxAQEEBmZiZBQUFkZmbi7+8PQHBwcIme\n/PT0dIKDg0u9ZkxMDDExMc7HV3Jngl3vbLBrLrBvNrvmAvtms2susG82u+YC99wNVSnNUFpr5syZ\nQ8OGDRkwYIBze8eOHVm1ahUAq1atolOnTs7tq1evRmvNnj178PHxcTZXCSGEqHyVcmWxe/duVq9e\nTZMmTXjmmWcAGDp0KAMHDmTGjBksX77ceesswA033EBKSgrjx4/H29ub2NjYyogphBBVitYaveY7\nVN0A1PWd3XquSikW1157LYsWLbrgcy+88EKpbUopHnvsMXfHEkKIKkuf+AVzfgLs+Qk69agexUII\nIWoyfexnCAhC+dYtuV1r9LeJ6K8XQnAYqmlLaNoC1aAJnC1A5+VCXi4Um6jAYAgMhsAQ9PoV6K8W\ngrc3avhYVLeYi5y54kixEEKIcjL/s5j0rcnocS+gfP0uup/+eT/mv+fB9s3g44u6YwiqV3+Upyf6\nTC7m+zPhxw3Q+gYwDPTm9bDmO/SFXusPj9WN3VBDR6ECKqc/V4qFEEKUg5n8PXrJfIoANT8BHn+2\n1G3/+tQJ9JL56OTvwbcuauAw9J7t6IXvolf9FxVzF/qbTyErHTVkJOrmASil0FrDqROQegxq+4Cv\nH9TxBcOArAzISkdnpaNCw1Gtr6/U9y3FQgghXKQP70O//wY0b4Vvx66cWfAu/LAc1bXP7/sc2I35\nxktQVITqNxh1690oH190Pw1bN2Iuehf94WwIDsV45jVUs2udxyqloF4Dx39/5B8ITSIp32i0iiPF\nQgghXKCzMjDfmgJ1AzCe+Au+VzXlTMp69Mf/RDdvjarXAL3nJ8xZk8E/AGPiZFRofefxSilo3wmj\nzfWOpqdr2qL8/C18R+Uj61kIIUQZdOE5zNmvQl4uxpj/Q/kHojw8MB6ZCIaB+e7r6G2bHFcUQSEY\nz75WolCcT3l6OfobqlChACkWQghRJv3VIji4B+PRCagmvy+XoELCUA/GwoHdmLNehnoRGM+8igoM\nsTCte0gzlBBCXII+dQL97RJU52hUh66lnjc69cDcvwv9y2GM0c+Vuj22upBiIYQQl2B++gEYBmrQ\nQxfdxxgysvICWUSaoYQQ4iL0rq2Qsg51+z2oYHvOMFtZpFgIIcQF6OJizIXvQEg91C0DrY5jOSkW\nQghxAfr7b+HoIYx7H0F517I6juWkWAghxB/onGz05x/CNW2hQ5TVcWxBioUQQpxHnzuL+dYrcPYs\nxpDHyr2CZ3UlxUIIIX6lzWLMd1//dUzFRFSjplZHsg0pFkII8Su9+ANI+QF17yOoG0uPqajJpFgI\nIQRgJn2BTvoc1ecOVMydVsexHSkWQogaT/9yGL3oPbi+C2rwI9JPcQFSLIQQNZ75xcdQqxbGQ2NR\nhofVcWxJioUQokbTh/c5+in63lXlZoKtTJUyN9Ts2bNJSUkhICCA+Ph4AGbMmMGxY8cAyMvLw8fH\nh2nTppGamsqECROIiIgAoEWLFowaNaoyYgohaiDz84/Bxw8Vc5fVUWytUopFr169uO2220hISHBu\nmzBhgvPrefPm4ePj43wcHh7OtGnTKiOaEKIG0/t3wbaNqEHDUT6+VsextUpphmrdujV+fhde1Fxr\nzQ8//EC3bt0qI4oQQjiZn38EdQNQNw+wOortWT5F+c6dOwkICKBBg9/XnE1NTeXZZ5+lTp06DBky\nhFatWlmYUAhRHeiMU5CR5ljfum4A7N4GO39E3fcoqlZtq+PZnuXFYu3atSWuKoKCgpg9ezZ169bl\nwIEDTJs2jfj4+BLNVL9JSkoiKSkJgLi4OEJDL38KYU9Pzys63l3smgvsm82uucC+2eyaCyommy4q\nIv2voyk+6egnVXV8wPDACAkjdNCwy5oosLp/z0q9ZoW+WjkVFxezYcMG4uLinNu8vLzw8vICIDIy\nkvr163P8+HGaNWtW6viYmBhiYmKcj9PS0i47S2ho6BUd7y52zQX2zWbXXGDfbHbNBRWTzVy3DH3y\nGGrQcPCuBanH0WknUT36kn46B8ixJJe7lCfbbzcTlcXSYrFt2zYiIiIICfl9vdrTp0/j5+eHYRic\nPHmS48ePU7/+hRc+F0KIsmizGP3Np9CoKeq2P8mAu8tUKcVi5syZ7Nixg5ycHEaPHs3gwYO5+eab\nSzVBAezYsYNFixbh4eGBYRiMHDnyop3jQghRppQf4MQvGI8/K4XiClRKsXjyyScvuH3MmDGltnXp\n0oUuXbq4O5IQogbQWmN+vRjCG8q6FFdIRnALIaqvrRvh6EHU7ffKNB5XSIqFEKJaclxVLHSsoX1T\nT6vjVHlSLIQQ1dPOH+HgHkentqflowSqPPkOCiGqFW0Wo1f8B73kQwgKRXXrY3WkakGKhRCi2tA/\nH8CcnwCH9sJ1HTDuH43y8rY6VrUgxUIIUS3oLesx/xEHvnVRI59Gdeoht8pWICkWQohqwVy1FIJC\nMf42A+Vb1+o41Y50cAshqjx9tgB2bUVd31kKhZtIsRBCVH27tkJRIapdJ6uTVFtSLIQQVZ7emgy1\n6kDLNlZHqbakWAghqjStNXrrRmhzA8rTy+o41ZYUCyFE1XbkIGSlSxOUm0mxEEJUaXprMgCqbQeL\nk1RvUiyEEFWa3poMTVui/IOsjlKtSbEQQlQZ+pef0cXFvz8+nQWH9qLadbQwVc0gxUIIUSXoHzdg\nvjQWc/arjnEVgP5pE2gt/RWVQIqFEML2tNaYn38EfnVh2ybM+L+ic7IdTVCBwdA40uqI1Z5M9yGE\nsL/N6+HIQdQjE1C162DOnY4Z9xyczpQ5oCqJXFkIIWxNmybmFx9D/Yaom3qibuiCMXEynMmBgnxp\ngqokcmUhhLC1sz+shF8Oox57CuXhWBpVNW+FMWkqOnkNXCe3zFaGSikWs2fPJiUlhYCAAOLj4wFY\ntGgRy5Ytw9/fH4ChQ4fSoYPjh75kyRKWL1+OYRg8/PDDXH/99ZURUwhhM9osJnfhu9CgMapT9xLP\nqfBGqDuGWJSs5qmUYtGrVy9uu+02EhISSmzv378/d955Z4ltR48eZd26dbz++utkZmYyefJk3njj\nDQxDWsyEqGn0xrWYRw6iRj2LMjysjlOjVcpv4NatW+Pn5+fSvsnJyXTt2hUvLy/q1atHeHg4+/bt\nc3NCIYTd6KIi9JcL8GwSibqxq9VxajxL+yyWLl3K6tWriYyMZPjw4fj5+ZGRkUGLFi2c+wQHB5OR\nkXHB45OSkkhKSgIgLi6O0NDQy87i6el5Rce7i11zgX2z2TUX2DebHXOd+fd8ck8cxf+v0/GqV8/q\nOKXY8Xv2G3dks6xY3HLLLdxzzz0ALFy4kHnz5hEbG1uu14iJiSEmJsb5OC0t7bLzhIaGXtHx7mLX\nXGDfbHbNBfbNZrdc+uQxzAXvQoeueN3Y1VbZfmO379n5ypMtIiLCpf0s6wgIDAzEMAwMw6BPnz7s\n378fcFxJpKenO/fLyMggODjYqphCiEqmtcacnwCeXhhDR1kdR/zKpSuL3NxcvvjiCw4fPkxBQUGJ\n515++eXLOnFmZiZBQY6JvzZs2EDjxo0B6NixI7NmzWLAgAFkZmZy/PhxmjdvflnnEEJUPXrNd7B7\nG2r4WFSg/KFoFy4VizfeeIOioiKioqLw9vYu90lmzpzJjh07yMnJYfTo0QwePJjt27dz6NAhlFKE\nhYUxapTjL4jGjRsTFRXFxIkTMQyDRx99VO6EEqKG0FkZ6E/fh2vaorr3tTqOOI9LxWLPnj288847\neHld3ipUTz75ZKltN99880X3HzRoEIMGDbqscwkhqi698B04dw7jwTEyhYfNuPQne5MmTUr0Iwgh\nREXTWRnoTWtRfe9E1Xet01VUHpeuLK677jpeffVVevXqRWBgYInnLnWFIIQQrtIp6xzTjXfubXUU\ncQEuFYtdu3YREhLCtm3bSj0nxUIIURH0prUQ0QTVsInVUcQFlFkstNaMHj2a0NBQPDxkuL0QouLp\nrHTYuwN1x1Cro4iLKLPPQinF008/LZ1NQgi30Zt+cDRBdexmdRRxES51cF999dUcP37c3VmEEDWU\n3rgGGl6FatDY6ijiIlzqs2jTpg2vvvoq0dHRpeYbkT4LIWounZGGOXc6qkUrVK/+qODyz0ekM9Nh\n3w7UXQ+4IaGoKC4Vi927d1OvXj127txZ6jkpFkLUTM5pOQ7uQe/fhV66BHVjN1Tfu1BNW7r+OpvW\nAkgTlM25VCxefPFFd+cQQlQx+ocV8NMm1JCRqPY3oVd8jf7+W3Ty96gBQ1B3Di3V16mP/QynTkK7\njs7n9MY10KgpKryRFW9DuMilYmGa5kWfk6k4hKh5dFYGeuFcaN4K1bs/yjBQ9z6CvmMIesFc9FcL\n4NRxeGg8ysvLsTbFN5+iv14ExUXQvBXGkJFQNwD270INHGb1WxJlcKlYDB168dvZFi5cWGFhhBD2\np7XG/OgfUFiI8dB41Hl/MKraPvDQeKgXgV4yH51+CuOu+zEXvQtHDqI69YCWbdBffII55SloeLXj\nuI7dL3I2YRcuFYu33nqrxOPMzEwSExPp2LGjW0IJIexLJ38PW/6HuudhVHjDUs8rpVD97sUMC0e/\nNxMz/q9QNwDjiUmoDo4V7/RN0eivF6GXfQlXNZfpPaoAl4pFWFhYqcdjx47lL3/5i3RwC1GD6HNn\n0Z/8E5q2RPW985L7Gp16oEPqobesR91yN8rP3/mc8vFF3fswus8A8LB0wU7hosv+KeXl5XH69OmK\nzCKEsDm9eT3knsYY9QzKKHtGBxV5DSrymos/Hxx20eeEvbhULN58880SdzWcPXuWnTt30qNHD7cF\nE0LYj16/AoLD4Jq2VkcRlcylYhEeHl7ica1atejbty/t2rVzSyghhP3orHTYvgV1+z0lOrVFzeBS\nsbj++utp0aJFqe379u2TJU+FqCH0/1aDNlFRvayOIizg0p8Hr7zyygW3T5kypULDCCHsSWuN/mE5\nRF4jg+dqqEsWC9M0MU3T8UHR2vnYNE2OHz8uU5YLUVMcOQC/HEZFyd2PNdUlm6HOH4w3ZMiQEs8Z\nhsHdd9/tnlRCCFvR65aDpyeqkwyeq6kuWSzeeusttNa89NJLvPzyy2itHQNulMLf3x9vb2+XTjJ7\n9mxSUlIICAggPj4egPnz57Np0yY8PT2pX78+sbGx+Pr6kpqayoQJE4iIcAzSadGiBaNGjbrCtymE\nuFy6qAi9YTW0vwnlW9fqOMIilywWvw3Gmz17NuBolsrOziYoKKhcJ+nVqxe33XYbCQkJzm3t2rXj\n/vvvx8PDgw8//JAlS5YwbJhjfpjw8HCmTZtWrnMIIdxkewrkZGNE9bE6ibCQSx3cZ86c4Y033uCB\nBx5g/PjxAGzcuJEFCxa4dJLWrVvj5+dXYlv79u2dfR4tW7YkIyOjPLmFEJVAa435/beOCf/a3GB1\nHGEhl26dnTt3Lr6+vsyePZuJEycCjl/w8+bNK9WXcTmWL19O165dnY9TU1N59tlnqVOnDkOGDKFV\nq1YXPC4pKYmkpCQA4uLiSi3MVB6enp5XdLy72DUX2DebXXOBfbNdKJc2TXLee4P8HzfgO+RR/P4w\n3srKbHZg11zgnmwuFYtt27bx9ttv4+n5++7+/v5kZ2dfcYB///vfeHh4OEeDBwUFMXv2bOrWrcuB\nAweYNm0a8fHx+Pj4lDo2JiaGmJgY5+O0tLTLzhEaGnpFx7uLXXOBfbPZNRfYN9sfc+niYvS/3kT/\nsBwVcxf5ve+gwKLcVeV7ZiflyfZb/3BZXGqG8vHxIScnp8S2tLS0cvdd/NHKlSvZtGkT48ePd04n\n4uXlRd26jk60yMhI6tevL+t/C1GJdGEh5ttTHYXirvtRgx+REdvCtWLRp08f4uPj+emnn9Bas2fP\nHhISEujbt+9ln3jLli18/vnnPPfcc9SqVcu5/fTp087Flk6ePMnx48epX7/+ZZ9HCFE+esFc2Lwe\nNWQkxoAhpVa7EzWTS81Qd911F97e3rz77rsUFxfzj3/8g5iYGPr16+fSSWbOnMmOHTvIyclh9OjR\nDB48mCVLllBUVMTkyZOB32+R3bFjB4sWLcLDwwPDMBg5cmSpznEhhPvo7SlwY1eMPndYHUXYSJnF\nwjRNVq5cSd++fV0uDn/05JNPltp2sXUwunTpQpcuXS7rPEKIK6NzT0N6Kqr35f1bF9VXmc1QhmEw\nb948vLy8KiOPEMJKPx8AQDVpZnEQYTcu9VnceOONbNy40d1ZhBAW0z/vd3zRJNLaIMJ2XOqzKCws\n5PXXX6dly5aEhISU6PAaO3as28IJISrZzwcgpJ5M6yFKcalYNG7cmMaNG7s7ixDCYvrwfrhKmqBE\naS4Vi3vvvdfdOYQQFtP5eZB6DNVVpiEXpclIGyGEwxHp3BYXJ8VCCAGc17l9lXRui9KkWAghHA4f\ngMBglP+VTeMjqicpFkII4NcrC2mCEhfhUge31pply5axdu1acnJymD59Ojt27CArK6vE1OJCiKpJ\nny2A40dRHeTfs7gwl64sFi5cyIoVK4iJiXFOexsSEsLnn3/u1nBCiMpReGgfaBMl/RXiIlwqFqtW\nreK5556jW7duzgF59erVIzU11a3hhBCVo+jAbscX0gwlLsKlYmGaJrVr1y6xraCgoNQ2IUTVVHhg\nD/j5Q5A9V34T1nOpWNxwww3MmzePwsJCwNGHsXDhQm688Ua3hhNCVI6iA7uhSTNZu0JclEvFYvjw\n4WRmZjJixAjy8vIYPnw4p06d4oEHHnB3PiGEm+nCQop+PiD9FeKSXLobysfHh2eeeYasrCzS0tII\nDQ0lMDDQ3dmEEJXh2M9QVCQjt8UluVQsflvm1N/fH39/f+c2Q9blFaLK+31acikW4uJcKhZDhw69\n4HYPDw+CgoLo3LkzgwcPlg5vIaoYnZ6K/jYR5R8IobLWvbg4l4rFww8/THJyMgMHDiQkJIS0tDS+\n+OILOnToQEREBIsXL+aDDz5g9OjR7s4rhKgg+tBezDcnQ2Ehgc9P5bS0FIhLcKlYfP3110ydOhUf\nHx8AIiIiaNasGZMmTeLNN9+kSZMmPPfcc5d8jdmzZ5OSkkJAQADx8fEA5ObmMmPGDE6dOkVYWBgT\nJkzAz88PrTXvv/8+mzdvplatWsTGxhIZKZ1vQlQU/eMGzH9Og7oBGE+9gvd1HeDXAbdCXIhLf0rk\n5eVx9uzZEtvOnj1LXl4eAIGBgZw7d+6Sr9GrVy+ef/75EtsSExNp27Yts2bNom3btiQmJgKwefNm\nTpw4waxZsxg1ahTvvPOOy29ICHFpettGzIRXoUFjjL9MQ0U0sTqSqAJcKhbR0dG88sorJCUlsWXL\nFpYtW8aUKVOIjo4G4McffyQiIuKSr9G6dWv8/PxKbEtOTna+RnR0NMnJyQBs3LiRnj17opSiZcuW\nnDlzhszMzHK/OSFESVprzCXzoV4DjGdeRQXIDLPCNS41Qw0bNozw8HDWrVtHZmYmgYGB3HrrrcTE\nxADQpk0bXn755XKfPDs7m6Agx4c1MDCQ7OxsADIyMggN/X0kaUhICBkZGc59hRCX6acUOHIQNWI8\nqpbckCJc51KxMAyDW265hVtuueWCz3t7e19xEKVUuUePJiUlkZSUBEBcXFyJAlNenp6eV3S8u9g1\nF9g3m11zgfXZMpISIaQeof3+hPLysk2uS7FrNrvmAvdkc6lYAGRlZbFv3z5ycnLQWju333zz5a/X\nGxAQQGZmJkFBQWRmZjrHcAQHBztntwVIT08nODi41PExMTHOqxugxDHlFRoaekXHu4tdc4F9s9k1\nF1ibTe/dgbnjR9SQkaT/ehVvh1xlsWs2u+aC8mUrqwvhNy4Viw0bNvDmm2/SoEEDjhw5QuPGjTly\n5AjXXnvtFRWLjh07smrVKgYOHMiqVavo1KmTc/t///tfunXrxt69e/Hx8ZEmKCGukPnNp+Dnj+p+\n4RYCIS7FpWKxcOFCYmNjiYqK4uGHH+bvf/87K1as4MiRIy6faObMmezYsYOcnBxGjx7N4MGDGThw\nIDNmzGD58uXOW2fBMXFhSkoK48ePx9vbm9jY2Mt7d0IIAPTPB2DbRtTAYahatayOI6ogl4pFWloa\nUVFRJbZFR0czatQohg8f7tKJnnzyyQtuf+GFF0ptU0rx2GOPufS6Qoiy6f9+BrXroHr3szqKqKJc\nunXW39+frKwsAMLCwtizZw8nT550zhklhLAvvW0TeuNaVK9+KB+/sg8Q4gJcurLo06cPu3btokuX\nLvTv35+XX34ZpRQDBgxwdz4hxGXSZ3LRi99Fr10GDRqjbhlodSRRhblULO68807nDLPR0dG0adOG\ngoICGjVq5NZwQojLo39MxpyfADlZqH73ogbch/K68lvcRc1VZjOUaZo8+OCDzlXywHFblhQKIexJ\n//IzZsIr4FcX4/npGHc/KIVCXLEyi4VhGERERJCTk1MZeYQQV0j/sByUwpg4GXVVc6vjiGrCpWao\n7t27M3XqVG6//XZCQkJKjLS+7rrr3BZOCFE+2ixG/28VtOngWKNCiAriUrH49ttvAVi8eHGJ7Uop\n3nrrrYpPJYS4PLt/gqx01OBHrE4iqhmXikVCQoK7cwghKoD+YQXU8UG1v8nqKKKacXlprKKiInbu\n3Mm6desAKCgooKCgwG3BhBDlo8+eRaf8gOrQFeUto7RFxXLpyuLnn39m6tSpeHl5kZ6eTteuXdmx\nYwerVq1yTtEhhLCW3rIezuajonpbHUVUQy5dWcydO5f77ruPmTNn4unpqC+tW7dm165dbg0nhHCd\nXr8SgsOgRRuro4hqyKVicfToUXr06FFiW+3atctcSlUIUTn06UzYsRnVORpluNy6LITLXPpUhYWF\nceDAgRLb9u3bR3h4uFtCCSHKR29YDaYpTVDCbVzqs7jvvvuIi4ujb9++FBUVsWTJEr777jsef/xx\nd+cTQrhA/7ASrmqOatDY6iiimnLpyuLGG2/k+eef5/Tp07Ru3ZpTp07x9NNP0759e3fnE0KUQR/e\nBz/vR0Vd/kJkQpTFpSuL06dP07RpU1ljQggb0iv+A961pAlKuJVLxSI2NpY2bdrQvXt3OnXqRO3a\ntd2dSwhxHp2VAefOouo1KLn9TC56w2pUVG+Uj69F6URN4FIz1OzZs+nQoQPffvsto0aNYubMmWzc\nuJHi4mJ35xOixtOF5zCn/QVzylPo7MySz61bBoXnUL1kBTzhXi6vlHfrrbcyefJk4uPjufrqq1mw\nYAGjRo1ydz4hajz9zaeQehzO5qMXzP19u2miV/4HmrdCNW5qYUJRE5T7huzs7GyysrLIycnB11cu\ne4VwJ33yGPqbT1E3RaPuGIreuAa95X+OJ3f+CKnH5apCVAqX+iyOHj3KmjVrWLt2LefOnSMqKopn\nnnmG5s2vbK78Y8eOMWPGDOfj1NRUBg8ezJkzZ1i2bBn+/v4ADB06lA4dOlzRuYSoarTWmB/9A7xq\nOWaR9fVDJ3+P+dEcjGvaYq74GuoGoDp0tTqqqAFcKhZ/+9vf6Ny5M6NGjaJNmzbOJVavVEREBNOm\nTQMcK/I9/vjj3HTTTaxYsYL+/ftz5513Vsh5hKiKdPL3sPNH1P2PowKCADAeGof52jOY78+ErRtR\nt9+D8vKyOKmoCVwqFnPnznXOCeUu27ZtIzw8nLCwMLeeR4iqQOedQS961zHQLvo253bVtCWqzx3o\npC9AGaiet1qYUtQkLlUAT09PsrKy2LdvHzk5OWitnc/dfHPFDARau3Yt3bp1cz5eunQpq1evJjIy\nkuHDh+Pn51ch5xHC7rRpoj/6B5zOxhj3N5ThUeJ5ddcD6B83oJo0Q4XIH1eicih9/m/+i9iwYQNv\nvvkmDRo04MiRIzRu3JgjR45w7bXX8uKLL15xiKKiIh5//HHi4+MJDAwkKyvL2V+xcOFCMjMziY2N\nLXVcUlISSUlJAMTFxV3RxIaenp4UFRVd9vHuYtdcYN9sds0Fv2czc06Tu/AdfG4dhGfjq0vsk/Ph\nHPI+m4ffsNH4/mn4BV/HzM9DeXqivLwrNJcd2TWbXXNB+bJ5e7v2GXLpymLhwoXExsYSFRXFww8/\nzN///ndWrFjBkSNHXDpJWTZv3kzTpk0JDHSsGfzb/wH69OnD1KlTL3hcTEwMMTExzsdpaWmXnSE0\nNPSKjncXu+YC+2azay74PZuI8Z/pAAAY0ElEQVSZ+CH660/JT/oa9dA4jE7dATBX/Rf92TxUz9vI\n63k7+ZX0PqrC98xu7JoLypctIiLCpf1c6qlOS0sjKiqqxLbo6GhWr17t0knK8scmqMzM3wcebdiw\ngcaNZXI0UX3os2fRq76Ba9tBo6vQ//w75sJ30JvXoz+aA207Ojq1lbI6qhBOLl1Z+Pv7k5WVRWBg\nIGFhYezZs4e6detimuYVBygoKGDr1q0lBvh9+OGHHDp0CKUUYWFhMvhPVCv6h+WQm4Nxx1CIbIn+\n9AN00heOTuurmmOMegbl4VH2CwlRiVwqFn369GHXrl106dKF/v378/LLL6OUYsCAAVccoHbt2rz3\n3nslto0bN+6KX1cIO9Km6SwKtGiNUgo1ZCRm5DXoDasxHhyDql3H6phClOJSsRg4cKDz6+joaNq0\naUNBQQGNGjVyWzAhqqNzm9bByV9QI58u0cxk3NQTbuppYTIhLu2yBk+EhoZWdA4haoQzXyyA4FAZ\ndS2qHFmsV4hKog/vp/CnFFSfO1BuHuQqREWTYiHEZdBaY365APPD2bgwVMlxzHeJqNo+qO63uDmd\nEBVP/rwR4jLorxeiv/jY8eDqFqjufS++b1EheukSdPL3+PS/l7OySJGogqRYCHEB+uxZdMo6OLwP\n1bUPqkmk8zlz+Vfozz9GRfVGp59CL3oP3aYDKiik9Ovs3YE5PwGOH4Ebu+I7+GHOFlz+TANCWEWK\nhRC/0lrDkYPoNd+i16+C/DOgDPSyL6FDV4w7hqCPHkJ/8k+4vjPqofGo9JOYL4/H/HA2xti/Ou9w\n0gV56MUfoFf/F4LDMMb+DdW+E4afPxTYc9SvEJcixULUaFprOLwPnbIOnbIeTv4Cnl6oDl1RPW+B\nRk3RyxwD5syUdaAMuKbt7wPn6kWg7n4QvfBd9P9Worr0Ru/Z7phCPP0Uqu9dqDvvl7ETosqTYiFq\nLF2Qjzn1OTh6CAxHEVAxd6A69UD51nXup+68H93nDvS3n8Op46jhY0pM4KduHoDeuBb9yVzMQ/vQ\ny7+C0PoYz76Kat7agncmRMWTYiFqLL12GRw9hLrvMVSXXig//4vuq3zrou4eduHnDA+Mh8Zj/r8/\no5d9iep5G+reh+VqQlQrUixEjaTNYvSyLyDyGoyYK1+RUTVohDHub6AUqlX7CkgohL1IsRBVls45\njV70LvrQHoynpqACg10/+MdkOHUCY9CF14u4HKr19RX2WkLYjQzKE1WO1hrzhxWYLzyBTl4NaamY\n781Al2MWZDPpcwipBzdElb2zEEKKhaha9IlfMN94Cf3eDKgXgfG3maiho2Dnj+hvl7j2Gof3w57t\nqJv7y1TgQrhImqFElaBzTqO/WuBYNMjTGzV0FKrX7Y71qSOaoHdsRid+iL6mLZQx0aVO+hxq1ZFp\nN4QoBykWwtYc6z98jv5qERTko3regrpzKMo/yLmPUgrjwbGYB/dizp2O2Wb+xV8vKx2d/D2qVz+U\nTLshhMukGUrYljZN9Iez0Yvfh+atMF6ahTEstkSh+I3y9cMY+TSkp5I97f/Qh/dd+DWXfwWmiepz\nh7vjC1GtyJWFsCWtNXrBP9Hff4vqPxhj4IXHOJxPNW+Fuu8xzn32L9iyAa5qjup5K8rPH71zC3rH\nFkg9Dh2iUGHhlfAuhKg+pFiISqML8tDrlqNX/Ad8/TBGT7rg7a5aa/Ti99Ar/oO69W7UXQ+4fA7j\n5gEE9/8TaV9/hl69FD0/AQ1Qqza0vA7Vuz+qa5+Ke1NC1BBSLITb6fRT6O8S0WuToCDfsf700UOY\nrz6NMfb/UE2a/b7v2bPoLz5Cf/e5Y5GgP40osfyoKwzfuhg3D0D37g+H9kJhIUS2RHl6VfRbE6LG\nsEWxGDNmDLVr18YwDDw8PIiLiyM3N5cZM2Zw6tQpwsLCmDBhAn5+flZHFeWgC8851nH4ZjEUF6Nu\n7I7qMwAVeQ36yEHMtyZjTp2E8egEaByJXvkNes13kJeLir7NMQ1HOQvF+ZRS0LRlBb4jIWouWxQL\ngBdffBF//9/n5klMTKRt27YMHDiQxMREEhMTGTas7HZrYQ1dWAhmMWgTNLDnJ8yF78CpE3BjV4x7\nH0GF1HPurxo3xXg+HnP2q5j/iAOlHFNldOiK6t0fWrS+okIhhKhYtikWf5ScnMxLL70EQHR0NC+9\n9JIUCxvRe7ZzZuUhindug5/3Q9rJ0js1aIwxcfJF50pSAUEYT09BL5kPtWo7JuC7wAJCQgjr2aZY\nTJkyBYC+ffsSExNDdnY2QUGOWyQDAwPJzs62Mp44j/n9t+h5b5ELUK8B6qrm0LUPeHsDjisE/ANQ\nHXugPC/9EVNe3qjBj1ZGbCHEFbBFsZg8eTLBwcFkZ2fzyiuvEBERUeJ5pdQFmySSkpJISkoCIC4u\njtAyRu5eiqen5xUd7y52y1W4ZzsZH7+N9/U3ETIpDrNWbasjlWK379n57JrNrrnAvtnsmgvck80W\nxSI42HH7ZEBAAJ06dWLfvn0EBASQmZlJUFAQmZmZJfozfhMTE0NMTIzzcVra5S9XGRoaekXHu4ud\ncunTmZivTYLAYIpG/BmzVm3bZDufnb5nf2TXbHbNBfbNZtdcUL5sf/zj/GIsH8FdUFBAfn6+8+ut\nW7fSpEkTOnbsyKpVqwBYtWoVnTp1sjJmjaeLijDnTIW8HIzY50usJCeEqP4sv7LIzs5m+vTpABQX\nF9O9e3euv/56mjVrxowZM1i+fLnz1llxeXRONhz7GX38KGScgoxT6IxTUDcQY9gTqLoBlz6+qBD9\nyVzYuwP12FOoxk0rKbkQwi4sLxb169dn2rRppbbXrVuXF154wYJE1YPe+SPmfz+DIwch57ybAzw8\nIDAEgkNh20bM157BGPcCqkGj0q9RXIxevwL95QJIT0XdcjdG5+hKfBdCCLuwvFiIiqWzM9GL3kNv\nWAXBYah2naDhVaiIJtCgEQQGO6b1BvSB3ZhvveIoGE9MQrVqj9YaTh5D796G/jYRUo/BVc0xhj0B\nbTpY/O6EEFaRYlFN6LMF6DXfoT//CArPoQYMQd3+J5R3rYseoyKvwXh+Ouas/4f5xkvQ+gbH9Bi/\nXYk0vApjzPPQvrMMkBOihpNiUYVpreHQPvSab9EbVjvmXWrVHuP+0ajwhi69hgqtjzHp75gfvAFH\nD6HadHCMnm7RGsIbSZEQQgBSLKosnZ+HOetl2LcTvL0d8y5173tZ02QoH188Yp93U1IhRHUgxaIK\n0mYx5jvxcGA3ashIVNTNsuqbEMKtpFhUQfrf82FrMuqB0Ri9+lkdRwhRA0ixsDG9fxf5W0+jm16L\nqusYwW6uW45e+m9Ur9uRQiGEqCxSLGxIm8Xorxaiv1rIaa3BMODadqiW16G/WgDXtEXdN9LqmEKI\nGkSKhYX0prWYn3+ManMD6qaecHULyMl29Efs/BEV1ZuggfeTuXIpeuMaxxrSYeEYo58rczZXIYSo\nSPIbxyJ67w5HUfAPRK/8DzrpCwgLh3PnHCvFDR+L6t4Xr7AwjOD66LsfhF8OgX8gyq/0pIpCCOFO\nUiwqkDZNdOKHEByK6nErysPjwvud+AUzYQqE1MeYNBUMA715vXOshPHnF0vNv6SUgkYyJ5MQwhpS\nLCqQXv4l+ptPHV+vWooxdBSqZZuS++RkO8ZHGAbG+BecVwmqWwx0iyn1mkIIYQdSLCqIPnoQ/dm/\noP1NGF16YS5+D3PaX37vizBNME10yjrIysB46hVUvQZWxxZCCJdIsagA+txZzHdeBx8/jIfGoeoG\nYLTtiP7mU/TSJbBh9e87e3tjPDYR1exa6wILIUQ5SbGoAPrf8+CXw46+hl/XhlC1aqMGDkP3uxeK\nCh23vyoP8PCQO5mEEFWO/Na6TNoshqxM9K6t6GVfovrcgbruxlL7Ke9acImZX4UQoiqQYlEOOj8P\n/flH6C3/g6x0KC52PNHwKtSfHrI2nBBCuJEUCxfpzesxP34bsjPg+s6OjuuQeqiQMGjeCuXlbXVE\nIYRwGykWZdCnMzE//AdsXg+NrnasKBd5jdWxhBCiUkmxuARdkI858yU48QvqTw+hYu6SzmkhRI1k\n6W++tLQ0EhISyMrKQilFTEwM/fr1Y9GiRSxbtgx/f8eAtaFDh9KhQ+Wu/+xcM+LoYYxxf0O1Ld15\nLYQQNYWlxcLDw4MHH3yQyMhI8vPzmTRpEu3atQOgf//+3HnnnZZl05/Ngx83oIaMkkIhhKjxLC0W\nQUFBBAUFAVCnTh0aNmxIRkZGpWbQGacw50wlp11HdKOm0LyVY56mb5egevfD6DOgUvMIIYQd2aYB\nPjU1lYMHD9K8eXN27drF0qVLWb16NZGRkQwfPhw/Pz/3nPhMLnh4kPf1YsfgOQCloM0NsmaEEEL8\nSmmttdUhCgoKePHFFxk0aBCdO3cmKyvL2V+xcOFCMjMziY2NLXVcUlISSUlJAMTFxXHu3LnLzuBh\nFpO/axuFO7dSnHYSv2FPYPi6qUCVg6enJ0VFRVbHuCC7ZrNrLrBvNrvmAvtms2suKF82b2/Xbvu3\nvFgUFRUxdepU2rdvz4ABpZt8UlNTmTp1KvHx8WW+1rFjxy47R2hoKGlpaZd9vLvYNRfYN5tdc4F9\ns9k1F9g3m11zQfmyRUREuLSfcSWBrpTWmjlz5tCwYcMShSIzM9P59YYNG2jcuLEV8YQQQvzK0j6L\n3bt3s3r1apo0acIzzzwDOG6TXbt2LYcOHUIpRVhYGKNGjbIyphBC1HiWFotrr72WRYsWldpe2WMq\nhBBCXJqlzVBCCCGqBikWQgghyiTFQgghRJmkWAghhCiTFAshhBBlsnxQnhBCCPuTK4tfTZo0yeoI\nF2TXXGDfbHbNBfbNZtdcYN9sds0F7skmxUIIIUSZpFgIIYQok8dLL730ktUh7CIyMtLqCBdk11xg\n32x2zQX2zWbXXGDfbHbNBRWfTTq4hRBClEmaoYQQQpTJNivlWWXLli28//77mKZJnz59GDhwoGVZ\nZs+eTUpKCgEBAc71O3Jzc5kxYwanTp0iLCyMCRMmuG/VwItIS0sjISGBrKwslFLExMTQr18/W2Q7\nd+4cL774IkVFRRQXF9OlSxcGDx5MamoqM2fOJCcnh8jISMaNG4enZ+V/3E3TZNKkSQQHBzNp0iTb\n5BozZgy1a9fGMAw8PDyIi4uzxc/zzJkzzJkzhyNHjqCU4oknniAiIsLyXMeOHWPGjBnOx6mpqQwe\nPJjo6GjLs3311VcsX74cpRSNGzcmNjaWrKysiv+c6RqsuLhYjx07Vp84cUIXFhbqp59+Wh85csSy\nPNu3b9f79+/XEydOdG6bP3++XrJkidZa6yVLluj58+dXeq6MjAy9f/9+rbXWeXl5evz48frIkSO2\nyGaaps7Pz9daa11YWKj/8pe/6N27d+v4+Hi9Zs0arbXWb7/9tl66dGmlZ9Na6y+//FLPnDlTv/ba\na1prbZtcsbGxOjs7u8Q2O/w833zzTZ2UlKS1dvw8c3NzbZHrfMXFxfqxxx7TqamplmdLT0/XsbGx\n+uzZs1prx+drxYoVbvmc1ehmqH379hEeHk79+vXx9PSka9euJCcnW5andevWpf4qSU5OJjo6GoDo\n6GhL8gUFBTk7y+rUqUPDhg3JyMiwRTalFLVr1waguLiY4uJilFJs376dLl26ANCrVy9LsqWnp5OS\nkkKfPn0Ax2Jfdsh1MVb/PPPy8ti5cyc333wz4Fga1NfX1/Jcf7Rt2zbCw8MJCwuzRTbTNDl37hzF\nxcWcO3eOwMBAt3zOanQzVEZGBiEhIc7HISEh7N2718JEpWVnZxMUFARAYGAg2dnZluZJTU3l4MGD\nNG/e3DbZTNPkueee48SJE9x6663Ur18fHx8fPDw8AAgODiYjI6PSc33wwQcMGzaM/Px8AHJycmyR\n6zdTpkwBoG/fvsTExFj+80xNTcXf35/Zs2dz+PBhIiMjGTFihOW5/mjt2rV069YNsP7fZ3BwMHfc\ncQdPPPEE3t7etG/fnsjISLd8zmp0sahqlFIopSw7f0FBAfHx8YwYMQIfH58Sz1mZzTAMpk2bxpkz\nZ5g+ffoVrcVeUTZt2kRAQACRkZFs377d6jilTJ48meDgYLKzs3nllVdKrcNsxc+zuLiYgwcP8sgj\nj9CiRQvef/99EhMTLc91vqKiIjZt2sT9999f6jkrsuXm5pKcnExCQgI+Pj68/vrrbNmyxS3nqtHF\nIjg4mPT0dOfj9PR0goODLUxUWkBAAJmZmQQFBZGZmYm/v78lOYqKioiPj6dHjx507tzZVtl+4+vr\nS5s2bdizZw95eXkUFxfj4eFBRkZGpf9cd+/ezcaNG9m8eTPnzp0jPz+fDz74wPJcv/ntvAEBAXTq\n1Il9+/ZZ/vMMCQkhJCSEFi1aANClSxcSExMtz3W+zZs307RpUwIDAwHr/w1s27aNevXqOc/buXNn\ndu/e7ZbPWY3us2jWrBnHjx8nNTWVoqIi1q1bR8eOHa2OVULHjh1ZtWoVAKtWraJTp06VnkFrzZw5\nc2jYsCEDBgywVbbTp09z5swZwHFn1NatW2nYsCFt2rRh/fr1AKxcubLSf673338/c+bMISEhgSef\nfJLrrruO8ePHW54LHFeIvzWNFRQUsHXrVpo0aWL5zzMwMJCQkBDnleG2bdto1KiR5bnOd34TFFj/\nbyA0NJS9e/dy9uxZtNbO75k7Pmc1flBeSkoK//rXvzBNk969ezNo0CDLssycOZMdO3aQk5NDQEAA\ngwcPplOnTsyYMYO0tDTLbs3btWsXL7zwAk2aNHFeZg8dOpQWLVpYnu3w4cMkJCRgmiZaa6Kiorjn\nnns4efIkM2fOJDc3l6ZNmzJu3Di8vLwqNdtvtm/fzpdffsmkSZNskevkyZNMnz4dcDT9dO/enUGD\nBpGTk2P5z/PQoUPMmTOHoqIi6tWrR2xsLFpry3OBo7DGxsby1ltvOZth7fA9W7RoEevWrcPDw4Or\nr76a0aNHk5GRUeGfsxpfLIQQQpStRjdDCSGEcI0UCyGEEGWSYiGEEKJMUiyEEEKUSYqFEEKIMkmx\nEDXSxIkTLRtZnZaWxoMPPohpmpacX4jLIbfOihpt0aJFnDhxgvHjx7vtHGPGjOHxxx+nXbt2bjuH\nEO4mVxZCXIHi4mKrIwhRKeTKQtRIY8aM4ZFHHnGOZPb09CQ8PJxp06aRl5fHv/71LzZv3oxSit69\nezN48GAMw2DlypUsW7aMZs2asXr1am655RZ69erF22+/zeHDh1FK0b59ex599FF8fX158803WbNm\nDZ6enhiGwT333ENUVBRjx47lk08+cc7dM3fuXHbt2oWfnx933XUXMTExgOPK5+jRo3h7e7NhwwZC\nQ0MZM2YMzZo1AyAxMZFvvvmG/Px8goKCeOyxx2jbtq1l31dRfdXoiQRFzebl5cXdd99dqhkqISGB\ngIAAZs2axdmzZ4mLiyMkJIS+ffsCsHfvXrp27crcuXMpLi4mIyODu+++m1atWpGfn098fDyLFy9m\nxIgRjBs3jl27dpVohkpNTS2R44033qBx48a8/fbbHDt2jMmTJxMeHs51110HOGawfeqpp4iNjWXB\nggW89957TJkyhWPHjrF06VJee+01goODSU1NlX4Q4TbSDCXEebKysti8eTMjRoygdu3aBAQE0L9/\nf9atW+fcJygoiNtvvx0PDw+8vb0JDw+nXbt2eHl54e/vT//+/dmxY4dL50tLS2PXrl088MADeHt7\nc/XVV9OnTx/n5HQA1157LR06dMAwDHr27MmhQ4cAx9TshYWFHD161DmXUnh4eIV+P4T4jVxZCHGe\ntLQ0iouLGTVqlHOb1rrEIlmhoaEljsnKyuKDDz5g586dFBQUYJqmy5PJZWZm4ufnR506dUq8/v79\n+52PAwICnF97e3tTWFhIcXEx4eHhjBgxgsWLF3P06FHat2/P8OHDbTfNvqgepFiIGu2Pi9WEhITg\n6enJu+++61xprCyffPIJAPHx8fj5+bFhwwbee+89l44NCgoiNzeX/Px8Z8FIS0tz+Rd+9+7d6d69\nO3l5efzzn//ko48+Yty4cS4dK0R5SDOUqNECAgI4deqUs60/KCiI9u3bM2/ePPLy8jBNkxMnTlyy\nWSk/P5/atWvj4+NDRkYGX375ZYnnAwMDS/VT/CY0NJRrrrmGjz/+mHPnznH48GFWrFhBjx49ysx+\n7NgxfvrpJwoLC/H29sbb29vSVeRE9SbFQtRoUVFRADz66KM899xzAIwdO5aioiImTpzIww8/zOuv\nv05mZuZFX+Pee+/l4MGDPPTQQ7z22mvcdNNNJZ4fOHAgn332GSNGjOCLL74odfyf//xnTp06xeOP\nP8706dO59957XRqTUVhYyEcffcSjjz7KyJEjOX369AWX+xSiIsits0IIIcokVxZCCCHKJMVCCCFE\nmaRYCCGEKJMUCyGEEGWSYiGEEKJMUiyEEEKUSYqFEEKIMkmxEEIIUSYpFkIIIcr0/wEdQehzvVrX\nmQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAENCAYAAADgwHn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd8VfX9/5+fm0nmzSKQhD1EwpAt\nCgYlTqzF2mrd0G+LiqO1Sh2tWn7UigPBuqq4WjugtJWq1aopAoJFhuwdZkL23uPmfH5/nHtvcsk6\nubkn94b7eT4ePLg585Xc5L7P5z2FlFKiUCgUCgVg8bYAhUKhUPgOyigoFAqFwokyCgqFQqFwooyC\nQqFQKJwoo6BQKBQKJ8ooKBQKhcKJMgoKhUKhcKKMgkKhUCicKKOgUCgUCifKKCgUCoXCSaC3BbhD\nTk6OW+fFx8dTVFTkYTWewVe1+aou8F1tvqoLfFebr+oC39XWVV1JSUmGjusxo3DvvfcSGhqKxWIh\nICCApUuXUlVVxfLlyyksLCQhIYEHH3yQiIiInpKkUCgUirPo0ZXCU089RVRUlPPrtWvXMnbsWObO\nncvatWtZu3Ytt912W09KUigUCkULvBpT2LZtG2lpaQCkpaWxbds2b8pRKBQKv6dHVwpPP/00AJdf\nfjnp6emUl5cTExMDgNVqpby8vCflKBQKheIseswoLFmyhNjYWMrLy/nNb37TKughhEAI0ea5GRkZ\nZGRkALB06VLi4+Pd0hAYGOj2uWbjq9p8VRf4rjZf1QW+q81XdYHvajNLV48ZhdjYWACio6OZMmUK\nmZmZREdHU1paSkxMDKWlpS7xhpakp6eTnp7u/NrdTABfzSIA39Xmq7rAd7X5qi7wXW2+qgt8V5tZ\n2Uc9ElOoq6ujtrbW+XrPnj0MHDiQyZMns2HDBgA2bNjAlClTekKOQqFQKNqhR1YK5eXlvPDCCwA0\nNTUxY8YMLrjgAoYNG8by5ctZt26dMyVVoVCYj9SakJv/i5h+KSIwyNtyFD5EjxiFxMREnn/++Vbb\nIyMjefLJJ3tCgkKhaMnhfcg/voKIjoFxaoWuaMZv2lzIrBM0HtnvbRkKhU8g887o/1eqjD+FK35j\nFLQP3qdi5TJvy1AofIN83ShQVeFdHQqfw2+MAkFB0NDgbRUKhU8g8+39wyqVUVC44jdGQQQFIxvq\nvS1DofAN1EpB0Q5+YxQIDlFGQaEApK0Rigr018ooKM7Cf4xCYJAyCgoFQGE+SE1/rYyC4iz8xygE\nByNVTEGhaHYdxSdCVaV3tSh8Dv8xCkEh0FCPlNLbShQKr+IIMouho9RKQdEK/zEKwcH6/7ZG7+pQ\nKLxN/hmIjIbE/lBThWxq8rYihQ/hP0YhyF7K36hcSAr/RubnQGISRESBlFBT5W1JCh/Cj4xCiP6/\niiso/J38HITDKIByISlc8COjYHcfqZWCwo/RaquhvAQSkxEOo6AK2BQt6JJRKCoq4siRI2ZpMReH\nUVArBYUf05STDaBWCop2MdQltaioiJdeeomTJ08C8P7777NlyxZ27drF3XffbaY+jyGCg5EANmUU\nFP5LU85p/UViMvQJB/QCtrZnHir8EUMrhTfffJMJEybwhz/8gcBA3Y6MGzeOPXv2mCrOo6iVgkKB\nLScLhICEfhARqW9UKwVFCwwZhczMTObOnYvF0nx4WFgYNTU1pgnzOM6YgqpqVvgvTTmnITYBERyC\nCA6BkFBlFBQuGDIK0dHR5OXluWzLzs72yWHW7eKoU2hUdQoK/8WWk6WnozqIiFJGQeGCIaPwne98\nh2effZYvv/wSTdPYtGkTy5cv57vf/a7Z+jyHfaWgWl0o/BUpJU05WXqQ2UFEFFK1ulC0wFCg+bLL\nLiMyMpKMjAzi4uLYuHEjN910E1OnTjVbn+dQ7iOFv1NZjqypQiQmN2+LiFQrBYULhmc0T5kyhSlT\nevEsVxVoVvg7jp5HfZtXCiIiClmQ6y1FCh/EkPvonXfe4fDhwy7bDh8+zHvvvWeGJnNw9j5SRkHh\nn0hHd1QVU1B0gCGjsHnzZoYNG+aybejQoWzatMkUUaag2lwo/J38HAgMhLi+zdsioqC2Rh+8o1Bg\n0CgIIdA0zWWbpmm9qw11YKCen63aXCj8FJl/hoDEZERAQPNGZ1WzCjYrdAwZhVGjRrFq1SqnYdA0\njTVr1jBq1ChTxXkSIYQeV1BGQeGv5OcQmDTAZZOIVK0uFK4YCjTPnz+fpUuXctdddxEfH09RUREx\nMTE88sgjZuvzKCI4RLmPFH6JtDVCQS4BU2Zga7lD9T9SnIUhoxAXF8ezzz5LZmYmxcXFxMXFMXz4\ncJcK596ACA5GqpWCws+Q9fVobzwLtkaCx0zAJSlbGQXFWRhOSbVYLIwcOdIltqBpWq8yDCI4RBWv\nKc4ZZH092BoQ4ZHtH1NTjfbKEsg8iLh9ISGTL6ayqKj5ALtRUE3xFA4MGYXjx4/z9ttvc/r0aRrO\n+lBdvXq1KcLMQASHIFVKquIcQa56E5l5gIAlr7e9v6IM7aVfw5nTiJ88jGXKzNYHhaumeApXDBmF\nV199lUmTJnHPPfcQEhJitibzUDEFxTmClBK5dzuUlyKLCxAt00zt+7Xf/T/Iy8Zy3y8RYya1eR0R\nGKi30FbZRwo7hucp3HzzzXoGTy9GBKvsI8U5Ql42lJcCII/sR0x3NQoU5cOpTMRNP27XIDiJiFTT\n1xRODAUEpkyZwu7du83WYjoiOEQZBcU5gTy0V38RGAhH97fef1D/exWpEzu/WEQUUrmPFHYMrRQa\nGxt54YUXGDVqFFar1WXffffdZ4owM1ApqYpzBXloj16ZnDQQefRA6wMO7YHoWOiX3Hrf2UREOVcd\nCoUho5CSkkJKSkq3b6ZpGo8++iixsbE8+uijFBQUsGLFCiorKxk6dCj333+/c7KbKSj3keIcQGoa\nHN6LuGAqJCYj925HVpQhovQHNikl8tAeROoEQy5fERGFPHPKbNmKXoKhT+Af/OAHHrnZJ598QnJy\nMrW1tQD86U9/Ys6cOVx88cW8+eabrFu3jiuuuMIj92oL3X2kWmcrejnZJ6G6Es4bh0hI1GePZx6A\niRfp+3NOQ2U5jBpn7HqRqimeohnDRQY2m43Tp0+zb98+l39GKS4u5ttvv2X27NmA/jSzf/9+Lrzw\nQgBmzZrFtm3buii/a+hGQTX+UvRu5GE9niDOGwuDRkBQsIsLSR7SZ6cLo0YhIgoa6vW6B4XfY2il\ncOjQIV588UUaGxupra2lT58+1NXVERcXxyuvvGLoRu+99x633Xabc5VQWVlJWFgYAfbmXLGxsZSU\nlLj5bRhDxRQU5wLy0B5ITEbE2sfhDhnpahQO7oaEfq3SVNvFUdVcXQEhCR5Wq+htGDIKf/jDH7ju\nuuu49tprmT9/Pu+++y5///vfCXbMKOiEHTt2EB0dzdChQ9m/v3WmRGdkZGSQkZEBwNKlS92eDV0d\nEgqNDT45WzowMFDp6iK+qs1MXbLJRuHR/YTOvIIo+z2qxk+m+h9/JDa8DyI4RN8/I925vzNtdUnJ\nlAPWQAtBXvp5+up7Cb6rzSxdhoxCTk4O11xzjcu2uXPncu+993Ldddd1ev7hw4fZvn07O3fupKGh\ngdraWt577z1qampoamoiICCAkpISYmNj2zw/PT2d9PR059dFLcv0u0BoUBBoTRTm57u2D/YBHI0G\nfQ1f1QW+q81MXfL4YWRtDXWDR9Jgv4dMHgKaRvE3myE8AllT7bK/M21S04PRZdmnEVFxpujuDF99\nL8F3tXVVV1JSUucHYdAohIWFUVtbS3h4OFarlezsbCIiIqirqzN0k1tuuYVbbrkFgP379/PRRx/x\nwAMP8OKLL7JlyxYuvvhi1q9fz+TJkw1dz11EsL0au7EeAsJMvZdCYQbN8YQxzRuHnQcWi+5CCg21\n7x9r/KKO/keVqv+RwqBRmDZtGjt37mTGjBlceumlLF68mICAAGeQ2F1uvfVWVqxYwapVqxgyZAiX\nXXZZt67XGaLl9LVQZRQUvQ95aA8kD3KmnwKI0DAYMBSZuR8CAlvt7xQ1aEfRAkNGYd68ec7X1113\nHSNGjKCuro7x48d3+YapqamkpqYCkJiYyDPPPNPla7hL80pBBZsVvQ/Z2AiZBxAzr2y1T4xIRa7/\nBIRAXNJ6f4eEh+tTCVVaqoIupKS25Pzzz2fChAm9qm02ACH2wLgyCr0O7bN/Ik8f97YM73LiMDQ0\nIEa1dg2JEaPB1giNDYjzu/awJiwBEB6hjIIC6GCl8PTTT/PLX/4SgCeffLLdysjFixebo8wEXNxH\nil6DrK5C/v09uPQaxC13e1uO15CZB/UXI8a03jlitP6/sMCI1K5fPEIVsCl02jUKaWlpztdm+/p7\nCuU+6qWcOQmALC70rg5vU5QPkdGI8IhWu0RkNCQPgpBQRFh416+tmuIp7LRrFGbMmAHo/Yry8/P5\n3ve+R1BQUI8JMwNlFHonzr48xQXeFeJlZEkhxLZfXGa5+xGwuJlqHRGlGx2F39NpUMBisfD55587\nK497M8oo9FKym42ClNK7WrxJSRHEtW8URL8URN/+bl1aKPeRwo6hSPEll1zCF198YbYW83FUYKuY\nQq9C2t1H1NVCTbVXtXgLKSWUFCI6WCl0C7tR8GujqwAMpqRmZmbyn//8hw8//JC4uDiXoHOvCjTb\nVwqysV4V6fQSpJR618/oGL3nf3GBninjb9RUQX1dh+6jbhERBTYb1NeqGh4/x5BRmD17trO7aW+m\n2X2kOqX2GkoKobYGMeli5KYvdKMwcKi3VZmCrKpAW/kCltsWIhL6ue60B9lNWyk4it2KC/WAtcJv\nMWQUZs2aZbKMnkEo91Hvwx5PEOOmIDd9oQ+p97Iks5D7dsCBXcj9OxGzrnbdWWLPvDLJKIjzxiDt\nGoQyCn6N4TFnZWVlZGZmUllZ6eJ37E3pqi69jxS9Amc84bwxEBzifGLuLWgfrQLA8p0fdn7wEXsH\n4YKcVrukwyjEmdOtU8QmwMChyF1b4crvmXIPRe/AkFHYunUrL7/8Mv379ycrK4sBAwaQlZXFqFGj\nepVRQLmPeh9nTkNsPCIsAuL6Iot7V9qk3JwBoX3AgFGQdqMgC3Jb7ywphMAgiIj2tEQnYvxU5Md/\nQ1aW63UPCr/EUPbR6tWrWbhwIc899xyhoaE899xzLFiwgCFDhpitz6MIiwUCA9VKoRchz5yE5MH6\nF3F9e9VKQdbV6DGQ8s6HR8nyUsg/o3+R33qlQEmRbhxNbC0jxk8DqSH3bjftHgrfx9BvWFFREdOn\nT3fZlpaWxsaNG00RZSpBwSqm0EuQNhvknXH6uEVcApT0ogK2nCz9/6pKvZldBzhWCZw3FgrzkFqT\n6/5OCtc8wsChYI1D7t5q7n0UPo0hoxAVFUVZWRkACQkJHDlyhPz8fDRNM1WcKQQFq+K13kL+GWiy\nNWfDxPXVP2Drar2ryyDOSmyAitKODz66T29RMWWm/j2fvSIqKTIv88iOEAJxwVTYvxOp/kb8FkNG\nYfbs2Rw6dAiAOXPmsHjxYhYtWsQVV1xhqjhT8EGjIA/uRjbZvC3D55DZJwEQKS2MAnjchSSL8s3p\n+9PSKJR17EKSR/bDsFGI/in6hhYuJGmz6eebvVJAjytQXweH9pp+L4VvYijQPHfuXOfrtLQ0UlNT\nqaurIyUlxTRhpuFj7iN5KhPtxSeoD34GhrnR3fJc5swpCAiAfvrvmYjriwTdhZQ80GO30V58AnHe\nWMSd93vsmmBfKYT00QvCOjAKsqoCzpzSVwl99ZGJsiAHwUT9gPISkBrE9sCc4PPGQUgf5O5vEGMn\nmX8/hc9haKXw73//2+k+An02aK80CADBwR5fGsu929E+/Kt759qfhrWiXuQr7yHkmVOQmIwItDdi\ntPf9kR5sjCerKnQfvhnN4M6cAvvsA9nRSiHzAKAPyiE6RjckLTOQHIVrHfQ98hQiKAhSJyB3b1Ut\nL/wUQ0Zh//793HfffSxZsoQvv/ySmpoas3WZhwnuI+2LfyE//TvSnRhLrh6M1DpxL/glZ065FlJF\nxejZY540oFkn9P/LO/H5dxFZUQaV5YiRqfqIzA4ykOTh/Xq66ZCReguZvv2QLd1HJheunY0YP1Vf\n2Zw+1iP3U/gWhtxHv/jFL6iurmbLli1s3LiRd955h/HjxzNz5kymTZtmtkbP4mGjIG02OHZIn3pV\nVa5/cHXlfHuGSpMyCi7IWns658zmuJWwWPQPxhLPxRQcKzVPGwVHPEGkDEZGWzt2Hx3dD0PP05/S\nAdE3CZnVYsqc4/uN6SGjMHYyUliQu7YiBg3vkXsqfAfDSc/h4eHMnj2bp556iuXLl1NXV8eLL75o\npjZz8HRMIes4NNjrHoqLun6+Y6VQWuw5TecCLT5UXYjr61H3EQ6jUFPVadpoV5A5p/UXyYMhOhbZ\nzkpB1lTD6eOIkS2mqSUmQVG+/sABulGIiESEhHhMX0eIyCgYPgq565seuZ/Ct+hSJcyhQ4d46623\neOyxxyguLubGG280S5d5BHt4pXD0QPMXpV17gpX19c7BMZqBAid/QubYM3fO6sMj4vp6dNiOzD7R\n/EVFWfsHdpUzpyAiUm80Z41tf6Vw7BBITXczOUhMAk1zDr2RJUU95jpyIM4bB9knkDZV/e9vGHIf\nvf/++/zvf/9DCMH06dP55S9/yeDBg02WZg4iKMSjgWZ59EBzL/qSwq41a8vPBimhTxhaack52+jN\nCPLkUeSpY4iBwyBlsN4IL6RPcxqqg7gEKC/1yHsobTa9LXf/AfqKrbykwyE2Xbr2mVOQNEjP/bfG\nNhennX3ckX16htXQUc5tom+SnmVVkAP9kvWVwtldU83GGqv/X1kBMXE9e2+FVzFkFOrr67n//vs5\n//zzzdZjPkFBHlspSCkh84Dug92xucvuI5mbrb8YkYp2YCcWKV1mVfgLsjAPbfmTUFOtfxgGBOj/\nUoa0/nnE2o1ESRH0T+rejfPPgM2GSJ2IzM3qvMDMIFJKOHMacZG9L1h0LFRXIhsbEEHBrsce3Q+D\nR7i6hhJbpqWiD9c5b6xHtBlFREbr70VFmTIKfoYho/DjH//YbB09R3CI52IKedn6CMMRo+HEkeYs\nEaPkZIHFghgxGrlnmz5IJTzSM9p6CbKxEe2N50CC5RdLoaIUeSoTeeo4YurMVsc7axU80BjPWRyX\nOgGZ8S9keZlHVmtaYZ5em+BwfTmeustKXJ74ZWMDnDyKuHyu6wUioqBPOOTn6jGH2poedx855ytU\netClpugVGG6dfc7gwewjeVR3CYgRqcjtm6C0qyuF09C3P8TYi5IqyvzPKPztbTiViWXh44gRowEQ\nky5u/4R4faUgPVHVnHVCT3EdmQpCGGpcZwTbKT1zSNgL7ER0rG7Iyl2Ngt7Go6nV0CA9LbW/vlLo\n4XRUJ1F6l1RZ4RlDqeg9mNdy0VcJCgJbo3s1BWdz9CBERkNikt6Xpqsrhdxs6D8AEW1PY/V0WqSP\no32zAbn+E8QVcxETLjR2kjUOLBaPBJtl9gn95x8coj+dl3vmqdjmyO9POmulcNb7K3P1rqiiX+tC\nUJGYpLe6KHFMXOuBauaWOFcK5T17X4XX8UOj4LmZCvLofhiRqj/ZxToCoMauK22NUJCD6D/A+Qco\nPZn94uPI3Gzk+6/C8PMR199h+DwREKAbBk9kIGWfbE55jbIiPRRTsJ0+bp8BEa5viNaNQquq5tws\nfYWS2EZspG8SlBQ2F7H1QDWzCyF99Ew9P/qdVOgYNgo2m42DBw/y9ddfA1BXV0ddXZ1pwkzDMZKz\nmzMVZEkRFBcgRtiD747lvVEXUkGunnbYf4De2gA8FujsDcjP/gEWC5YFv0AEdtGLGd/9WgVZUaY/\nuafYZ4JEx3pspWY7fbx5lQB6ampAYOu01LxsiOvbPBGwJYn9QUrk4b36uV0siuwuQgiItEKFWin4\nG4aMwunTp/npT3/KG2+8weuvvw7AgQMHnK97Ffaq0e6uFFrGE6DF8t6oUbAXrYmkARAWofu2/eSp\nTEqJ3LcTkToR4UZmi4j1wLAdR5B5gG4URLTVI0ZB2mzYsl3bcwgh2qxVkHnZzmZ/ZyMSk/UXR/ZB\nTJypw3XaJcrqV6tXhY6h37SVK1dy0003sWLFCgLtT3WjR492ttPuVQR5aE5z5gF9ie140ox1NGsz\n9mElcxyugxSEEFiiYz3m0/Z5zpzUg65jJrp3flwClBY3V/y6gbNozfH+RcXomU/dbQJXmKu3PDmr\n6A6ra1Wz1DTIP9PcKvts7N1SvZJ55CAyWmUf+SGGjEJ2djYzZ7qmB4aGhtLgQy2ojSIc7qNuapdH\nD+j97wMC9A2OJ16jwebcLN11YM9Pt1hj/eapTO7fCYAYPcG9C8T1BamhdSGwL5tcJ5mRdRKssXpL\nBwBrDNhsUFPtnibHfbLt7TnObu0dHeO6Uigp1H8H21sphEfobicwfbhOe4go5T7yRwwZhYSEBI4f\nP+6yLTMzk379erjK0hM4ioe64T6S1VV6B097CiWg+4Ujow0bBZmbpccT7FissW7FFLT1n6L95x8e\n7dtjNnLft5A8yC3XEdhbXQBNBXmGjtc+WYP2+E+QZc39pWT2Cb1y2oHDZ9/dtNTsk3p2VIv3FvS0\nVJdr2wsX28o8cuJYLXh5peCRTD1Fr8FQhO+mm25i6dKlXH755dhsNj744AO++OIL7rrrLkM3aWho\n4KmnnsJms9HU1MSFF17IjTfeSEFBAStWrKCyspKhQ4dy//33O91TphHkgUBz5kEAF6MAQGyCoQI2\nqTXps4dbPClbrLF6H5wuIHd8jfyzHteRm/+L5fZ7XXvomIjUNNi7HQYNQ1iNf7jLulo4egCR/h33\nb26vVWjKy4Z+Azo5GOSxQ1BShPb7Z7E89DQIIDcbMaZ5iIyIjrHXEpRCknsDfGRFKXLDpwSdPx7t\nrMplrLF6xXZDPSI4RI8nQCvj0RLRNwl5/DDE9XA6qoMoq54MUVOlp+wq/AJDK4VJkybx+OOPU1FR\nwejRoyksLOThhx9m/Pjxhm4SFBTEU089xfPPP89zzz3Hrl27OHLkCH/605+YM2cOL7/8MuHh4axb\nt65b34wxMd13H0lHHvrgka47YuP19gudUZSv+52Tmj8QAqyxUGH8qUzmZqG9+xIMGYnl3l9CYwPa\n84+h/fEVZE2V0W/FLeSxQ2i/fRjtld+g/XVl104+vA+a9NYSbhPfD/qE0WjUiObn6O/NsUPIVSv1\nrJ8mW5srhe648LS/vAH1tUTd9XDrnWfXKuRl651PIzv4sE3sD3jPfUSkXsDmLwkQCh3Dj+VDhgxx\nu92FEILQ0FAAmpqaaGpqQgjB/v37+elPfwrArFmzWLNmjflzn50pqd2IKRTmgjWuVStjEZuAPLAb\n2VkPozZcBxZrrP5UVl3Z/MfYDrK2Bu2130JwMJa7H0XExmM5fzzyw7/q7RoO7MJyz2OIQcPc/x7b\num9ZCfKff0D+70v9Q+68sbBnK7K6SveBG7nG/h16q5Hhozs/uB2ExQKDR9B49GDn92tqgqI8xBXX\nAxL56T+cU9YcmUdAc1qwm+4juWMz7Pgacf3tBA4YAkWuDwfOqmZ7qwuZm9VuPMF5zqDhSIul0+PM\nQkRZdc2qgM2vMGQUVq9e3eb2oKAgYmNjueCCC7BarR1eQ9M0HnnkEfLy8rjyyitJTEwkLCyMAHug\nNjY2lpKStv8gMzIyyMjIAGDp0qXEx7u3nA4MDCQmIZFiIDI0hFA3r1NSWgxJA4g96/zqAYOpqq8l\nrk8Ilg6W29XlxVQBcWMuwGL/MG2wFyfFWCCwA11SSsqfXUZ9QR4xi39H8Mjm7prcs4iGy66m/Plf\noT37CFELHqJPd9w06D+z+Ph4mkoKKVn6C2R5KWHfu53w799JU85pSh7+EeGHdhF25dzOLwYUHdxN\nwLjJxPTv3y1dlaPHU7P2z/SN7HjOgC03m+KmJiKHn0do2lWU5WbRsGsrBAUTnzoOEaD/CUgZR0Fw\nMH0a6ons4u+FVlFG0V/eIHDYKGJv/YnzZ+aiY/BQ/fdOayQ0Pp6C/BxCp84kqqP3etaVaOMmEeDB\nwrW2tLWHbdAQXbNscvtvxQxdPY2vajNLlyGjkJuby9atWxk+fDhxcXEUFxeTmZnJpEmT2LFjB2+/\n/TYPPfQQF1xwQbvXsFgsPP/881RXV/PCCy+Qk5PT7rFnk56eTnp6uvProiI3htmgz5YurdazSypK\niqly8zpNudmIMRNa6ZChYQAUHz3s+hR6FlrmIbDGUVJbB7V6AWBUpG5US0+dQIS3v1LQ1n2M/GYD\n4sb/o6LfgFZPpMT1g18ug7eWUfHqM1Tu2oa49e5W3TmNEh8fT2H2abTnHoOqSiyPPkv9oOHUV9cg\no+Kg/wAqv/iQmkkzOr2WLMhByzuDdtm1br+HzmslpkBTE0W7tiGGjWr/uEP7AKgKi6K6tBQ576fw\n9EMQZaW49Cy3SKSV2vwc6ruoTVv5ArK6Cu3BhRSXlhEfH9/6d8Puqa3IOknlyePIijLqYuJp6PRe\novV73A3a0tYesklPz604k+3234pRuqKrp/FVbV3VlZRkrKuwIaOgaRo/+9nPmDp1qnPbtm3b2LRp\nE08//TTr16/nz3/+c4dGwUF4eDipqakcOXKEmpoampqaCAgIoKSkhNjYWEOiu0U3U1Jlfb3uYohv\nI/PK0diupAg6MAoyNxvOyk+3xNhbIXTSgExu3QiDhiPSr2v3GBEZjeWnTyE/WoX8eDUkDbC7T7qO\nbLKhvfkCnDmF5b4nXMYzCiEQ0y/TXUoFuYi+HT/9O1NRU91MRW3JED2eI08c6dgo5Ov9hRytJER4\nJJbHXwCtqfXB1lhkFwvY5P6dyK0bEdfd0npKXEvCIvQ5zGWlejyBTjKPfIHwSBAWFVPwMwwFmnfv\n3s3kyZNdtk2aNIldu3YBcMkll1BQ0H7bgYqKCqrtT+gNDQ3s2bOH5ORkUlNT2bJlCwDr169vdQ9T\ncBavuRlTKLKnQbY19MRRwNZBBpJsbNQzX87KcLE4Mng6SEuVjY1wKhNx3thO5y4ISwCW794K/Qcg\n9+/q8Nh27ycllW+tgL3bEbfhDWq5AAAgAElEQVTcjRg7qdUxYloaCIHc8mXn19v3LST0Q/Tt5hwE\nQFhjscT1hRNHOj4wPxfCwl2yZ0REFKKtthFRrauaZVMT2qd/19OQ20Du/xaCgxFX39CxXiH0uEV5\nSfMcjQ4yj3wBYbFAZJQqYPMzDK0U+vXrx+eff85VV13l3Pb555+TmJgI6B/6wcHtuydKS0t59dVX\n0TQNKSXTp09n0qRJpKSksGLFClatWsWQIUO47LLLuvntGMDZ5sJNo1CoG4U2n4qjrHqfmnaMgpQS\n+cdXoL4WMdbVAIqwcP1JsqOnslOZ+lCY4caHHYlRY5Gb/4u0NSICgwyfByC/+oza//wTceX1WNKu\navMYERsPo8Yht6xHfudmp7GS+75Fe/8VGDISMWkGYvQFcHhv8+AZDxA0YjT1nWQgyfwzkJhsaHiR\niI5xti9xcnQ/8p9/hD5hiFnXtL5+brZ+fSM/W2sssqwEkXdGf697usmdO6hWF36HIaNw1113sWzZ\nMv71r385A8IWi4WHHnoIgJycHG666aZ2zx80aBDPPfdcq+2JiYk888wzbkp3k4BAfUnsrvvIbhTa\nch8Ji8WeltqOUfhkDXLLl4jv3trKhdL8JNn+H6A8Zs+26cBd0krTqHHILz+Bk0e7nPEjd3xNwIAh\nyO/d2fE9LrwU+e4KOHYQho9GHt6nZ0dZY+HoAb2eIiAAmpoQqa1XG+4SNOJ86resR1ZVINoL7Ofn\ntK4naY+oGKiqdDGg0l6TQs7pts/JzerQfeWCNRbOnEYGBevt1i0Bxs7zJpHRyn3kZxgyCkOHDuWl\nl17iyJEjlJWVYbVaGTlypEsfpNGj3U8x7EmEEHpcwd3itcJc6BPmbEHQiph4vYPqWcgdXyPX/gkx\nLQ0x58a2z+3kqUxmHoS+SXr7AaOMHKO7dw7tRXQ1DbQon8ARo7F10oxNTJyO/PPreqpqQCDay0sg\nPhHLot9CeAQcPYjcsQlZVACjxnVNQwcEOQr1Th6FMa2NjWyo1xsUOprLdYazW21ZsyvQvhKROVmt\nr19fp7fwnpHeal9bCGsc8sBuvU6jRWzGlxFR1uYHIYVfYLhOITAwsNd88HdKUJDbbS5kYZ7uF2/H\nHSFiE/Rh7C3POXkU7Z0X9V5Jd97fvisjytrunAApJRw75FKFawQREQXJg/UWzNe2v5prdT+tCYoL\nCbi4P521nROhfXTDsO0r5PbNEBWN5cH/h3DUW5w3BnHemC7pNkLgsPN0g3f8SNs/l8I8kLLteQVt\n0FzVrBsFqWlw3O6eOnOq9Ql59iE5RmMD0TFQWw11NTBtlrFzvE2kVa0U/AxDRqGmpoY1a9Zw4MAB\nKisrXTpJ9s722SHdWCnkQ8qg9vfHJkBZMbKpCREQgKyrRXv9GYi06iMnO0gNFVFWZHuB04JcvYio\nC/EE53VHjUVu+E+bg+PbpbQEmmwEGP1AnX4pcst6iInH8vMlbvc16gqWPuF6IP3k0bYPsGceCaMr\nhaiz5lrkZusN8gYMgawTemZYi1WatLc/N9JqA3AO20FK6GdQk7eJskJDPbK+DhES6m01ih7AUPbR\nW2+9xYkTJ/j+979PVVUVP/rRj4iPj2fOnDlm6zOHoGC3YgpSa4KifERb6agO4uL1ymR7Zaz8ZA2U\nFGH58c87d/tEx0BlhX6fs+/t6LfkjlE4b6weWD9+2PhJ9qrfgESDRWajxiN+uADLw08j4hO7rNFd\nxJCRcOJImy2vZX6u/sLo9xBtn4DneO+OHdDvccmV+v6z4wq52XrzO4PXF9bmlGvDqwtv4/idVasF\nv8GQUdizZw8PPfQQU6ZMwWKxMGXKFB588EG++uors/WZQ1CQe11FS4v1njl92zcKIsaeUVJShMw7\ng/x8LWL6pcb8+VFWkBpUVbTed+ygnuvuTm77yFQQFuShvYZPkU6jYOyJVlgsWGZf22mtgscZMlL/\nedn1upB/BqJjEPaiwk5xfAA6gv2ZhyAyGnHBNADkWUZB5mVBQn/jWV3RLepwjK5evIyIUv2P/A1D\nRkFKSViY/ocVGhpKTU0NVquVvLxeGoAKdtN95EhHTejgg885bKcAbdWbeg77DfMMXd6ZO99GBpLM\nPKjHJNyYwCXCImDgUOThPcZPKsoHIQjowad+dxBDRgC06XaT+TmG4wmA/uEeEel0H8lj+s+c6Fjd\nILe1UmhvSE5bOFYKLeZo+DwOQ6lqFfwGQ58wgwYN4sABfSk9atQo3nrrLd566y36d7N/jdcICnar\nTsGZhdFW4ZoD+1hOuf5T2L8Tcd3NiGiD83XbWarL6squpT62gRg1Fo4f0SuyjVCUr4+BDOpabUOP\nkzRIfz9PtBFXyD/T9UK5qBhkWameBVaQixh+vp4YkDQQeabZKEibDQpy2p+c1hZh4brWrpzjbezJ\nAlIN2/EbDBmFu+66i4QE/Ql4/vz5BAcHU11dzX333WeqONMIdi+mQGEuBAQ0t7NoA9EnTP/jzzwA\nSQMRs7oQd3H6tM+qaranRXY5pbSlrvPG6a6vY513FgWQRXng46sEABEYCIOGIU+4xktkTbUemO/C\nSgHQ4zoVpc6sI4chFkkDIed0c+yiMA+amowHmbG3BblwFmJy532ifIZIFVPwNwxlH1VUVDBihL5M\nj46O5u677wb06Wu9kkD3VgoU5utL/4BOio5i4qGmGsvNC/QPLaO0s1SXmQd1YzR4RBcFt2DE+WCx\nIA/v1auLO6Mo3/1xmT2MGDwSueFTpM3W/PMu0BsuGs48clwrOgZ59ID+Mw8MBEc9QdJAfdhMeanu\nBrJnHnU1YGy5o3c9SImgIOgTrtpn+xGGVgq/+c1v2tz+9NNPe1RMTyGCu+E+6sh15Lj+1EsQV1yP\n6GqhVkgfPd5xdv+dYwdhwNBu+aFFaBgMHoE81HlcQTY26H3/e8FKAYAhI+zZVc0tL2S+vQuvG+4j\nykt1ozBouDOFVzgGItnjCs501P69I2DcLaJUrYI/0aFR0DTN2a9ISun8WtM0cnNznbMQeh1upqRS\nmNtxkNmO5ZofYPnB/C5fXghhb8rW/AcobY1w4qhbqaitrj9qHJw8iqyr6fhARwFdLzEKYtxkiIxG\n+/Cvze6d/BwQosNMsTaJtupT8c7uvpqs16Y4M5DysiEm3nhmU28mKlr1P/IjOvRt3Hzzzc7XP/zh\nD132WSwWrr/evXbMXicoGGxdMwqyulIvZEow+YMyOgbZ0n10+jg0NnjMKMhP1iA//Sfi+tvaP9Ax\nmay3GIXQMMS1NyH/+ibs+xbGTrKP4Ezo+hwJR9qopiGGNf/MRZRV77TqXCl0MfOoNxNpdbrLFOc+\nHRqFV155BSklv/71r1m8eLFzuxCCqKioDjuj+jTuBJqNpKN6gkir0x8uNQ254T/69m5kHjk5byzi\notnIT/6GZhH6DIA2Wm7IQnvOfy8xCqAXmMmMD9H+8R6W1Avs3VG73qLbOYISYPhZP/Okgcic03r7\ni7xsxIzLu627NyCirHqbFIVf0KFRcGQcvfbaaz0ipsewp6R2Oku5BYbSUT2AiLYiMw8gbTbkuy8h\nt25AXHUDwtr9thHCYoE779cDzh+v1iuv597W+mdQlK+3djaaSusDiMAgxPW3I998Hrllg54ueuGs\nrl/I8T0n9Gs1c0EkDUR+s14vYqyv89rs5B4nMhqqK10D+YpzFkPvcFVVFR9++CGnTp2irq7OZV/L\nFUSvIShY7z9jszXPV+iMAnvLBJONAlFWqKpAe/Vp2LcD8b07EFd1PMClKwiLBW6/VzcMn6wBqSHO\nao0ti/Ihvq9bhXLeREy6GDnoA+Tf34XaGveqhu3uo5auIydJA6G2BnlQH1rUa1pVdBdHVlxVOXjg\n4UTh2xgyCi+99BI2m43p06f3XpdRSxx+5sYG40ahKB+irOY3BXM8ne7/FnH7QiyXtD3cpjsIiwVu\nvQekRH76D+TkGYiBw5oPKMrvVa4jB8JiwXLDnWgvPqF/7c6Et7BwxCVXItroYiqSByLR26ADfhNT\nEFHRukutQhkFf8CQUThy5AhvvfUWQb5e3WqU4BZGgXBDpxhNR+0uImUwsk8Y4vb7sEwxr8hJWCww\n9zbkpi+Qe7a3Mgpi6EjT7m0m4vzxMGaiHnA22giv5flCIG6/t+2djhGqB3fp84sdrcHPdVRTPL/C\nkH9g4MCBFBcXm62l53DMaW7oQv8jg+mo3UUMPx/Lir+YahCc94qy6rULe7c7t8maKr1Iq6NOsD6O\n5dZ7EDfcCR5+v0RElP4B2dQE/VMMx6N6PfaqZqkK2PwCQyuFMWPG8Nvf/pZZs2Zhtbq2f+6Rucqe\nxrHisRnrlCobG/XgYg+sFIAe9eWLMZOQH69CVlYgIqN6XTpqW4j4RI/GYVxIGggVZf4TTwC1UvAz\nDBmFQ4cOERcXx969rdPSeqNREMHBuo/UaFpqcb4emO4ho9CTiLGTkR/9Fbn/Wz1bp6j3paP2JCJp\noF4V7i+ZRwChffQ4nDIKfoEho/DUU0+ZraNncbiPjLbPzj4J0POzAnqCQcN03/jeHXDhLOccBWUU\n2sEeV/CnlYIQQv8dUe2z/YIuJx07Wl44sPSytEWg2X1kcKWgbf6v3gStOw3pfBRhsSDGTETu2e6c\nLEdYOCI8wtvSfBJxwTS9a+2Ic2ReuVGirKrVhZ9gyCiUlJTw9ttvc/DgQaqrq132rV692hRhpuJc\nKXQeU5CFeXp66LU3dd4dtbcydgr870t93kJh70xH7SlEdAziRz/ztoyeJzIays6hZBNFuxh6zH/z\nzTcJDAzkySefJDQ0lGeffZbJkyfzk5/8xGx95uBMSe3cfSS/+gyEQMy4wmRR3kOMvkAvZtu7o9fW\nKCjMRcTE6Z1zFec8hozCkSNHuOeeexg8eDBCCAYPHsw999zDxx9/bLY+c7AXr8lO3EeysRG5KQPG\nTUXEtj9Yp7cjwiNg2Cjknm1QXNCrM48UJhETD5XlyK6kcSt6JYaMgsVicbbJDg8Pp6KigpCQEEpK\neumTg6OiuUWnVGnvhdQSufN/UFmOJc3zVcW+hhg7GbJP6AV9vbhGQWES9tnjlCoX0rmOIaMwfPhw\ndu7cCcD48eNZvnw5L7zwAsOGDevkTB/F4T6yrxRkSSHaL+ajvfZblxnGcsOnehqqkUllvRwxdnLz\na7VSUJyFiLMbhZJC7wpRmI4ho3D//fczerSebTFv3jzGjBnDgAEDeOCBB0wVZxoteh9JKdH+8gbU\n1cHurWjLn0BWVejDVI7s1/vg9MYMq66SPKh59rQyCoqzsa8UZEmRl4UozMZQ9lFTUxNRUVEABAcH\nc8MNJlWL9hSBLVJSv/0adm9FfH8+IiERbeUytGcfQSQPhsBAxMXpXpXaUwghEGMnITd9AY6nQoXC\ngaMRnlopnPMYMgoLFy4kNTWViy++mKlTpxIaanKnUJMRFotuGMpL0L76DAYOQ6RfhwgIwPJzK9or\nS5B5mxFT0xD+0vQMEN+9FTHxIkSw+7OgFecmIsg+X0MZhXMeQ36R1157jYkTJ/LFF1+wYMECVqxY\nwfbt22lqajJbn3kEByO//i9UlGO54z5nDYIYMRrLI8/CuCmIa37gZZE9i4iyIlIneFuGwleJTUAq\no3DOY8goREVFceWVV7JkyRKWLVvG4MGDWbVqFQsWLDBbn3kEBUNTE+Ly6xCDXAPmImkgAfc/gUge\n6CVxCoUPEhsPBmIKUkrkjq+RtTU9IErhabrc5qK8vJyysjIqKysJDzc2i6CoqIhXX32VsrIyhBCk\np6dzzTXXUFVVxfLlyyksLCQhIYEHH3yQiIgeaq8QGgaBQYjrbumZ+ykUvRwRk4Dcu6PzMbbHD6P9\nfiniBz9CXDG35wQqPIIho5Cdnc2mTZvYvHkzDQ0NTJ8+nUWLFjF8+HBDNwkICOD2229n6NCh1NbW\n8uijjzJu3DjWr1/P2LFjmTt3LmvXrmXt2rXcdttt3fqGjGKZdz9ERJk/SU2hOFeIi9dnkFRXQkRU\nu4fJbV/pL7JP9JAwhScx5D564oknKCsrY8GCBbz++uvMmzfPsEEAiImJYejQoQD06dOH5ORkSkpK\n2LZtG2lpaQCkpaWxbds2N74F9xDDRyP8qf2xQtFNRGzntQpSa0Ju36y/zjrZA6oUnsbQSmHlypUE\nBnbZ09QmBQUFnDhxguHDh1NeXk5MjD6T2Gq1Ul7e9mSnjIwMMjIyAFi6dCnx8e61nAgMDHT7XLPx\nVW2+qgt8V5uv6oLuaWscOoISILKxntB2rtGw71tKy0sI6J9CU14WcVYrwsBnx7n6MzMTs3S1+26t\nW7fO0AW6MmSnrq6OZcuWMW/ePMLCwlz2CSHa9VOmp6eTnt5cL1BU5F4BTXx8vNvnmo2vavNVXeC7\n2nxVF3RPm7ToHxcVp45TNazt1uHaFx9DSCha+nfh/Vcp2rcLkTLYVF1m46vauqorKSnJ0HHtGoWv\nvvrK+VpKyeHDh7FarcTFxVFcXExZWRmjRo0ybBRsNhvLli1j5syZTJs2DYDo6GhKS0uJiYmhtLTU\nWSCnUCh8kIhovb6nHfeRtNmQ325GjJ+GGDYKCcjsk4aMgsJ3aNcotJy29s477zBlyhTmzJnj3PbJ\nJ5+Ql5dn6CZSSn7/+9+TnJzMtdde69w+efJkNmzYwNy5c9mwYQNTpkxx53tQKBQ9gLBYOk5LPbQb\nqioRU2dCYjIEBtqDzbN6UqaimxgKNH/11VdcffXVLtuuuuoql9VERxw+fJiNGzeyb98+Fi1axKJF\ni/j222+ZO3cue/bs4YEHHmDv3r3MnavS1xQKn6aDAja59SsIC4fRE/Q4Qv8BSPsoW08iTx9H1lR3\nfqDCLQxFj61WK9u3b2fq1KnObdu3bzfs7hk1ahR/+9vf2tz35JNPGrqGQqHwPiImHnloT6vtsrEB\nuWuL3ibFPu5WpAxBHtjp0fvLxka0pb9AXHUD4rqbPXpthY4hozB//nyWLVvGhx9+SFxcHEVFRWRn\nZ/Pzn//cbH0KhcKXiEuAshKkzeaaVbTvW6it0V1HDlIGw//WISvKEFFWz9y/KE+f+VHqe4HfcwVD\nRmHcuHG88sor7Ny5k5KSEiZOnMjEiROJjIw0W59CofAlYhNAalBeAnF9nZvltq/0Oc7njXNuEwOG\nIAGyT3puJkl+jn6/yrbT1xXdx3DxQWRkJJdccomZWhQKhY8jYhP0D/riQqdRkPX1yN1bERdd5mws\nCegrBUBmn9DngHsAaTcKVFV45HqK1hiep/DZZ59x4MABKisrXfYtXrzYFGEKhcIHsc8ql6VFOKuK\nDu2GhnrEhAtdDhWR0RAdq68UPEWB3ShUKqNgFoayj/7whz+QkZHB6NGjOX78ONOmTaO8vJzU1FSz\n9SkUCl/CMZ2vRQaS3PUN9AmDkWNaH58yyKPtLppXCsp9ZBaGjMI333zD448/zjXXXENAQADXXHMN\nixYtYv/+/WbrUygUPoQI7QPhkU6jILUm3XU0ZhLCMdGw5fEpQyA3C2mzObfJ3Cy0Ne8gGxu6LqAg\nV/+/ptrlmgrPYcgoNDQ0EBenj+MLDg6mvr6e5ORkTp48aaY2hULhi8TGI4vtK4UTR6GyHMZPbfvY\nlMHQZIO8bACkpqG9swL5+Vrkhk+7dFtZX69nHVlj9Q0qrmAKhoxCcnIyx44dA2Do0KGsWbOGf/zj\nH8TGxpoqTqFQ+CCxCc6UULnrGwgIQIyd1OahYsAQ/Th7XEFu+gJOHoXoGOQnf0fWdWEQT6HddTRs\nlP6/ciGZgiGjMG/ePCwW/dA777yTEydOsGPHjt49eU2hULiFiI1vdh/t+gZGjkGEtTMcq0W7C1ld\nifzgjzAyFcs9j0FlOTLjI+M3ztddR2L4+frXKthsCoayj1rOTujfvz9PPPGEaYIUCoWPE5ug+/RP\nZUJeNmLWNe0e6tLu4oP3oaYay8136U3yLpiG/PwD5KyrwUALaGnPPBJD7c32KsvpYP6bwk0MrRQU\nCoXCiX3Yjlz3bwDEBe3EE+yIlCGQeRC58TPEpXOcXVMtc2+Dulrkf/5p7L75ORBlhYR++tdqpWAK\nyigoFIou4ZjAJrduhJQhiBaVzW2SMhjq6yAy2mUmukgehJiWhvzyY5o6mObmQBbkQGIShEeAECqm\nYBLKKCgUiq5hL2DD1tjpKgFADD1P///78xFh4a77vnMzNDVRvfrdzu+bn4Pom4SwBOhpsarVhSl4\nZsamQqHwH6JjwWIBTUNcMK3Tw8Xw87E8/Qaib//W+/r2R1xyFbWfr4XiAiw/XICwts5qlLU1UFGm\nrxQAIqORyn1kCoaMgpSS//73v2zevJnKykpeeOEFDhw4QFlZGRdddJHZGhUKhQ8hAgLAGgeaBgOH\nGTunDYPg3Hfj/xGePICqVW+jHdytryhmXO46ntdetCb6OoxClHIfmYQh99Hq1av58ssvSU9Pd84E\njYuL41//+pep4hQKhW8iLr0Gcd3N7c5V79K1AgMJv+EOLE/9DlKGIP/4CvLdFS7HODKPSLQbl4ho\nFWg2CUNGYcOGDTzyyCNcfPHFzl+Cvn37UlBQYKo4hULhm1iuugHLzCs8ek3RLxnLQ79BXDoHuWV9\nc9U0OFtmk6CvFERklIopmIQho6BpGqGhoS7b6urqWm1TKBSK7iAsFsQVc0FK5Nf/bd6RnwMx8YiQ\nEP3ryGiorkRqTd4Reg5jyChMmDCBP/7xjzQ2NgJ6jGH16tVMmtR2abtCoVC4i4hPhPPHIzdnIDUN\nsLuPWsYlIqJBSqiu8pLKcxdDRuGOO+6gtLSUefPmUVNTwx133EFhYSG33nqr2foUCoUfIi5Oh+IC\nOLxX31CQg3BkHoEeaAblQjIBQ9lHYWFhLFq0iLKyMoqKioiPj8dq9dDMVYVCoTgLMeFCZFg4clOG\nnuFUVdmcjoo+wEeCCjabgCGjoNmXcFFRUURFRTm3OZrkKRQKhScRwSGIqWnITV8gpl+qb+vbxkpB\npaV6HENG4eabb25ze0BAADExMUybNo0bb7xRBZ4VCoXHEDMuR67/BO3jVfqGlu6jiGhANcUzA0NG\nYf78+Wzbto25c+cSFxdHUVERH374IRMnTiQpKYk1a9bw3nvvcffdd5utV6FQ+AsDh0LKEDh2CIQF\n4vs174twxBSU+8jTGDIK//73v3n22WcJCwsDICkpiWHDhvHoo4/y8ssvM3DgQB555BFThSoUCv9C\nCIGYkY5ctRLiEhBBzeM+RWAghIWrQLMJGAoK1NTUUF9f77Ktvr6emhp9apLVaqWhwY15qwqFQtEB\nYlqaPqSnZTzBQUS0GslpAoZWCmlpafzmN7/h6quvJj4+nuLiYj755BPS0tIA2L17N0lJbbxpCoVC\n0Q1ERBTi9nud7bpdiIxCqpWCxzFkFG677Tb69evH119/TWlpKVarlSuvvJL09HQAUlNTWbx4salC\nFQqFf2K5aHbbOyKjoTCvZ8X4AYaMgsVi4YorruCKK9rudRIcHOxRUQqFQtEZIjIaeeKIt2Wccxie\np1BWVkZmZiaVlZVIKZ3bL7vsMlOEKRQKRYdEREFVBVJKj3RrVegYMgpbt27l5Zdfpn///mRlZTFg\nwACysrIYNWqUMgoKhcI7REZDUxPUVOsjOhUewZBRWL16NQsXLmT69OnMnz+f5557ji+//JKsrCyz\n9SkUCkXbtOx/pIyCxzCUklpUVMT06dNdtqWlpbFx40ZDN3nttdf48Y9/zEMPPeTcVlVVxZIlS3jg\ngQdYsmQJVVWq26FCoTCOsFc1q1YXnsWQUYiKiqKsrAyAhIQEjhw5Qn5+vrMnUmfMmjWLxx9/3GXb\n2rVrGTt2LL/73e8YO3Ysa9eu7aJ0hULh10TajYKqavYohozC7NmzOXToEABz5sxh8eLFLFq0qN1s\npLMZPXo0ERGuy7tt27Y56xzS0tLYtm1bV3QrFAp/x+4+UrUKnsVQTOG6665zdkRNS0sjNTWVuro6\nUlJS3L5xeXk5MTExgF4RXV7e/hubkZFBRkYGAEuXLiU+Pt6tewYGBrp9rtn4qjZf1QW+q81XdYHv\nanNHl4yKpAAI12yEm/g9nUs/M0PX7ewATdO4/fbbee+99wiy9x7xtBAhRIcpZenp6c5COdBjHO4Q\nHx/v9rlm46vafFUX+K42X9UFvqvNbV0hfajOz6XWxO/pXPmZGe060an7yGKxkJSURGVlpeGbGyE6\nOprS0lIASktLnXMaFAqFwjCRUaopnocx5D6aMWMGzz77LFdffTVxcXEuT/Vjxoxx68aTJ09mw4YN\nzJ07lw0bNjBlyhS3rqNQKPyYyGikCjR7FENG4fPPPwdgzZo1LtuFELzyyiudnr9ixQoOHDhAZWUl\nd999NzfeeCNz585l+fLlrFu3joSEBB588EE35CsUCr8mIgrKS5xfytxstFUrscz/KcIa60VhvRdD\nRuHVV1/t1k1+9rOftbn9ySef7NZ1FQqFfyMio5HZJwGQUqL96VU4sh+58T+I625pdbz2xb+Q+74l\n4EHVwLM9DA9ZttlsHDx4kK+//hqAuro66urqTBOmUCgUnWKPKUgpkVs3wpH9EBaB3JyB1JpcDpUN\n9chP/gYHdiIryrwk2PcxZBROnz7NT3/6U9544w1ef/11AA4cOOB8rVAoFF4hMhpsjVBeglzzLgwa\njrjtHigpgv27XA6VWzdClT1h5lSmF8T2DgwZhZUrV3LTTTexYsUKAgN1j9Po0aOdBW0KhULhFeyt\nLrS/vAEVpVhuvRsx4UKIjEbb9LnzMCkl8r8fQ2IyCIE8qYxCexgyCtnZ2cycOdNlW2hoqBrBqVAo\nvIpwNMXbuQUx43LEkJGIwCDE9Mtg91ZkhZ72zpH9kH0CceX10C8FefKo90T7OIaMQkJCAsePH3fZ\nlpmZSb9+/UwRpVAoFIZw9D8Kj0Rcf4dzs5h5OTQ1Ib9eB4C27iP9mKlpiMHD4VSmy1wYRTOGjMJN\nN93E0qVL+dvf/obNZhf9cfYAABFySURBVOODDz7gxRdf5Ic//KHZ+hQKhaJ94hMhOBjx/XnNqwZA\n9EuBEaORX32BLMqHnd8gZl6BCAmBQSOgvBRKi70o3HcxZBQmTZrE448/TkVFBaNHj6awsJCHH36Y\n8ePHm61PoVAo2kVERmNZ8VcsMy5vvW/mlVCQg/b2chAgZl2jbx88XD9ABZvbxFCdQkVFBUOGDOHH\nP/6x2XoUCoWiSwh7T7ZW2ydehPzrm5B5ACZdhIhL0HcMGAIWC/Jkph6UVrhgaKWwcOFCnnnmGb76\n6itVm6BQKHoFIiQEcaHent9y2XeatweHQNIgFWxuB0Mrhddee43//e9/fP7556xcuZKJEycyY8YM\nJkyYQEBAgNkaFQqFwi3Ed26BYefDiNGu24eMQH77P6SUHXZo9kcMT1678sorWbJkCcuWLWPw4MGs\nWrWKBQsWmK1PoVAo3EZERmGZltb6g3/QcKiuhKJ87wjzYQy3uXBQXl5OWVkZlZWVhIeHm6FJoVAo\nTEUMHgGgitjawJD7KDs7m02bNrF582YaGhqYPn06ixYtYvjw4WbrUygUCs+TPBACA+HUUZgyw9tq\nfApDRuGJJ55g2rRpLFiwgNTUVOdoToVCoeiNiMAgSBmiVgptYMgorFy50tnzSKFQKM4FxOARyC1f\nIjUNoR50nRj6pA8MDKSsrIzMzEwqKytdysMvu+wy08QpFAqFaQweDus/gfwc6J/ibTU+gyGjsHXr\nVl5++WX69+9PVlYWAwYMICsri1GjRimjoFAoeiVi8AgkIE8dRSij4MTQmmn16tUsXLiQ5557jtDQ\nUJ577jkWLFjAkCFDzNanUCgU5tAvBYJDQMUVXDBkFIqKipg+fbrLtrS0NDZu3GiKKIVCoTAbERAA\ng4cj//sRTU8sRHtnBdqXnyAry70tzasYLl4rK9PH1yUkJHDkyBHy8/PRNM1UcQqFQmEmljvuR8y9\nDRKTkPt2IP/ye7Rlv0I2+u+sGEMxhdmzZ3Po0CEuvPBC5syZw+LFixFCcO2115qtT6FQKExDJCYh\n5twI6NPZ2PUN2mu/Rf7zj4ib/LMBqCGjMHfuXOfrtLQ0UlNTqaurIyVFBWcUCsW5gRACJlyIuHQO\nMuNDZOpExJiJ3pbV47iVnBsfH68MgkKhOCcR358HSQPR3nvJL+MLqmJDoVAoWiCCQ7D85CGorkT7\nw8vIxkZkYR7y0B60LeuRu7chTx5FlhYjbTZvy/U4qkxZoVAozkKkDEHccCdy9dsU3DQLWhTsukx2\nDgvH8vMliEHnTh84ZRQUCoWiDcRl3wEEYVKjpk84Iq4vWOOgrgbKS5DlZciPV6G9swLLr5a3OwGu\nt6GMgkKhULSBsFgQ6dcRER9PXVFR6/2AjEtAe2kx8sO/IG64s+dFmoCKKSgUCoWbiDGTEDOvQH72\nAfLYIW/L8QjKKCgUCkU3ED/4EcTEob2zAllf72053UYZBYVCoegGok8YlnkPQEEO8h/vuXSRdiA1\nDbl9k/5Pa3LrPrKhZwyOiikoFApFNxHnj0dcdi1y3cfIU5lYrr8dMWocAPL4YbRVK+HEEf3glMFY\nbrgTUie2nh19FrK+DrlnG3LbV7B/J5anf4+wxpn6vXjdKOzatYt3330XTdOYPXu2S/W0QqFQ9BbE\njf8HKYORH61CW/YrOH88IjoWueVLiI5BzP8ZBAYiP3gf7aXFMGocYsbletvuxGRESKjufso6ptdB\nHD0I+7ZDQwNExyJmXgFa61WIp/GqUdA0jbfffptf/epXxMXF8dhjjzF58mRVLa1QKHodIiBADzpf\nOAu54VPkv9cgj+5HXHUDYs4PEKFhAMiJ05Eb/oP8eBXyrWXNdQ/RsVBZBo5Go7HxiIvSEVNmwPDz\nEZaAHvk+vGoUMjMz6devH4mJiQBcdNFFbNu2TRkFhULRaxFBwYj07yJnXgW2RkR4hOv+wCDE7O8g\nL7kKCnIgLxuZm62/jklADBkBg0cgrLFe0e9Vo1BSUkJcXLN/LC4ujqNHj3pRkUKhUHgGERICISHt\n7w8KguRBkDyIjiMLPYvXYwpGyMjIICMjA4ClS5cSHx/v1nUCAwPdPtdsfFWbr+oC39Xmq7rAd7X5\nqi7wXW1m6fKqUYiNjaW4uNj5dXFxMbGxrZdM6enppKenO78uaqO60Ajx8fFun2s2vqrNV3WB72rz\nVV3gu9p8VRf4rrau6kpKSjJ0nFfrFIYNG0Zubi4FBQXYbDa+/vprJk+e7E1JCoVC4dd4daUQEBDA\nj370I55++mk0TePSSy9lwIAB3pSkUCgUfo3XYwoTJ05k4kT/m26kUCgUvohqc6FQKBQKJ8ooKBQK\nhcKJMgoKhUKhcCJkWy39FAqFQuGX+NVK4dFHH/W2hHbxVW2+qgt8V5uv6gLf1earusB3tZmly6+M\ngkKhUCg6RhkFhUKhUDgJ+PWvf/1rb4voSYYOHeptCe3iq9p8VRf4rjZf1QW+q81XdYHvajNDlwo0\nKxQKhcKJch8pFAqFwonX21z0FL4y9vO1117j22+/JTo6mmXLlgFQVVXF8uXLKSwsJCEhgQcffJCI\niIhOruR5ioqKePXVVykrK0MIQXp6Otdcc43X9TU0NPDUU09hs9loamriwgsv5MYbb6SgoIAVK1ZQ\nWVnJ0KFDuf/++wkM7PlfaU3TePTRR4mNjeXRRx/1GV333nsvoaGhWCwWAgICWLp0qdffSwfV1dX8\n/ve/JysrCyEE99xzD0lJSV7VlpOTw/Lly51fFxQUcOONN5KWluYTP7OPP/6YdevWIYRgwIABLFy4\nkLKyMs//rkk/oKmpSd53330yLy9PNjY2yocfflhmZWV5Rcv+/fvlsWPH5M9//nPntvfff19+8MEH\nUkopP/jgA/n+++97RVtJSYk8duyYlFLKmpoa+cADD8isrCyv69M0TdbW1koppWxsbJSPPfaYPHz4\nsFy2bJnctGmTlFLKN954Q3722Wc9qsvBRx99JFesWCGfeeYZKaX0GV0LFy6U5eXlLtu8/V46ePnl\nl2VGxv9v795Comr3OI5/x8NgKo7jWA1YUpZ0ToisLMvOL1FRSgqdp+yoWWEXdtVNRUHa2bCi0qAM\nI5C6iOCNDlREJyOz7IQJImbTmGkzntasfTG4eH3d7869ydbs5v+5Updr1o+1Hufv88xaz/Onqqqe\na9rc3Ow12VTV856xbt06tb6+3ityffnyRc3IyFBbW1tVVfW0sVu3bvVKW/OJ4aO/LvsZEBCgLfup\nh5EjR3b7L+Px48ckJSUBkJSUpFs2s9msfXDVp08foqKicDgcuuczGAwEBQUBoCgKiqJgMBioqKhg\n0qRJAEyfPl2X8/blyxeePXvGrFmzAFBV1Sty/RO9ryWA0+nk9evXzJw5E/AsFhMSEuIV2TqVl5dj\ntVrp27ev1+Ryu920tbWhKAptbW2Eh4f3SlvzieEjb1/2s7GxEbPZDEB4eDiNjY06J/J0nauqqhg6\ndKhX5HO73eTk5FBXV8cff/xB//79CQ4Oxt/fs5h5REQEDofjl+cqLCxkxYoVuFwuAJqamrwiV6e9\ne/cCMGfOHGbPnu0V17K+vp6wsDBOnDhBdXU1MTEx2Gw2r8jW6f79+0yZMgXwjr/PiIgIFi5cyObN\nmzEajcTFxRETE9Mrbc0nisL/E4PBgMGg74qtLS0t5OXlYbPZCA4O7rJNr3x+fn4cOHCA79+/k5ub\nS21t7S/P8HdPnz7FZDIRExNDRUWF3nG62b17NxERETQ2NrJnz55uK2/pdS0VRaGqqoq1a9cSGxvL\nuXPnKC0t9YpsAB0dHTx9+pRly5Z126ZXrubmZh4/fkx+fj7BwcEcPHiQ58+f98qxfKIo9HTZT72Y\nTCYaGhowm800NDQQFhamW5aOjg7y8vKYOnUqEydO9Lp8ISEhjBo1irdv3+J0OlEUBX9/fxwOxy+/\npm/evOHJkyeUlZXR1taGy+WisLBQ91ydOo9rMpmIj4/n/fv3XnEtLRYLFouF2NhYACZNmkRpaalX\nZAMoKytj8ODBhIeHA97R/svLy+nXr5927IkTJ/LmzZteaWs+8ZmCty/7OX78eO7cuQPAnTt3iI+P\n1yWHqqoUFBQQFRXFggULvCbft2/f+P79O+C5E+nFixdERUUxatQoHj58CMDt27d/+TVdtmwZBQUF\n5Ofns337dkaPHs3WrVt1zwWe3l7nkFZLSwsvXrwgOjpa92sJniEYi8Wi9fbKy8sZMGCAV2SDrkNH\noH/7B896zO/evaO1tRVVVbVz1httzWceXnv27BlFRUXasp8pKSm65Dh8+DCvXr2iqakJk8lEWloa\n8fHxHDp0CLvdrustb5WVlezatYvo6Giti7x06VJiY2N1zVddXU1+fj5utxtVVUlISGDJkiV8+vSJ\nw4cP09zczODBg8nKyiIwMPCX5fqriooKrl27xs6dO70i16dPn8jNzQU8wzWJiYmkpKTQ1NTkFW3t\n48ePFBQU0NHRQb9+/cjIyEBVVd2ztbS0kJGRwfHjx7WhU285ZyUlJTx48AB/f38GDRrEpk2bcDgc\nP72t+UxREEII8WM+MXwkhBCiZ6QoCCGE0EhREEIIoZGiIIQQQiNFQQghhEaKgvitZWdn6/a0sd1u\nZ+XKlbjdbl2OL8T/Qm5JFT6hpKSEuro6tm7d2mvHyMzMZOPGjYwdO7bXjiFEb5OeghA9oCiK3hGE\n+CWkpyB+a5mZmaxdu1Z7ujcgIACr1cqBAwdwOp0UFRVRVlaGwWBgxowZpKWl4efnx+3bt7l58yZD\nhgzh7t27zJ07l+nTp3Py5Emqq6sxGAzExcWRnp5OSEgIx44d4969ewQEBODn58eSJUtISEhgy5Yt\nFBcXa3PTnD59msrKSkJDQ1m0aBGzZ88GPD2ZmpoajEYjjx49IjIykszMTIYMGQJAaWkp169fx+Vy\nYTabWbduHWPGjNHtvIrfl09MiCd8W2BgIMnJyd2Gj/Lz8zGZTBw9epTW1lb279+PxWJhzpw5ALx7\n947Jkydz+vRpFEXB4XCQnJzMiBEjcLlc5OXlcfnyZWw2G1lZWVRWVnYZPqqvr++S48iRIwwcOJCT\nJ09SW1vL7t27sVqtjB49GvDMurpjxw4yMjK4dOkSZ8+eZe/evdTW1nLjxg327dtHREQE9fX18jmF\n6DUyfCR80tevXykrK8NmsxEUFITJZGL+/Pk8ePBA+x2z2cy8efPw9/fHaDRitVoZO3YsgYGBhIWF\nMX/+fF69etWj49ntdiorK1m+fDlGo5FBgwYxa9YsbaI1gOHDhzNu3Dj8/PyYNm0aHz9+BDzThre3\nt1NTU6PNFWS1Wn/q+RCik/QUhE+y2+0oisKGDRu0n6mq2mUxpsjIyC77fP36lcLCQl6/fk1LSwtu\nt7vHE6M1NDQQGhpKnz59urz+hw8ftO9NJpP2tdFopL29HUVRsFqt2Gw2Ll++TE1NDXFxcaxatcqr\npn8Xvw8pCsIn/H1hFIvFQkBAAGfOnNFWrvqR4uJiAPLy8ggNDeXRo0ecPXu2R/uazWaam5txuVxa\nYbDb7T1+Y09MTCQxMRGn08mpU6e4cOECWVlZPdpXiP+GDB8Jn2Aymfj8+bM2Fm82m4mLi+P8+fM4\nnU7cbjd1dXX/cTjI5XIRFBREcHAwDoeDa9euddkeHh7e7XOETpGRkQwbNoyLFy/S1tZGdXU1t27d\nYurUqT/MXltby8uXL2lvb8doNGI0GnVfnU/8vqQoCJ+QkJAAQHp6Ojk5OQBs2bKFjo4OsrOzWbNm\nDQcPHqShoeEfXyM1NZWqqipWr17Nvn37mDBhQpftixcv5sqVK9hsNq5evdpt/23btvH582c2btxI\nbm4uqampPXqmob29nQsXLpCens769ev59u3bv10qUoifQW5JFUIIoZGeghBCCI0UBSGEEBopCkII\nITRSFIQQQmikKAghhNBIURBCCKGRoiCEEEIjRUEIIYRGioIQQgjNvwAfN0RFXhdj8gAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" ] }, "metadata": {}, @@ -397,7 +412,8 @@ ], "source": [ "util.plot_curve(loss_list, \"loss\")\n", - "util.plot_curve(avg_return_list, \"average return\")" + "util.plot_curve(avg_return_list, \"average return\")\n", + "util.plot_curve(avg_advantage_variance_list, \"average advantage variance\")" ] }, { @@ -425,7 +441,209 @@ "\n", "can remove the baseline.\n", "\n", - "Modify the code to compare the variance and performance before and after adding baseline. And explain wht the baseline won't introduce bias. Then, write a report about your findings and explainations. " + "Modify the code to compare the variance and performance before and after adding baseline. And explain why the baseline won't introduce bias. Then, write a report about your findings and explainations. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1: Average Return = 15.07 | Average Advantage Variance: 17.98873525729186\n", + "Iteration 2: Average Return = 17.27 | Average Advantage Variance: 24.259566651949285\n", + "Iteration 3: Average Return = 19.4 | Average Advantage Variance: 30.39233750543137\n", + "Iteration 4: Average Return = 20.87 | Average Advantage Variance: 34.60069318204511\n", + "Iteration 5: Average Return = 19.82 | Average Advantage Variance: 31.314898097805916\n", + "Iteration 6: Average Return = 22.94 | Average Advantage Variance: 40.7568094184233\n", + "Iteration 7: Average Return = 22.28 | Average Advantage Variance: 37.74998250285457\n", + "Iteration 8: Average Return = 22.94 | Average Advantage Variance: 38.78101747563966\n", + "Iteration 9: Average Return = 25.12 | Average Advantage Variance: 45.761837500421606\n", + "Iteration 10: Average Return = 27.19 | Average Advantage Variance: 52.82168922122262\n", + "Iteration 11: Average Return = 28.93 | Average Advantage Variance: 59.846480706886176\n", + "Iteration 12: Average Return = 28.39 | Average Advantage Variance: 56.644527151990275\n", + "Iteration 13: Average Return = 34.1 | Average Advantage Variance: 76.97377848497015\n", + "Iteration 14: Average Return = 32.65 | Average Advantage Variance: 70.55167723972754\n", + "Iteration 15: Average Return = 37.42 | Average Advantage Variance: 88.13425439000213\n", + "Iteration 16: Average Return = 35.18 | Average Advantage Variance: 79.30240705583327\n", + "Iteration 17: Average Return = 32.5 | Average Advantage Variance: 69.97039541707923\n", + "Iteration 18: Average Return = 39.19 | Average Advantage Variance: 94.2904341173091\n", + "Iteration 19: Average Return = 41.73 | Average Advantage Variance: 103.92601392727282\n", + "Iteration 20: Average Return = 42.05 | Average Advantage Variance: 103.99257977348967\n", + "Iteration 21: Average Return = 42.11 | Average Advantage Variance: 104.89584131423284\n", + "Iteration 22: Average Return = 45.93 | Average Advantage Variance: 118.66045468218458\n", + "Iteration 23: Average Return = 44.64 | Average Advantage Variance: 113.88206899584233\n", + "Iteration 24: Average Return = 45.75 | Average Advantage Variance: 118.51032952438266\n", + "Iteration 25: Average Return = 48.07 | Average Advantage Variance: 126.16384444022941\n", + "Iteration 26: Average Return = 50.03 | Average Advantage Variance: 134.5234890978518\n", + "Iteration 27: Average Return = 48.11 | Average Advantage Variance: 126.55897573954617\n", + "Iteration 28: Average Return = 49.45 | Average Advantage Variance: 131.74688877422443\n", + "Iteration 29: Average Return = 47.21 | Average Advantage Variance: 122.7608277162396\n", + "Iteration 30: Average Return = 50.56 | Average Advantage Variance: 135.83763136133996\n", + "Iteration 31: Average Return = 49.1 | Average Advantage Variance: 129.94562320002058\n", + "Iteration 32: Average Return = 54.49 | Average Advantage Variance: 151.0510482861703\n", + "Iteration 33: Average Return = 50.09 | Average Advantage Variance: 133.4490538033892\n", + "Iteration 34: Average Return = 49.64 | Average Advantage Variance: 132.64025183352587\n", + "Iteration 35: Average Return = 54.76 | Average Advantage Variance: 152.95771567447488\n", + "Iteration 36: Average Return = 56.61 | Average Advantage Variance: 158.71447656714705\n", + "Iteration 37: Average Return = 53.11 | Average Advantage Variance: 145.4200272660054\n", + "Iteration 38: Average Return = 57.82 | Average Advantage Variance: 163.68843848051407\n", + "Iteration 39: Average Return = 57.76 | Average Advantage Variance: 163.1967543818422\n", + "Iteration 40: Average Return = 55.12 | Average Advantage Variance: 153.0471693865027\n", + "Iteration 41: Average Return = 54.56 | Average Advantage Variance: 150.83696743769914\n", + "Iteration 42: Average Return = 60.15 | Average Advantage Variance: 172.4882976604602\n", + "Iteration 43: Average Return = 56.96 | Average Advantage Variance: 159.13974513624925\n", + "Iteration 44: Average Return = 56.71 | Average Advantage Variance: 159.0288286001276\n", + "Iteration 45: Average Return = 62.12 | Average Advantage Variance: 179.0243915544896\n", + "Iteration 46: Average Return = 61.46 | Average Advantage Variance: 176.85944016248106\n", + "Iteration 47: Average Return = 61.64 | Average Advantage Variance: 178.1822465379232\n", + "Iteration 48: Average Return = 62.54 | Average Advantage Variance: 180.48829735947496\n", + "Iteration 49: Average Return = 63.13 | Average Advantage Variance: 185.0033715857327\n", + "Iteration 50: Average Return = 57.41 | Average Advantage Variance: 162.58400523457303\n", + "Iteration 51: Average Return = 66.28 | Average Advantage Variance: 196.20115813447293\n", + "Iteration 52: Average Return = 60.79 | Average Advantage Variance: 175.35972648933014\n", + "Iteration 53: Average Return = 64.15 | Average Advantage Variance: 186.35501600348726\n", + "Iteration 54: Average Return = 62.55 | Average Advantage Variance: 180.64528544736172\n", + "Iteration 55: Average Return = 61.48 | Average Advantage Variance: 177.38064297854646\n", + "Iteration 56: Average Return = 70.65 | Average Advantage Variance: 212.41116672973388\n", + "Iteration 57: Average Return = 68.17 | Average Advantage Variance: 202.70380876828568\n", + "Iteration 58: Average Return = 65.08 | Average Advantage Variance: 191.84987149082335\n", + "Iteration 59: Average Return = 69.83 | Average Advantage Variance: 209.2672366722662\n", + "Iteration 60: Average Return = 77.01 | Average Advantage Variance: 236.62523402722152\n", + "Iteration 61: Average Return = 77.55 | Average Advantage Variance: 239.07744235445833\n", + "Iteration 62: Average Return = 79.43 | Average Advantage Variance: 245.0812624759146\n", + "Iteration 63: Average Return = 75.95 | Average Advantage Variance: 233.73103679982214\n", + "Iteration 64: Average Return = 79.47 | Average Advantage Variance: 245.21732948979385\n", + "Iteration 65: Average Return = 73.09 | Average Advantage Variance: 221.7741435321774\n", + "Iteration 66: Average Return = 80.21 | Average Advantage Variance: 248.86657222663212\n", + "Iteration 67: Average Return = 85.3 | Average Advantage Variance: 264.08645777997776\n", + "Iteration 68: Average Return = 80.84 | Average Advantage Variance: 250.83204418102667\n", + "Iteration 69: Average Return = 82.06 | Average Advantage Variance: 254.40793448872319\n", + "Iteration 70: Average Return = 89.24 | Average Advantage Variance: 277.8516626113031\n", + "Iteration 71: Average Return = 91.81 | Average Advantage Variance: 288.17092436324623\n", + "Iteration 72: Average Return = 94.63 | Average Advantage Variance: 300.1178249906723\n", + "Iteration 73: Average Return = 99.04 | Average Advantage Variance: 314.18512101162617\n", + "Iteration 74: Average Return = 105.22 | Average Advantage Variance: 332.3944809299041\n", + "Iteration 75: Average Return = 118.31 | Average Advantage Variance: 378.5654374226116\n", + "Iteration 76: Average Return = 121.46 | Average Advantage Variance: 385.60203499634395\n", + "Iteration 77: Average Return = 119.73 | Average Advantage Variance: 381.91600148350255\n", + "Iteration 78: Average Return = 119.72 | Average Advantage Variance: 382.1346147848214\n", + "Iteration 79: Average Return = 138.14 | Average Advantage Variance: 444.825602089336\n", + "Iteration 80: Average Return = 127.85 | Average Advantage Variance: 407.6044104774574\n", + "Iteration 81: Average Return = 137.89 | Average Advantage Variance: 441.71671559445605\n", + "Iteration 82: Average Return = 129.0 | Average Advantage Variance: 414.35461732857965\n", + "Iteration 83: Average Return = 139.75 | Average Advantage Variance: 448.80049076254386\n", + "Iteration 84: Average Return = 139.74 | Average Advantage Variance: 446.13348336138995\n", + "Iteration 85: Average Return = 137.64 | Average Advantage Variance: 442.4209762418483\n", + "Iteration 86: Average Return = 137.1 | Average Advantage Variance: 440.69758027219154\n", + "Iteration 87: Average Return = 139.93 | Average Advantage Variance: 446.0127710256396\n", + "Iteration 88: Average Return = 140.26 | Average Advantage Variance: 446.43292476636225\n", + "Iteration 89: Average Return = 143.18 | Average Advantage Variance: 455.1543973648255\n", + "Iteration 90: Average Return = 151.18 | Average Advantage Variance: 478.02890536608567\n", + "Iteration 91: Average Return = 149.82 | Average Advantage Variance: 474.8489712994313\n", + "Iteration 92: Average Return = 153.43 | Average Advantage Variance: 484.3441318615481\n", + "Iteration 93: Average Return = 157.22 | Average Advantage Variance: 495.13761951511435\n", + "Iteration 94: Average Return = 163.58 | Average Advantage Variance: 509.84860387406474\n", + "Iteration 95: Average Return = 165.33 | Average Advantage Variance: 511.91289314584435\n", + "Iteration 96: Average Return = 169.97 | Average Advantage Variance: 524.4769097030922\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 97: Average Return = 169.86 | Average Advantage Variance: 524.5263287282062\n", + "Iteration 98: Average Return = 176.71 | Average Advantage Variance: 539.9921097000191\n", + "Iteration 99: Average Return = 174.43 | Average Advantage Variance: 535.058614025152\n", + "Iteration 100: Average Return = 176.2 | Average Advantage Variance: 539.0051666387105\n", + "Iteration 101: Average Return = 185.43 | Average Advantage Variance: 560.1852420366822\n", + "Iteration 102: Average Return = 187.21 | Average Advantage Variance: 563.3867450825511\n", + "Iteration 103: Average Return = 185.87 | Average Advantage Variance: 563.1198251073577\n", + "Iteration 104: Average Return = 190.54 | Average Advantage Variance: 573.1258449778474\n", + "Iteration 105: Average Return = 190.25 | Average Advantage Variance: 572.3870107768262\n", + "Iteration 106: Average Return = 190.91 | Average Advantage Variance: 573.6210221642276\n", + "Iteration 107: Average Return = 186.53 | Average Advantage Variance: 562.7784407716526\n", + "Iteration 108: Average Return = 187.37 | Average Advantage Variance: 565.9406941649773\n", + "Iteration 109: Average Return = 189.42 | Average Advantage Variance: 570.2138834245601\n", + "Iteration 110: Average Return = 189.11 | Average Advantage Variance: 569.3320141979549\n", + "Iteration 111: Average Return = 186.09 | Average Advantage Variance: 561.2649158417557\n", + "Iteration 112: Average Return = 189.12 | Average Advantage Variance: 568.0836558974601\n", + "Iteration 113: Average Return = 187.45 | Average Advantage Variance: 566.0837000315038\n", + "Iteration 114: Average Return = 188.14 | Average Advantage Variance: 567.428133700983\n", + "Iteration 115: Average Return = 188.17 | Average Advantage Variance: 564.6584741109092\n", + "Iteration 116: Average Return = 186.31 | Average Advantage Variance: 563.5194788980236\n", + "Iteration 117: Average Return = 188.07 | Average Advantage Variance: 566.3828262406358\n", + "Iteration 118: Average Return = 190.58 | Average Advantage Variance: 573.2912512744505\n", + "Iteration 119: Average Return = 189.88 | Average Advantage Variance: 572.1843825386998\n", + "Iteration 120: Average Return = 189.97 | Average Advantage Variance: 570.5475639506664\n", + "Iteration 121: Average Return = 186.23 | Average Advantage Variance: 561.5233957040315\n", + "Iteration 122: Average Return = 194.57 | Average Advantage Variance: 581.7911166226448\n", + "Iteration 123: Average Return = 193.33 | Average Advantage Variance: 578.0868415350511\n", + "Iteration 124: Average Return = 193.38 | Average Advantage Variance: 577.7394444326355\n", + "Iteration 125: Average Return = 195.18 | Average Advantage Variance: 583.0868744607587\n", + "Solve at 125 iterations, which equals 12500 episodes.\n" + ] + } + ], + "source": [ + "sess.run(tf.global_variables_initializer())\n", + "\n", + "n_iter = 200\n", + "n_episode = 100\n", + "path_length = 200\n", + "discount_rate = 0.99\n", + "baseline = None\n", + "\n", + "po = PolicyOptimizer(env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate)\n", + "\n", + "# Train the policy optimizer\n", + "loss_list_without_baseline, avg_return_list_without_baseline, avg_advantage_variance_list_without_baseline = po.train()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXl8VNX5/z9nJslkmckyM1kICUvC\njgiSoBCVNa1W2n6pfhFrl59orRZBwWorVmutxWL9KipRa1vEVqmF0mpbu5oiiiyagAHZCWHJvsxk\n32fu+f1x7p0lmUluJjOZGXjer1demblzl+fMcp/zrIdxzjkIgiAIwo9ogi0AQRAEcelByoUgCILw\nO6RcCIIgCL9DyoUgCILwO6RcCIIgCL9DyoUgCILwO6RcCIIgCL9DyoUgCILwO6RcCIIgCL9DyoUg\nCILwOxHBFiCYVFVV+XSc2WxGQ0ODn6UZWWgMoQGNITSgMagnPT1d1X5kuRAEQRB+h5QLQRAE4XdI\nuRAEQRB+h5QLQRAE4XdIuRAEQRB+h5QLQRAE4XdIuRAEQRB+h5TLEJF2vYeuPe8HWwyCIIiQhpTL\nEOF7/oOujwuDLQZBEERIQ8plqMQZILW1BFsKgiCIkIaUy1CJ00NqJeVCEAQxEKRchgiLM4C3tQZb\nDIIgiJCGlMtQidVDamsB5zzYkhAEQYQspFyGSpwB6O0BerqDLQlBEETIQsplqOgN4n87ucYIgiC8\nQcpliLA4vXjQ3hZcQQiCIEIYUi5DJY4sF4IgiMEg5TJUyHIhCIIYFFIuQyVWWC6cLBeCIAivkHIZ\nKuQWIwiCGBRSLkOE6XRAVBQpF4IgiAEg5eIDGn08xVwIgiAGgJSLD2j08RRzIQiCGABSLj7AyHIh\nCIIYEFIuPqAxxFPMhSAIYgAigi2AQklJCbZu3QpJkrBkyRIsW7bM7fXe3l4UFBSgrKwMBoMBa9eu\nRUpKiuP1hoYGrFu3DsuXL8dXv/rVgMoqLBdSLgRBEN4ICctFkiRs2bIFjz76KDZt2oS9e/eioqLC\nbZ9du3YhLi4OmzdvxtKlS7Ft2za313/729/iqquuGhF5KaBPEAQxMCGhXEpLS5GWlobU1FREREQg\nLy8PRUVFbvsUFxdj4cKFAIC5c+fi6NGjjrb3n376KVJSUpCRkTEi8moM8UBvDzh1RiYIgvBISCgX\nq9UKk8nkeG4ymWC1Wr3uo9VqERsbi9bWVnR1deEvf/kLli9fPmLyMkO8eEDWC0EQhEdCJubiKzt2\n7MDSpUsRHR096L6FhYUoLCwEAGzcuBFms9mna/YmJAEAEqMiEOnjOYJNRESEz+MPFWgMoQGNITQI\ntTGEhHIxGo2wWCyO5xaLBUaj0eM+JpMJdrsdHR0dMBgMKC0txSeffIJt27ahvb0djDFERUXhxhtv\n7Hed/Px85OfnO543NDT4JG98TBwAoKmiHCwuwadzBBuz2ezz+EMFGkNoQGMIDUZqDOnp6ar2Cwnl\nkp2djerqatTV1cFoNGLfvn24//773fbJycnB7t27MWnSJBw4cADTp08HYww//elPHfvs2LED0dHR\nHhWLP3G6xVoCeh2CIIhwJSSUi1arxZ133okNGzZAkiQsWrQImZmZ2L59O7Kzs5Gbm4vFixejoKAA\na9asgV6vx9q1a4Mmr0YvlAtvbwMLmhQEQRChS0goFwCYPXs2Zs+e7bZtxYoVjsdRUVF48MEHBzzH\nrbfeGhDZ+sL0iuVCtS4EQRCeCIlssXCDRccAERGULUYQBOEFUi4+wBgT67qQ5UIQBOERUi6+EqsH\nJ8uFIAjCI6RcfIUsF4IgCK+QcvGVOD0pF4IgCC+QcvERFmeggD5BEIQXSLn4ip7cYgRBEN4g5eIr\nsXqgpxu8tyfYkhAEQYQcpFx8Jc4g/pP1QhAE0Q9SLj7C5M7IaLIOvCNBEMRlCCkXXzHKra2t4d1J\nlSAIIhCoVi42mw0nTpzAvn37AABdXV3o6uoKmGAhT5JQLryRlAtBEERfVDWuvHjxIp555hlERkbC\nYrEgLy8Px48fx4cffoh169YFWsbQxJAARESS5UIQBOEBVZbLr3/9a6xYsQIvvPACIiKEPpo2bRpO\nnjwZUOFCGcYYkGQCyHIhCILohyrlUlFRgeuvv95tW3R0NHp6LvM0XGMyuLU+2FIQBEGEHKqUS3Jy\nMsrKyty2lZaWIi0tLSBChQssyUyWC0EQhAdUxVxWrFiBjRs34gtf+AJsNhveeecdvP/++7jnnnsC\nLV9oYzQDTVZwyQ6m0QZbGoIgiJBBleWSk5ODRx99FC0tLZg2bRrq6+vx0EMPYebMmYGWL7RJMgOS\nBDQ3BVsSgiCIkEL1Msfjx4/Hd77znUDKEnYwoxkcAKz1IrhPEARBAFCpXGw2G3bv3o3z58/3q21Z\nvXp1QAQLC5RCSoq7EARBuKFKuRQUFODChQvIyclBQkJCoGUKH5KSAQDc2gAWZFEIgiBCCVXK5fDh\nwygoKEBcXFyg5QkvYuMAXTRZLgRBEH1QFdA3m83o7e0NtCxhhyikNINTlT5BEIQbqiyX+fPn49ln\nn8WXvvQlJCYmur12xRVXBESwsMFItS4EQRB9UaVc/vWvfwEA3n77bbftjDEUFBT4X6owgiWZwSsP\nBVsMgiCIkEKVcnn55ZcDLUf4YjQDLY3gtl6wiMhgS0MQBBES0HouwyXJDHBOi4YRBEG44NVyWbdu\nHTZt2gQA+N73vuf1BK+++qpfBCkpKcHWrVshSRKWLFmCZcuWub3e29uLgoIClJWVwWAwYO3atUhJ\nSUFpaSlee+01x37Lly/H1Vdf7ReZ1MCMyXIhZQNgTh2x6xIEQYQyXpWLa9+wNWvWBFQISZKwZcsW\nPPbYYzCZTFi/fj1yc3ORkZHh2GfXrl2Ii4vD5s2bsXfvXmzbtg3r1q1DZmYmNm7cCK1Wi8bGRjz8\n8MPIycmBVjtCvb6MzkXDqNaFIAhC4FW5TJkyxfF42rRpARVC6bCcmipm/nl5eSgqKnJTLsXFxVi+\nfDkAYO7cuXj99dfBOYdOp3Ps09vbK9KDR5IkWu6YIAiiL16Vy/bt21WdYMWKFcMWwmq1wmRy9uYy\nmUw4c+aM1320Wi1iY2PR2tqK+Ph4nDlzBq+++irq6+uxZs0ar1ZLYWEhCgsLAQAbN26E2Wz2Sd6I\niAi3Y+ti4xDd3Y54H88XDPqOIRyhMYQGNIbQINTG4FW5WCyWkZRjWEycOBHPP/88Kioq8PLLL2PW\nrFmIiorqt19+fj7y8/MdzxsafLM2zGaz27FcF4Oupkb0+Hi+YNB3DOEIjSE0oDGEBiM1hvT0dFX7\neVUuq1at8pswg2E0Gt2UmcVigdFo9LiPyWSC3W5HR0cHDAaD2z4ZGRmIjo5GeXk5srOzR0R2AIBO\nB/Rp6EkQBHE5ozoVubKyEjt37sSWLVsAAFVVVbhw4YJfhMjOzkZ1dTXq6upgs9mwb98+5Obmuu2T\nk5OD3bt3AwAOHDiA6dOngzGGuro62O12AEB9fT2qqqqQnJzsF7lUo4sB7+ke2WsSBEGEMKqKKPfv\n34/f/OY3uOaaa7B3717cdddd6OzsxO9//3s8/vjjwxZCq9XizjvvxIYNGyBJEhYtWoTMzExs374d\n2dnZyM3NxeLFi1FQUIA1a9ZAr9dj7dq1AICTJ0/i3XffhVarhUajwV133YX4+PhhyzQkdDqgmywX\ngiAIBVXKZceOHXj88ccxbtw47N+/HwAwduxYnD9/3m+CzJ49G7Nnz3bb5posEBUVhQcffLDfcfPn\nz8f8+fP9JodPREUDrc3BlYEgCCKEUOUWa25uxtixY922McZGPu03VNHpAHKLEQRBOFClXLKysvDR\nRx+5bdu7dy8mTJgQEKHCDRYVTW4xgiAIF1S5xVauXImf/exn2LVrF7q7u7FhwwZUVVXhscceC7R8\n4YGOlAtBEIQrqpTL6NGj8cILL+DgwYPIycmByWRCTk4OoqOjAy1feEDKhSAIwg1VygUAdDod8vLy\nAAC1tbVoaWkh5aKgiwZsveCSHUwzQj3NCIIgQhhVMZcXXngBp06dAgB88MEHePDBB/H9738fu3bt\nCqhwYYPS36ybgvoEQRCASuVy9OhRR8X7e++9h8cffxxPP/003n333YAKFzZEyRYcucYIgiAAqHSL\n2Ww2REREwGq1oq2tzdExubmZajsACLcYAPSQciEIggBUKpdx48bhnXfeQX19vaPQ0Wq1IiYmJqDC\nhQtMpxMLhpFbjCAIAoBKt9i9996LixcvoqenB7fddhsA4PTp07juuusCKlzYoJOVbHdncOUgCIII\nEVRZLmlpaXjggQfcts2dOxdz584NiFBhBwX0CYIg3FCditzU1ITS0lK0traCc+7Yvnjx4oAIFlZQ\nQJ8gCMINVcrl008/xebNmzFq1CiUl5cjMzMT5eXlmDJlCikXwBHQ5z1doG5rBEEQKpXL9u3bsWrV\nKsybNw8rV67EL37xC3zwwQcoLy8PtHzhAbnFCIIg3FAV0G9oaMC8efPcti1YsKBfM8vLFnKLEQRB\nuKFKucTHx6OpqQkAkJycjNOnT6O2thaSJAVUuLBBR8qFIAjCFVVusSVLluDkyZOYO3culi5diief\nfBKMMXz5y18OtHxhAdNqgYhIUi4EQRAyqpTLsmXLHI8XLFiA6dOno6urCxkZGQETLOzQRVOFPkEQ\nhIzqVGRJknD69Gk0NjYiKSkJkyZNCqRc4YdORwF9giAIGVXK5cKFC3j22WfR29sLo9EIq9WKyMhI\nPPTQQxg3blyARQwTaDVKgiAIB6qUy6uvvoobbrgBX/7yl8EYA+ccf//73/Hqq6/imWeeCbSM4YEu\nGryHLBeCIAhAZbZYdXU1li5dCsZEiSBjDDfddBNqamoCKlxYodNRbzGCIAgZVcrlqquuQnFxsdu2\n4uJiXHXVVQERKizRxVDMhSAIQsarW2zz5s0OS0WSJLzwwgvIysqCyWSCxWJBWVkZcnNzR0zQUIdF\n6cAp5kIQBAFgAOWSlpbm9jwzM9PxOCMjAzNnzgycVOEIpSITBEE48Kpcli9fPpJyhD+UikwQBOFA\ndZ1LoCkpKcHWrVshSRKWLFniVrgJAL29vSgoKEBZWRkMBgPWrl2LlJQUHDlyBNu2bXMsxfytb30L\nV1xxxcgPgFKRCYIgHKgK6AcaSZKwZcsWPProo9i0aRP27t2LiooKt3127dqFuLg4bN68GUuXLsW2\nbdsAAAaDAT/84Q/x3HPP4b777sPmzZuDMQThFrP1gtvtwbk+QRBECBESyqW0tBRpaWlITU1FREQE\n8vLyUFRU5LZPcXExFi5cCECsgnn06FFwzjF+/HgYjUYAIi7U09OD3t7ekR6CS9t9sl4IgiBUKZcz\nZ8543F5aWuoXIaxWK0wmk+O5yWSC1Wr1uo9Wq0VsbCxaW1vd9vnkk0+QlZWFyMhIv8g1JHQx4j8F\n9QmCINTFXH72s5/ht7/9bb/tGzZswNatW/0ulC+Ul5dj27Zt+NGPfuR1n8LCQhQWFgIANm7cCLPZ\n7NO1IiIi+h3baTKjBUBSbCwifDzvSOJpDOEGjSE0oDGEBqE2hgGVi7JeC+fc8adQW1sLrVbrFyGM\nRiMsFovjucVicbi6+u5jMplgt9vR0dEBg8Hg2P///u//cN999/VLoXYlPz8f+fn5jucNDQ0+yWs2\nm/sdy3uEK66xphosKsan844knsYQbtAYQgMaQ2gwUmNIT09Xtd+AyuXrX/+64/Ftt93m9ppGo8HX\nvvY1H0TrT3Z2Nqqrq1FXVwej0Yh9+/bh/vvvd9snJycHu3fvxqRJk3DgwAFMnz4djDG0t7dj48aN\nuP322zFlyhS/yOMTyoJh5BYjCIIYWLkUFBSAc46f/OQnePLJJx3bGWOIj49HVFSUX4TQarW48847\nsWHDBkiShEWLFiEzMxPbt29HdnY2cnNzsXjxYhQUFGDNmjXQ6/VYu3YtAOBf//oXampqsHPnTuzc\nuRMA8NhjjyEhIcEvsqnGEdCnWheCIAjGXX1dlxlVVVU+HefRLXaxDNJTa6H53iNgs/P8IV5AITdA\naEBjCA1oDOrxi1tMoaCgwOtrq1evVifRpU60cIvx7m6wIItCEAQRbFQpl9TUVLfnTU1NOHDgAK6/\n/vqACBWWRMkxF6pzIQiCUKdcPPUZW7x4Mf74xz/6XaCwhQL6BEEQDnyu0B83bhxOnDjhT1nCGwro\nEwRBOFBluRw9etTteXd3N/bu3YuMjIyACBWOMI0WiIgktxhBEARUKpdXX33V7Xl0dDTGjh2LBx54\nICBChS20pgtBEAQAlcrl5ZdfDrQclwY6HdBFyoUgCEL1ei5tbW04ePAgrFYrjEYjcnJyoNfrAylb\n+KGLASfLhSAIQl1A//Tp01izZg3ef/99XLhwAYWFhVizZg1Onz4daPnCiyhajZIgCAJQabm88cYb\n+M53voNrr73WsW3fvn3YunUrfv7znwdMuLCDYi4EQRAAVFou1dXVmDdvntu2uXPnoqamJiBChS26\naLJcCIIgoFK5pKWlYd++fW7b9u/f369y/3KHRekoFZkgCAIq3WJ33HEHNm7ciH/+858wm82or69H\ndXU1HnnkkUDLF17ookm5EARBQKVymTx5MjZv3oxDhw6hsbEROTk5mD17NmWL9YWUC0EQBIAhpCLr\n9XrMnz8/kLKEPxTQJwiCAKBSudTV1eHtt9/G+fPn0dWnSLBv9f5ljU4H2GzgNhtYhGq9TRAEccmh\n6g744osvIjU1Fd/+9rehUxo0Ev0xJov/DbVA2ujgykIQBBFEVCmXiooKPPXUU9BofG6ifFnARo0B\nB4DqclIuBEFc1qjSFlOnTsX58+cDLMolwCjRJZpXXQyyIARBEMHFq+Wyfft2x+Pk5GRs2LABV199\nNRITE932W7FiReCkCzNYdAxgShGWC0EQxGWMV+VisVjcnufk5MBut/fbTvRhVCY4KReCIC5zvCqX\nVatWjaQclwwsPRP81Ofgkl0sIEYQBHEZoirmsnLlSo/bv/Od7/hVmEuCUZlAbw/QUBdsSQiCIIKG\nKuVit9v7bbPZbJAkye8ChTtsVKZ4QK4xgiAuYwZMRf7xj38Mxhh6e3vxxBNPuL1msVgwadKkgAoX\nlsjKhVeVg828OsjCEARBBIcBlcvixYsBAKWlpVi0aJFjO2MMCQkJuOKKKwIrXRjCYuOARBNQTenI\nBEFcvgyoXBYuXAgAmDhxIkaPDmxRYElJCbZu3QpJkrBkyRIsW7bM7fXe3l4UFBSgrKwMBoMBa9eu\nRUpKClpbW/H888+jtLQUCxcuxF133RVQOVWRPga8itxiBEFcvnhVLh999JGjUeWpU6dw6tQpj/sp\n1s1wkCQJW7ZswWOPPQaTyYT169cjNzcXGRkZjn127dqFuLg4bN68GXv37sW2bduwbt06REZGYsWK\nFbh48SLKy0Pjhs7SM8E/+je4JIFRVwOCIC5DvCqXvXv3OpTLnj17vJ7AH8qltLQUaWlpjsXH8vLy\nUFRU5KZciouLsXz5cgBiFczXX38dnHNER0djypQpobUq5qhMoKcbsNYDZlpQjSCIyw+vymX9+vWO\nx32D+f7GarXCZDI5nptMJpw5c8brPlqtFrGxsWhtbUV8fHxAZfMFlp7p7DFGyoUgiMsQVY0r//GP\nf2D69OkYO3ZsoOUJKIWFhSgsLAQAbNy4EWaz2afzREREDHisFD0L9QBim62I8/EagWawMYQDNIbQ\ngMYQGoTaGFQpl7KyMrz33nvo7OzE1KlTMW3aNEybNg3jx48HY2zYQhiNRre2MhaLBUaj0eM+JpMJ\ndrsdHR0dMBgMQ7pOfn4+8vPzHc8bGhp8ktdsNg9+bJQO7VXl6PTxGoFG1RhCHBpDaEBjCA1Gagzp\n6emq9lOlXFavXg1ALBp2/PhxHD9+HDt37gQAvPHGG75J6EJ2djaqq6tRV1cHo9GIffv24f7773fb\nJycnB7t378akSZNw4MABTJ8+3S+KLWAYEoC2lmBLQRAEERRUL5dYVVWF48eP49ixYzh16hRGjRqF\nadOm+UUIrVaLO++8Exs2bIAkSVi0aBEyMzOxfft2ZGdnIzc3F4sXL0ZBQQHWrFkDvV6PtWvXOo6/\n77770NHRAZvNhqKiIjz22GNuyQBBQR8P3krKhSCIyxPGOeeD7XT33XcjOjoac+fOxfTp0zF58mTE\nxMSMhHwBpaqqyqfj1Jif9hefBFqboX3seZ+uEWjIDRAa0BhCAxqDetS6xVQVYeTk5ECr1aKoqAif\nfvopDh48CKvVOiwBL3WYPp7cYgRBXLaocovde++9AICmpiacOHECx48fx29+8xsYDAZs3rw5oAKG\nLYZ4oLU52FIQBEEEBdXl4+fOncPevXuxZ88efPzxx9DpdJgwYUIgZQtvDAlATzd4d3ewJSG8wJus\nkD75MNhi+A1p/wfgFeeCLQZBAFBpuaxcuRKxsbGYOnUqcnNz8e1vfxtpaWmBli280cvFnW3NgC4l\nuLIQHuEf/Qv8b38AnzkHLDo22OIMG/7WK0DudWArHwi2KAShTrk888wzSEmhG+RQYIYEUaXf2gyY\n6L0LSaxy8LOjHQhz5cK7u4SlbK0PtigEAUClW4wUiw8YEsR/SkcOWXiTXLjb0R5cQfyBEt8j5UKE\nCNSyN1AYhFuMU1A/dGmSMx472oIrhz9QJjHWBnBaIZYIAUi5BAq9bLm0kXLxFV7yCXhzY+Au0HgJ\nWS7K98zWS985IiQg5RIoYmIBbQTVuvgIt9RBenkD+J7/BOb8Pd0Oi4VfAsrFzUK2hHcxIHFpoEq5\nHD16FHV1dQCAxsZGFBQU4JVXXkFTU1NAhQtnGGNyrQspF1/gR4rFg0C5rJqcjVLRGf7Kxa2miuIu\nRAigSrls2bIFGnlFxd/97new2+1gjOG1114LqHBhjz6eYi4+wj+XlUtXZ2Au0OiiXC4BywWtzYDc\nyJUyxohQQJVysVqtMJvNsNvtOHz4MO655x7cfffdOH36dKDlC2+oM7JP8O5u4OQR8cRPyoV3dogi\nQ7mVHndTLpdIQD/BCOhiyHIhQgJVyiUmJgZNTU04fvw4MjIyEB0dDQCw2WwBFS7cYXpqAeMTJ48A\nvT2ARgPuL+Wy5z/gr28CKi+IDYpbLDbukrBceGuzcMMazWS5ECGBKuVy4403Yv369XjppZdwww03\nAABOnjyJ0aNHB1S4sMeQQDEXH+BHisQMPGsy0Nnhn5OeE1Y2dygXKxAdAySZVQf0eaMF9h/eBV5x\n3j8yDXa9+hqoaFouaGsR3zdTMmAh5UIEH1UV+suWLcPVV18NjUbjaPtiNBodDS0JLxjigc52cFsv\nWERksKUJCzjnIt4ybSbAOdBQ55/znj8jHlSeB7BAuMUSTcJyURvQLzsFWOvBz50GyxjnF7m8wcvP\nQfrpA9Cs+ykwbdbgB7Q2g6WMAnTR4BfOBlQ2glCD6lTk9PR0h2I5evQompqaMGbMmIAJdkngqHUh\n60U1FeeBxgawK+eARccA3cN3i/HWZqChVjyuvCg2NlmAJBMQq1cdc+E1FfKxzuUmuCSBnzyi3sJQ\nK/MpEXPiVRfVHdAqWy7GZKC1WaRaE0QQUaVcnnjiCZw8eRIA8O677+LFF1/Eiy++iD//+c8BFS7c\nYdQCZsjw4yUAAHZFjuj35Q+32PlS8T/R5BZzYYlGsJghxFxqKh3HOjj2GaTnHgPOHB++nK6cPSX+\nq3Bx8Z5uoYT18UK5AO7ZcCEE5xxS0cfgvb3BFoUIMKqUS3l5OSZNmgQA+O9//4snnngCGzZswPvv\nvx9Q4cIeuQUMBfWHQE0FEJ8IlmgUMRE/BPT5udMAY2BzFwKWOvCONqC5USibOL1q5cJrhXJxzTTj\ndVXyNU55PsbHpBdeJiZz3KrCLahMXgwJYIpyCdWg/sWz4L/6Bfj77wZbEiLAqFIuislfU1MDAMjI\nyIDZbEZ7e/hn2QQU2XLh5BZTDa+rAlJGiSfRMYCtF9w2vFkuP38GSMsAy54iNpz8HLDbgSQzEBMH\ndHUM2o+Lcy4UH+BuFSg3ccU6AsBrKmHf9GPYf3gnpFW3QPr7jqHJ22hxdmxWE3OS270wQwJgNItz\nhKpykSda/L9/A+/t8ekUnHNIr28CP33Un5IRfkaVcpk8eTJef/11vPnmm5gzZw4AoWgMBkNAhQt7\n9KHtFuNdHZD+sm3YN2+/UlsNliKv0a20wR+G9cI5B86fARs/CRg9Vmw7dggAwJKMIqDPOdA1iPut\npUm46LRaN7cYt4ibP7/golz2/Rc4eQRs0gwgyQSu1OyopUy2gsZkAaosF9kyNsSLOBJjIZsxxtvl\n+FZLE/i+Xb6dpLEBfP8H4If2+08wGd7V6bO1SbijSrncd999iI2NxdixY3HrrbcCAKqqqnDTTTcF\nVLiwJy4OYJqQbSTIDx0Af2+7078fZHh3F9BsdbdcgOHFXaz14uY7bqJYV0cXDX7sM/Gaki0G9HON\n8c4O2B9eCf75QbFBibeMnwy0tThjBoqFUV8D3t4qjj15BMiaDM1d68CmXQVUnBtSwJ+XnQQiIsFm\nXgO0tYr3ZaD9HW6xRJGVmJAUum4xJXkiOQ38338Gl+xDP4f8WfAAKFDpqXXgQ7Q0Cc+oUi4GgwG3\n3347br31VkcB5ezZs7F06dKAChfuMI1W+PRDNeZSJQe3R9htx60Nnl2FddXiv2y5sBhZuQwnY0yu\nb2HjJ4JpNED6GEC2NpBoEgF9oH/cpbocaLKAf/qRkFl2ibGpV4rXFevFUudcDO5CqYjnnC8FmzJT\nbMsYD7S1umWYDQY/exIYmw2kpjuvMRCulgsAGJND1y0mWy5s2TeFQj44dOtDiX2psuqGct7ubqCu\nipaK9hOqlIvNZsOOHTuwevVqfOMb38Dq1auxY8cOqtBXgyHBObMMMZS0XLUxIW6zwf7DuyDt+++w\nriu99CT4H37d/wVZubDUvpbLMNxi588AERGAXJfCZNcYNBogPkEof6BfOjJXUpePfybiMTWVQJQO\nbPxksUOTVcQMWprAZs+Tr1UKnD4KcAlsilBCLFNcFx5uWPx4CVp/+7L7NlsvcOEsWPYUMEVpDTZD\nb2sWHbhlRcmMyU6LKtRobwM+czAgAAAgAElEQVR00WC51wrr5WMfkoIUK9JPNVAOlAlDqCrmMENV\nEeVbb72Fs2fP4u6770ZycjLq6+vxpz/9CR0dHbjjjjsCLGKYY4gPWbfYkC2X2irxwztfCuQt8emS\nvLcHqCoH91BUqmReOdxiOlm5DCfmcu40kJnlLGJVlEuCEUyjBfdmucjKBS1NQOUFYbmkpouYBsQq\nlqwxUeyTMR5IGSXiLs2NQFSU6C4AOJQaLz8HNiPXXbbij9Gx5z/QzL4WbFSG2HixDLD1gmVNcVhE\n3FILNtAgW1sAfbzoxA2IdOTDn4Jz7twWKnS0AbF6YdWPHgfUVw/5FFxRLh1t4J0dYDF+WqJaUSqh\nqpj9gJK4wjSBX21F1RUOHDiAH/zgB5g5cybS09Mxc+ZMPPTQQ9i/3/8BtUsOfWi2gJHa25w/IrWW\nS+V58b9ZvYunH9UVAJc8zw5rq0QashLIl28avvYX4+2twNmTYJOmO7Y5LJdEo/gvx1x43yr9hlog\nSideO/4ZUFsJlpbhUC5otDgsCmZKBhs7AThfCn7iMDBhOlikUGYsVi+UhIeWMUrHbF60x7lNTkFG\n9mQRO9FGDGq5OPqKKRiTRW+21tBbEoN3tDnecxYX53CTDYnaSsdnM6jLcCiyNTp/D/4uQpW2bIL0\nl9/79Zy+wIv2QHpqLfgQ3LS+MqRUZGLoMEO8yIwJsffQVu7iplEbE1Kq24dRoOeoOG9t7peKyuur\nHfEWAE632GCZXN6uVfIJYLeD5V7n3KgolySRsus1oN9QK/YdPRa85FOhbNJGi4r+yCgRj1EUpDEZ\nGDdBKMzqcmdcRiFjnOd+ZC7KxdGt+XARYEoBSzSJ2aXRrC7mohTsAmDmVPGgvnbg44JBRxsQJ2eZ\nxhmAjtYhHc67u8X7MXmG2OBB8fILZyF99C/woX5v3FLM/We98N4e8Rnves8vmZm8ow32l37qtPTV\nHme3g//tD+JJfOKw5RgMVcpl3rx5eOaZZ1BSUoKKigqUlJTg2Wefxbx58wItX/iTMQ5ob/XJ/A8k\ntoty/ylDgvqYi+JGG5blUu583NjnB1xbLfpjKQwzFZkX7xVWw9gJjm0sPhEYlQk2Jst5DcY8usWY\nORVs2iyg9LhIV07LEG6mRKMI0FvqxLFJJrCxE53XmOKuXFjmeKCmsv9suLUZiIgU9TMV54XVc/II\n2OIvO/cxpQwenG9tFh24FZKFclHiRiFFu3CLARD/e3qGVq0v31DZ9KsAeC4yld59E/zNVyD98C5I\n77ylPrXYVaH0/W4OhwulgN0mFOuJw8M/X9lp4PNi8Pf/MqTD+CcfArWV0Hzl6yPiFlMVc/nmN7+J\nP/3pT9iyZQsaGxuRlJSEa6+9FrfccovfBCkpKcHWrVshSRKWLFmCZcuWub3e29uLgoIClJWVwWAw\nYO3atUhJET7pd955B7t27YJGo8HKlSsxa5aKRn8jBJtyJThEeipznZUHGdvFMhHTGJvt5rbjHe3g\ne/4tZnGtzWDXf9F5s1RapzQ3gkuSqi8oP7QP3C5BM0dYD269sqwNDkuFd3W6pyEDgJyZ6EsqMm9v\nA06UgOV/tV/cQfPESyKgD9n3HBPrFtDndruwQnKvA5t0heNHzNLkLuBJJvBGC1hUFJCQBBYRCT4m\nSyiamFhRn+ICyxgHziWg6qJIiVZobUF03iJ0fVwI/ulHIoXZaAZb5EzxZ6Zk8KOfDTzYthb3mahJ\ntlxCVLmwcbK1GOuSTJGQpOpwJd7CJk4TcTtPQf2K88KyidOD/2MHYDKDzb9x8HM3NoikiM52cGvD\nwHGuIcCVVH9dNHjRnn6xtyGfT6mtOrAb/H9XgumiBz/Gbgd/7w9A5njgqrnDur5aVKmviIgIrFix\nAps3b8Zbb72FzZs347bbbkNkpH86/UqShC1btuDRRx/Fpk2bsHfvXlRUVLjts2vXLsTFxWHz5s1Y\nunQptm3bBgCoqKjAvn378Pzzz+NHP/oRtmzZAmmQausRJXW0mOme/DzYkrhhu1AGpGeKqm4Xy4UX\nfwy+8w3wvYXgh/ZD+udOsb27C6ivEe4Xu111koL0j53g23/jdAtWXRRfcPSpIq8X3R9YqlMBM40W\n0EX7lIrMSw4Il1jOdf1eY1qtu8Lp21+ssUGMMTkNmDhdWBeA+CwBsESTcItZ6h1BdxYTC4zJBpuR\nK+R2JUMer4srktt6gc52aDPGAtNmgRf+VRR7fvV2sMgo57GmVKDZ6nV2z3t7hfJ1sVyYTieUTSgq\nFze3mKxc2ofgGquV7wupGeK97+My5G0tQJMVbEYuNPc+AqSkgx/cp+7cjQ3AeNHmyp8ZY7zsFGBO\nBcu5Frzkk/7u4JZG8IN71Z9Q+Vy7Ot3idQPKcOADoL4Gmq/ePmJJHl6Vy9GjR1X9+YPS0lKkpaUh\nNTUVERERyMvLQ1FRkds+xcXFWLhwIQBg7ty5OHr0KDjnKCoqQl5eHiIjI5GSkoK0tDSUlpZ6uEpw\nYIwJ6+XkkUFbjIwktotlIrjdd0Ezaz3ANNC88HuwhTcBp48JP3eVcGcp7gi3zsDtrd5jSk1WYZFU\nlQu3UH2NKCwE3N0QfTPFFKJjfLNcFJfYuAmD7xwb5x7Ql3+8zJwqbtSTpos4iDJDTDQ53GKOXl4A\nNA8+Bfat1f3Pn5wmlKRr3EW2FjXxSWBzrgdsvcJdN2+R+7EmpRGll5tdm7OvmBvm1JBzi/HeXqCn\n22GxsFjPaeADUlMJGJPF52JKdsziHcjWNcsYJ357OXnAySPqXL/WBuGWNST4zS3GOQfKToJlTQGb\nc534Lh9zt0T5ezsg/fIZ9W2iGmrF72RUJvhH/1Ynx7/+JNzDM68e6hB8xqtb7NVXXx30YMYYCgoK\nhi2E1WqFyWRyPDeZTDhz5ozXfbRaLWJjY9Ha2gqr1YqJE52uBqPRCKvVc0ygsLAQhYWFAICNGzfC\nbDb7JG9ERMSQju3MzUPLgd1I7GxF5Nhsn67pT6QmK+pbmqCfNA3o6UZbTzdMBj2YLhrNnW3oMZqQ\nnJqK7rwFaCr8C+JrLkJqsaAFgOGa69FyYDfiJRt0ZjOk5kbUP3QH9LffjbivfdPtOtxuQ52csRR7\n4TSiDHGwco74GVehZf8uRHe2IV5+H9vbmtEGwDT1CmiU9GAADbF6RHAJiR7eb2+fg9TWgvqThxG7\n9FYYkpP7vd4Xa0IS0NsNo3yuzq4OtABImjgFEWYz7Pc/BqmtFZGKrBlj0GbrBRpqEXPdEhgcMnj/\nTljHZgO1lY5r9LZaYQUQaTTBPH02mvYWIu4b90CXkup2XE/WRDQCiLf1QOdhrMp54tMzEO3yevPo\nMeg9fczn77hauCRB09Wp6jr2RgsaAOhTUhFrNqM3PUPIrtV6HJsnLA210GSOQ5LZjJbRY9D96R63\na3d80oBWAMYrZ0ObZELvkqWw/nMn9KXHEZMvYllSZwc0fdKXNbZeoKMNcRlj0FVRBk1rE5L88N7Z\n62vQ0GSFfmYOYq5bgvotmxD1eRES8kUBOuccluOfwQ4goasdUeOyBj4hAEuTBZpRGYjKyUPb6y8i\nobUR4BK6jxbDNP+L/dzVvLsbdTWViLv9buhV/B78hVfl8vLLL3t7KWzJz89Hfn6+43lDg2+zE7PZ\nPKRjeYb4wjTu/xCauIRB9g48XA4qdiSYHDO/hgvnwIzJsNdUAfFJaGhoAE/NBCKj0Lx/t2hjExWF\ntjSxhk/zxfPQjJsszmXrRdvbv0HH5JluAXneaAFka62taC+YRnzdWvVJ4ElmdFaVo0d+H6VzpUB8\nIqztnUC70w1mj9LB3tzk8f02m82or6sFL/wb2LRZIrbR2gzp5Q2AzYauK+egW8XnZI+IAuqrHdeQ\nzpcCTINGaMEaGgBtFJBgAuTXeZRswXCOzhi9qmtIaZngxXtQX18Pxhh4uZhh87h4WDs6gYd/jlYA\nrX3OxSNEym3z2dPQpI/rd15+UZynlTO0uRwrGRLB62tQX1sLptX2O85fSLv/Afzpt2A/fhEsOW3A\nfbmczNHGGToaGhyB9ubqSmhUvIecc0gVF8DyFqOhoQFSXDx4cyPqqyrB5NRk6dQxQB8Pq00Ca2gA\njzcCyWlo+fDfaJ81F9KH/wJ/+zVo7v0h2Cxn7CGxW1iu7boYcEMiUFPp9p3jNhtwogSw29yOG/T9\nKRblGu2pGehoagKumouuT/agp7ISTKcDr66AVCus9qZTx6ExjxrodAAAe00l2Ox5sM2YA0REwvrI\nd4VFCECjjQSbOtP9fZOzPDti49Hl4z3PlfR0dbHjwKcMqMBoNMJicaYBWiwWGI1Gr/vY7XZ0dHTA\nYDD0O9ZqtfY7NtgwU4qoRh5qA8MA4Vjqd/RYZ5aRYpI3Why1HCxKuIT4sc9EptioMcIlBDiqmR2t\nOABI2151d48pFc+mFFG5Xl4mGj+mjhKpwC5uMdEN2cOXNjpm4FTk0hPgf3wd0k8fgPTr5yD9/GHg\nwllo7vkB2Bh1ViKL7RNzqa8VgfUIL3OvRKeVzYwpqq6B9ExxDSX9WHGLJQySEppoEordSwzA4Rby\n4BaD5KWeSDn2SBEkXyrkXblYBt7VCWnn1sH3lWMrzDVbDPDoFuOnjsL+/W/D/sITkP65U8S3mq0i\n/qYkViguQ5d0ZF5xHpBdYoDslp6dB5w4LL7Hf/gVIHFIvy0Ab250HGeXEwNYUrKjwwHnXCi0v74N\n6eE7IL30U0iv/Bz8Ypn69+fsSVFUO3qcOP/chUB3J/gnu4W8n8vuf6YR9TuDwLs6xW/VnAqmjwe7\naTkwcRrY8jvF68pv25UGOZ45iPL3NyGhXLKzs1FdXY26ujrYbDbs27cPubnuGRU5OTnYvXs3AFHU\nOX36dDDGkJubi3379qG3txd1dXWorq7GhAkq/OwjDJtyJXD6qMhECjZVF0UgPz7RGQhWMsaaLCJg\nLcOmzxapsmdPgqWPETdcQ4Iz5lJTKdp53HIHcLzE0YsLgKNugOUtBnq6wfd/AKSkg0VEgpmSHTc+\nzjlQW+Vs++LKIGu6cLmWg+UtAf9sP9DZAc1DG9xrWwYj1n1NF26pFTdnb7i8PzCpc52wvjdC2V2o\niR84S4pFRABJRo+1Lry7SzRZTB/TL1blqHXxEnfhFeeEn//Pv1Mlvze4nIiBQ/vBTw2StKIs0aEE\n8h01Rh6Uy5FPRdpyowX8z7+D9MR94O+KJB4la48pWXFK9pQkAZUXnIWyMiznWsBug7T5KSDBCM3D\nTwPdXZB+u9kxGZKU98loFn/dneI7UVcN/re3gczx0NzzAyBOD2nnVtV1a7zsFDB2gnOiMnE6kDle\nLDnAOfiRYlFPlTrKbaLmFeV7IH++mq/cBu3aJ6H54jKRZu9h5VKulEEkD24V+ZOQUC5arRZ33nkn\nNmzYgHXr1mHevHnIzMzE9u3bUVxcDABYvHgx2trasGbNGrz33nv4xje+AQDIzMzEvHnz8OCDD2LD\nhg246667oBmBHO4hM+VKEcy7GNz1zTnn4KePITJrkpjdyZXdvK1FFJ11djir0OESwO/ucilANDkq\nfJW2KGzRl4CxE0SXZeVasuXC5i4Uqb+tzWIGDwjLpasTvKNd3ABbmtzTdJXrD7ZgWEMNoNGAfXMV\nNM9sgeanLzvXbVFLbJyYTSqKX65x8UpCkkg7BgC1louyn2JJtLYAWi2YcqMdCHMqeHVFv838r28D\n1npovrWqv+vL7L3WhXd1QPrlL+Qq/uahFxu6Ul8D3dyFgCkF0h9+PWCXY64oEXnMTKMVmXoeqvT5\n+TPAmCxonyyA5ulfAROmgu8V8VKkya1yZIXtsN4aaoR7SG6542DcBMcKnZp7fgg2cZqYDH1eDL7n\nPwAAu6L0E01AkjOJQlmeQfPNVWC514F9+TZRq3L0kLu8tl5If98BXuesZ+O9PcDFMtHKR4YxBpb/\nVaEEDu0HSo+L1OTU0aJDxWAoySam/t+7iDFZnot162vFJE0/skukqKpzGQlmz56N2bNnu21bsWKF\n43FUVBQefPBBj8fefPPNuPnmmwMq33BhU64E12jAD+4Va4sEizPHgNpKRN96B9oBp+XS1gI0ytaI\n68x8VKaYyVkbnDPCBKOzkLKmEixrMphGCzb9KvB//QncZhMztSarcIOZ00SvrdITYOkiZqMsagVr\nvWMtFDbxiv7yxsQOrFzqa0T2kGJR+YIyg+5sB4/Uif5gAygXx7V6e4RLTQ0uN0IGCEWrj1dVK8Sm\nzwZ/501xrNJvrPwceOFfRB3ShGn9DzImC4XuoQ6Ev/kqUFcNtmgp+Ad/B+pq+tXmqIHbegFrAyIy\nx6N35tWQXvsF+P7dYNd66TunKJdYF4UaG9e/aahkF8075f51LDkNmgd+IizfyvPO7gqJRvH9UpRL\nhZwpJrugFBhj0Kx8QPRsGy8mMGzxUvBPPxQp4PNvEJaLIUG07TGawQHhGjv2GZCc5oglsgU3gu96\nD9LOrdBMm+VU6sc+A3/3LfD/vAvNdx8GsiaD/+OPIkbTZ7LD5swH3/kGpDdfFunyM3IBSRJuu0Hq\nxxyTBQ/fz4ixWegt/Hu/c/D6GjGGEe4zF4JT/EsTFp8IzLoG/ONCv/ctGgp8z/tATCyi8xaLDbHK\nmjMtjvRLluR09TDGhGsMcFguLNEo3BU93WImrswkU9KFn1/5sTdZRJGhRgM2VRS2KsrFkcLb2ACc\nFkFYh1Xjim7gVGTeUCtSfYeDa/NKi/zjHeyciSbnevVqiNWLsSiuQFm5qIHNuV4cI9c0cM4h/f6X\nQJwB7Jb/5/kYrVbchPtYLrymAvzTD8GWLge7Tk5u8dA9gkt2UZMxkPvHUg9wCdq00UCO3OV4oHoN\npZ7FVSHHGZwLiClUVwpL2SWNnDEGTd5iaJbf6YynaOQxylYHrzgvLEplAuMCm3Il2BU5budjcxcB\n1eXglRdFzEX5POX/vK4aOPW58/sPgEVEQnPz/wOqLrqNlZ85LvrAJZkgvfgkpEfuEum/s+cBV7hP\nmllkJNjCL4n3IzYOyJ4i4ki2Xuf34/wZSP99r/97qPS88zCRihiTJdx5feNssnIZaUi5jCCahTcB\n7a3gxR8H5fq8o01YTlfPF+4muK85o7ixkOSeEMG++DWw/73D2ewx0Shm3tUVclsU2QeuxEyUdeWb\nrA4riF09X+TZT5SbSMoKjFvqxXK1E6d5nlm5LHXMu7tg/9mD4KXHna/X1wzswlIBc7FcXGtcBjxm\nyVfAvvA/6q/BmHtdRp9+YAMem5wGjJ/kjGcdOySswK/eDhY3gKvDnCriRy7w0hPinNcscPjgeV1N\n/2M/Pyiy7pRVMT0hx1u0aeniZn3lHFFT0u1l8tTRDsTEuheZxun7Wy4XRBkC8+Am7YcpxTFGXnkB\nSB4lamBUwGbPAxgDP/gxJEud0x2ckAhotUKZd3c5XcMKV80Vn90RZy0eP3sCGJsNzfpnRa3SpBnQ\nPPY8tN9b714Uq1x7wZeAiAiw6bNFUa9SPCy7xqS/vg3+h18J96ALvKFOBPM9/FYilASWSmfchUuS\ncPOScrnEmXKlKHz64B9ed+EXz8L+gzvdqtd5cyOkv/5+2EWY/JMPhSvn+hvcX1D6iymN+1zdYhAB\nVM0NNzu/0PLryhrmjrYoSisXxXfcaHEql7TR0D72PJjS5iMxSbhtzp4UX/5JHlxigKMzMro6RYHc\nhVLRkBJy5kxL0/BnZYqbpr1tQLeDK5q8xdBcmz/gPv0wpbjFXNgQ3Hjs6vlA+Tnw6nJIf31bFHVe\nN/D1mTnVoQAclJ4QFfKpo0VXAUOCZ8tFjh30K1J03cehXOTJxYxcEcc55SUr0rWvmEKsh5jL+TPC\nylO+VwPAjMmiQPezA2LNnL7xloGOTUgCJk4HL94Le0Odw2JnGq343padEm63KTPcj5MtcX68BFyS\nRGzl/BmwCdPAdNHQrHwA2vseFZ2yB7i25qGnwW4VWV5K9wdeUynOJ7+H0j/+6H5gQ61zcbo+RMiu\nTaV7OQDhPbD1Ctf0CEPKZQRhjAlz+PwZ8HNnPO7DD+wWriKXdEde/LHoZlrTP6irFs45+Ef/AcZk\ngfUt5NQb5NUSLcLVEjXwzI/JFowjtVr+YcCQIJSBUm3fZAFLMnk4g/MHzD87IJ67tMV3w9EZudN5\nw5PfG7uixIb7w1Ha7jfLbTh0MQHpGsuMThcO2tRbLgBE9htjkH73MnDuNNhNy51r1HgjOU105Hax\nJPjZk0D2FOdEIWWUWxDagaJkB+qA3VADREZBo7hRJ10BROnAPy/2uDtvb3VmiinjijP0a//Cz5cC\nY7P7t9HxAFtwIxATA+mVp0UcqU+m2KDH514rXGMdbc44IOCM60yY5lwCwpXps4T1KU94YLOBTZg6\ntGtnT3FmZsYnit9ObSVw6ijQ0yPcZZ8dcPTj45wDFu/JJprYOOHSc7FclM7YLIWUyyUPm7dYNLD7\n4O/9XuOcO2flrn5TZfbYMoz1OWoqgYpzYNd9of9r+nixhoVLjcuAKO6xM8dEPYjcFoUxJno51VaL\nDKSuTue+njAmCx9xTJzXGafjh93V4VRa5WXgnMMmKxeWPDy3mEO5vP0r4MxxsK9/NzDBT1OKcIu2\ntwoXkUFdzAWQFfqkK0SHZlOKI9g9IMpNSHEbtbUANRVuAWaWnObZcnGNm3mB19W4uWhYZCQwdSb4\n5wc9x2o6PFkuIg3cseSArRcoLwNT07YH4gatefrX0Nz7CNic6x3xKbWw2XnOzD/XWKOsaPq5xJTX\np4kYIj/+GfgZ4WrEEJWL2/kcv50q8KMHhdL+7sPiXiH390NHm4g/DmRVjx7r7F4OlzRkslwufVhM\nrGhgJ68U6EZNhdON4VpgqAT5hqNc5C+Zp8JCpvQXc3FjDYiyT2eH02pRzpUySigBpQ5mAOWi/IAx\nYar3WaqL5aIsg4y2VqCxwWm5DNstFue4BrtzLTTesp2GixIwviCno+uHlt3Grlkg/i+91XuBp+v+\nfWtd5O68bjPs5FEiOaNPM0XlGO7SY4tXXoC94GfOxdvqq/vX11yZKyZDVeXoR0d7P8sFsXrRjl5J\ncqm8ANhsHtPSvY5TqwXLyYPmuw87V/RUe2xCEjBRZNu5JrIon5VX5ZJoAtLHiAyvsyeEm9HXbEXl\nnKmjgdpKYflNngFmTAabf4PomF1XrSoeyEaPBWoqnMsM1NcK9/NQkk/8BCmXYDBhqpiF9Mlr54c/\nFQ9i9e4ZH4orpaURvuIM1ntQHkpn5MYGr24sN/TxwhcNl3iLQmq6kFf5IQykrJQf8GQv8Ragv1tM\nyey6WAZ7baV43nc2PFR0MWDXfQGae34AzdxFg+/vI440YiX1On6IymXeYmi+94j3VN++KLUuijvx\n7AnxubmsPYOUNJGU4ZJVJtwviuXi0qD0SLFYPvnzYrGPh0Axu0IUPzsqz11pb3VW5yv06YysuItV\nBfP9BLtmAaDRuilKNuc6UY8id7T2eNy0q4Azx4Ezx4bsEvNI2mjxvtdVg80QmW3si8uASB2k155x\nVt8PaLmMEcpZsfLrq4Wlq2Iy4m9IuQQBpaiK98nE4Yc/BcZkA2Oy3N1iymMvlgs/cXjwjqqNVmH+\ne6oI18eLFOLWZlWWC9NonOtvpPaZKaakA1xyugoGOp9c+8Emeom3AI4Fw3insFzYzDkiw+dimeiD\nZk4ZtguLMQbN/1sjOugGEiXF9bzctXuolktEBNjsPFWxCADCj5+WIVZA7O0R8ZbMLLdsKqZUbbtm\njLW3OmuLXLsDKy6Wzw6IDgPdXf3cLcxoFitvfn7QbTvn3KNbzFFEqmSMXSgVMcBhZgAOBXb9DTAV\nvO2IJQLCwtes+M6ANSds+iwRLO9oH5ZLzIHrchPymi8s0QTNPQ8D5eeF2xYAzN4Ld1m6iDkp/cR4\nwyDdJgIIKZdgMCpDBO/OOZULb20WLVZmznH0NgLkKl9FqTT3Vy68pRHSph+Dv/Omcxvn4If2g7vW\nhzRZxPr0nmYwrvUWaiwXQBRSAmCjPLjFAPDTnw96PjZnPti37nOuoeEJxXKx1ombXuZ4IDUdvLxM\nuMWCkGLpM4lJwnKQLRefiz5VwhiD5ut3A/U14P/YCZw/3X+GrXxe9S5WtGK1jMqUF4YTVfdKJh3/\nvFikocNzoJhdeTVw5rhb7y709IgZdd/UaUemnmgNw8+XAmMmjGjBH2MMEUN0pwEAJl4ByL8nf1gu\nTHExp412swjZjFywr39XKPzYuP7WnyujMoQbTIm71Fc7JxAjDCmXIMA0GmDcRDfLhR8pBjgHm3mN\nmOE2WYXf1DX24sFy4SeOAJyDF33s9JufPALp1Z+LBYKU/Zq8x1Ncl8hV5RYDnErDk+UCAOfOADFx\nA66Sx+L00My/YeAbSYysXOQ4BUsZBZaZBVw8C3tdFVgQApW+4iz6U5pNqg/o+3zNaVcBs/PA/74d\n6Onp3xpHHy9n+LlYLkoTxwlTxaJpLfJ6P3XVwhrq6hSZh4BH5c6umS+sV9eFrBytX/p0NHBxi3Gb\nDaguF8tChwFMpxN1W4aEfrFHn0hNFy2BPKxUqVl0k6hrGsRtyyKjRCxo33/BK86J+ORwE158hJRL\nkGDjJ4t10+U0Uf7ZfnHzH5MlUiK5JFqsKC4xXYxnt9iJEuHu6mwH5JiNtEuu7HVNMW20eA+uu97k\nXIOaA8lvThOB8L7KSG8Q2+22gTPF1KITysXRiTYlXbxH1gYxGw7SD8dnlBoFjWb4sSKVaG69C1AK\n+bL6tCJhTFTWu2SMOQovlbYyTRbHRIfNWwToYsCL94jvnan/+8/SxwjX7oHdzo19OyIryM95R5uI\nE9htzh52YYDm9nuhue9HfrG0WHSMqH358m2er/WV26D5+ncHl+mO+4GuTkjPPirOS5bL5QXLmizi\nHBdKRdrnkWKwuQtFLYxLB11HSui4Cf0C+pxzsZ7KrGuARBOk/R+IwjZZyXDXAromq3erxNUtpiZb\nDABbuhyaR37RzyetpMuDuPEAABPDSURBVFSKcw1fuTCtVrS7qKsSN7PkNGG5KK+HkeUCuGTIqewr\n5pdrmpLBbr0LmDXXeX3X15NH9bFcaoXVOVpuo9JoEW5JLonVMmfkiO9ukkmkH3u65jULxXdbqc1y\nWC7e3GJtjoD1UGtVgglLGz30RqkDnW/CVPX96rydY+wEaNb9FFCSUclyuczIEnEGfu6UqHlhAFt0\nk3hN7srKrfXyssNMVPu2NrtX6ddWidnk9Nmi8/DRg6JTLmOi1YriI+/pFjPHBC83e0W5ROnc+z4N\nAIvVg43y0AsMAJOVy4CZYkMhOkZkNCWZhdnv2mQxnGIugNNyCXC8pS+aBTdCe9+jnl9MSQMstY6u\n0LyhTsgpT0Z4k8WhfFhymmh/AgzYwp1dfT3ANKIrBOC5aSUgXHIajXi98oJ47Ev8g3CDjZsIzfef\nEkXb6cFR1qRcggQzJAh3xPHD4Hv+I7KAHI3znB2DYa0XmVlGs/B/u7TKUFaUZFNnCl+sJIEf+AAs\n51rhL2+oFVk6SjqpN8tFFw1ERAKJJv8EUpUeY2rjN4OhFFLK2TTMkCAvosWcC0aFC8pnrLJp5YiQ\nPEp8txQXrKVOZCTpE0QzxsYGcHnBKSSPEjGBiAi3VUf7whJNwNQrwQ/sFha28r3tM3lhjDk6I/PK\ni2K9Hw+9uIihw8ZOgOYb3wtKGjJAyiWosPGTgeOfAR3tYEu+4tyuixaxC2u9WIHPlOJsR+ISd+En\nSsRryWnChSH3MmJLviJm9N1don5FVi7eLAmxrkuC/5SBwy3mR8sFfXzH4yZAmzJq8BYoIYZS68IC\n0F7GVxRLEzUVjhoXZkoRbju5Azbqa8QEJCEJLCYWmvufAFt668DnvWahsJ5PHnFOijytXxNrEK9X\nng8rlxgxMKRcgknWZPF/3ETRR8gVYzK4tQGw1otKXaU+RY67cMkOnPxcrB0vWxua//kGWP7/AFmT\nnVW89TXOAsoBbvZs1jVgM6/2y7CY3MqFueTtDwslHdllpUrNbXcj4YdP++f8I4niFgsly2XcBCAm\nDvzAhyK7qLvLWRuRZAJvtDjXBJHjRGzqTI8LVrnCZs8DjGZIv3pWFHAyjdMKdSVOL1oPNdSGVTCf\nGBhSLkGETRbFg+yLX+vvjjImix+btV48lme6jnTkC2dFhtjUmc7zzciBZsVd4lxyoJs31Dr7QyV5\nD7Brbr8HmiG0kB9wXBnjoHnqFTfZhoXcGdnVDcNMKYgM5qJrvmI0i9jWAIVwIw3TRYPNWwR+aK/o\nSAyAyfKxRJPTchliMR6LjoHmwZ8J19qh/aJGw1MSQ2ycuC7nZLlcQpByCSIsY7xYmndO//XemTFZ\nNJu02URcIcHdLcZPiiJFNuVKzydXbl71NaI6P0rnbJ0yArC0DL8VwjE5HdnhbgtjWGQUNE+8BLZo\nabBFcYMtuBGw2SD99fdig8lpuaDJAtTXDhhj8Xre1HRovv8zMTny4gpkcQZR6Q6Q5XIJETLLHF+u\nMG8N5YzJIvVT2ScmTlQDy1XP/PwZ4abwknXEdNHix2ypEw0mE40jvsyp34iJcaQhXwr4cpMONCx9\nDDBpulgVFHC67xJNzqaSPr7/bFQGND96vt+iYA6UDLKoqPCrWyK8QsolVHGtRzAlC8UQn+gM6F8o\nxaDN/cypwldu6/VfcD0IsJxrhUuFsogCClvwJfDTx4BYvbPWwrUN/TBqipjR7P6ddkVRLqPGqO+b\nRoQ85BYLUdwsGuVxfBJ4S6NoUmmpc2SHeT2HOU3EbRot/qs5CQJs6kyxbjkRUNhV80TWoEs8yK3w\nNlALTskZZBRvubQgyyVUURRKTKyzZUZ8otsqlf1WlOyLORUo3iMK0wYI5hMEALDISGjuehBw9Z66\nKpdBssN8RklPVjoCEJcEpFxClYRE0UHXxYJhCUngF86CK4tNDaZcklNFmw5JCmu3GDFy9FscKyFJ\nxLsSjIMuf+3zNeMM4ADY6HEBOT8RHMgtFqI4Oui6zhYNiUBrkwjmm1NFls1A53Bt2+2vAknisoJF\nRApXWSDXYJ8+G+wb9wJTvWQ+EmEJWS4hjOaO+90rmhMShRVy8rC6GhLXugSyXAgfYXlLAucSg3DH\nsYU3Bez8RHAg5RLCsMkz3J/HJ4pGpx3topHlYCSZhGvNbvdP+3viskRzCyVTEEMn6Mqlra0NmzZt\nQn19PZKTk7Fu3Tro9f37D+3evRt//vOfAQA333wzFi5cCAB4++238dFHH6GtrQ1vvvlmv+MuKVyW\nKB40mA/ZtWZMFoWUCR6WNyYIgggQQY+5vPvuu5gxYwZeeuklzJgxA++++26/fdra2rBz5048/fTT\nePrpp7Fz5060tYmCrJycHDz9dBj2mPIF1wrnMYMrFwCi8M2QEHYNHgmCCG+CrlyKioqwYMECAMCC\nBQtQVFTUb5+SkhJceeWV0Ov10Ov1uPLKK1FSUgIAmDRpEpKSLpNZuaJcTCluSxMPhGb+DWBfXBZA\noQiCIPoTdLdYc3OzQzkkJiaiubm53z5WqxUmkzMgbTQaYbVah3ytwsJCFBYWAgA2btwIs1ndkr59\niYiI8PnY4cC5CXVRUdBNnIZEtde/wXMzymCNwZ/QGEIDGkNoEGpjGBHl8tRTT6Gpqf/677fd5r5W\nNGMsoP2v8vPzkZ+f73je0NDg03nMZrPPxw4Xdssd6B2TPezrB3MM/oLGEBrQGEKDkRpDerq6BrIj\nolwef/xxr68lJCSgsbERSUlJaGxsRHx8f3eP0WjE8ePHHc+tViumTZsWEFlDHc3iLwdbBIIgiEEJ\neswlNzcXH34o1tn+8MMPMWfOnH77zJo1C4cPH0ZbWxva2tpw+PBhzJo1a6RFJQiCIFQSdOWybNky\nHDlyBPfffz8+//xzLFsmgs9nz57FL3/5SwCAXq/HLbfcgvXr12P9+vX43//9X0e68ltvvYV7770X\nPT09uPfee7Fjx46gjYUgCIIQMM45D7YQwaKqqsqn48g/GxrQGEIDGkNoEGoxl6BbLgRBEMSlBykX\ngiAIwu+QciEIgiD8DikXgiAIwu+QciEIgiD8zmWdLUYQBEEEBrJcfOCRRx4JtgjDhsYQGtAYQgMa\ng/8h5UIQBEH4HVIuBEEQhN/R/uQnP/lJsIUIR7KysoItwrChMYQGNIbQgMbgXyigTxAEQfgdcosR\nBEEQfifoK1GGEyUlJdi6dSskScKSJUscHZxDmYaGBrz88stoamoCYwz5+fm46aab0NbWhk2bNqG+\nvh7JyclYt26do9N0qCJJEh555BEYjUY88sgjqKurwwsvvIDW1lZkZWVhzZo1iIgI7a90e3s7fvnL\nX6K8vByMMXzve99Denp6WH0W7733Hnbt2gXGGDIzM7Fq1So0NTWF9Gfxyiuv4NChQ0hISMBzzz0H\nAF5/A5xzbN26FZ999hl0Oh1WrVoVEu4mT2N48803cfDgQURERCA1NRWrVq1CXFwcAOCdd97Brl27\noNFosHLlypFfpoQTqrDb7Xz16tW8pqaG9/b28oceeoiXl5cHW6xBsVqt/OzZs5xzzjs6Ovj999/P\ny8vL+Ztvvsnfeecdzjnn77zzDn/zzTeDKaYq/va3v/EXXniB//znP+ecc/7cc8/xjz/+mHPO+Wuv\nvcb//e9/B1M8VWzevJkXFhZyzjnv7e3lbW1tYfVZWCwWvmrVKt7d3c05F5/BBx98EPKfxbFjx/jZ\ns2f5gw8+6Njm7X0/ePAg37BhA5ckiZ86dYqvX78+KDL3xdMYSkpKuM1m45yL8ShjKC8v5w899BDv\n6enhtbW1fPXq1dxut4+ovOQWU0lpaSnS0tKQmpqKiIgI5OXloaioKNhiDUpSUpJj1hUTE4PRo0fD\narWiqKgICxYsAAAsWLAg5MdisVhw6NAhLFmyBADAOcexY8cwd+5cAMDChQtDfgwdHR04ceIEFi9e\nDECseR4XFxd2n4UkSejp6YHdbkdPTw8SExND/rOYNm1aP2vQ2/teXFyM+fPngzGGSZMmob29HY2N\njSMuc188jWHmzJnQarUAgEmTJsFqtQIQY8vLy0NkZCRSUlKQlpaG0tLSEZU3dOzWEMdqtcJkMjme\nm0wmnDlzJogSDZ26ujqcO3cOEyZMQHNzM5KSkgAAiYmJaG5uDrJ0A/PGG2/gm9/8Jjo7OwEAra2t\niI2NdfywjEaj44cVqtTV1SE+Ph6vvPIKLly4gKysLNxxx/9v715Dmvr/AI6/N3WWiXMXYtCFyqQi\nSwq7KBVFFwiLMlLIqFZ21aywB/bIJxFGua4IWhQZdMGoLB9ED7ooMcIyjW6WhAaittYWJZu22/+B\ndPj569ev+W81/f8/r0du55ydzzkfzz77frfz/ZoHVS70ej3Lly9nx44daDQakpOTGTdu3KDLBfDD\n8+5wODAajcp6BoMBh8OhrDtQ3b17l7S0NKD3GBITE5Vl4ciJtFz+T3R3d2OxWDCbzcTExPRZplKp\nUKlUYYrs5+rr69FqtQOi3/tX+Hw+WlpaWLJkCYcOHSI6Opqqqqo+6wz0XHR1dfHo0SNKS0spLy+n\nu7ubxsbGcIf1ywb6ef+Za9euERERwdy5c8MdikJaLkHS6/V8/PhRefzx40f0en0YIwqe1+vFYrEw\nd+5cZs2aBYBWq8XpdKLT6XA6ncTFxYU5yh97/fo1jx8/pqGhga9fv+J2uzl37hwulwufz0dERAQO\nh2PA58NgMGAwGJRPlLNnz6aqqmpQ5eLZs2cMHz5ciXHWrFm8fv160OUCfnwN6PX6PjM6DvRr/f79\n+9TX11NUVKQUyL+/X4UjJ9JyCVJCQgIdHR3YbDa8Xi9Wq5WUlJRwh/VTgUCAsrIyRowYwbJly5Tn\nU1JSqKmpAaCmpoYZM2aEK8Sfys7OpqysjNLSUvbs2UNSUhK7du1i8uTJPHz4EOi9wAZ6PuLj4zEY\nDMr02s+ePWPkyJGDKhdGo5Hm5mZ6enoIBALKMQy2XMCPr4GUlBRqa2sJBAK8efOGmJiYAdsl1tjY\nyI0bNygsLCQ6Olp5PiUlBavVisfjwWaz0dHRwfjx4/9obHITZT88efKEiooK/H4/CxYsYNWqVeEO\n6aeampooKipi9OjRyqeaNWvWkJiYyNGjR7Hb7YPi56/fvHjxgurqavbt28f79+85duwYXV1djB07\nlvz8fKKiosId4r9qbW2lrKwMr9fL8OHDyc3NJRAIDKpcVFZWYrVaiYiIYMyYMWzfvh2HwzGgc3Hs\n2DFevnzJly9f0Gq1ZGVlMWPGjH8874FAgDNnzvD06VM0Gg25ubkkJCSE+xD+8RiuX7+O1+tV/l8S\nExPZunUr0NtVdu/ePdRqNWazmWnTpv3ReKW4CCGECDnpFhNCCBFyUlyEEEKEnBQXIYQQISfFRQgh\nRMhJcRFCCBFyUlyECEJBQQEvXrwIy77tdjvr1q3D7/eHZf9C/Dfkp8hC9ENlZSWdnZ3s2rXrt+0j\nLy+Pbdu2MXXq1N+2DyF+N2m5CPEH+Xy+cIcgxB8hLRchgpCXl8emTZsoKSkBeofLN5lMHD58GJfL\nRUVFBQ0NDahUKhYsWEBWVhZqtZr79+9z584dEhISqK2tZcmSJcyfP5/y8nLevXuHSqUiOTmZnJwc\nhg0bxsmTJ3nw4AGRkZGo1WpWr15NamoqO3fu5NKlS8rYXadPn6apqYnY2FhWrFjBokWLgN6WVVtb\nGxqNhrq6OoxGI3l5ecod5lVVVdy6dQu3241Op2Pz5s1MmTIlbOdV/O+SgSuFCFJUVBQZGRnfdYuV\nlpai1Wo5ceIEPT09HDx4EIPBwOLFiwFobm4mLS2N06dP4/P5cDgcZGRkMGnSJNxuNxaLhStXrmA2\nm8nPz6epqalPt5jNZusTx/Hjxxk1ahTl5eW0t7ezf/9+TCYTSUlJQO8o0nv37iU3N5fLly9z9uxZ\nDhw4QHt7O7dv36a4uBi9Xo/NZpPvccRvI91iQvyCT58+0dDQgNlsZsiQIWi1WtLT07Farco6Op2O\npUuXEhERgUajwWQyMXXqVKKiooiLiyM9PZ2XL18GtT+73U5TUxNr165Fo9EwZswYFi5cqAzACDBx\n4kSmT5+OWq1m3rx5tLa2AqBWq/F4PLS1tSljm5lMppCeDyG+kZaLEL/Abrfj8/mUwQKhdyTqv04s\n99eJp6C3IJ07d45Xr17R3d2N3+8PeqBKp9NJbGwsQ4cO7fP6b9++VR5rtVrlb41Gg8fjwefzYTKZ\nMJvNXLlyhba2NpKTk1m/fv2AHk5eDF5SXIToh79PKGUwGIiMjOTMmTPKTIw/c+nSJQAsFguxsbHU\n1dVx9uzZoLbV6XR0dXXhdruVAmO324MuEHPmzGHOnDm4XC5OnTrFhQsXyM/PD2pbIfpDusWE6Aet\nVsuHDx+U7yp0Oh3JycmcP38el8uF3++ns7PzX7u53G43Q4YMISYmBofDQXV1dZ/l8fHx333P8o3R\naGTChAlcvHiRr1+/8u7dO+7duxfUDITt7e08f/4cj8eDRqNBo9EM6tkXxcAmxUWIfkhNTQUgJyeH\nwsJCAHbu3InX66WgoICNGzdy5MgRnE7nD18jMzOTlpYWNmzYQHFxMTNnzuyzfOXKlVy9ehWz2czN\nmze/23737t18+PCBbdu2UVJSQmZmZlD3xHg8Hi5cuEBOTg5btmzh8+fPZGdn9+fwhQia/BRZCCFE\nyEnLRQghRMhJcRFCCBFyUlyEEEKEnBQXIYQQISfFRQghRMhJcRFCCBFyUlyEEEKEnBQXIYQQISfF\nRQghRMj9Bzm5BmZmGM8aAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlcVFX/wPHPGRYB2RdFTEtUckdN\ncknFEsu0xTbLMrPNDJdflpXt+ZQ9mpGmaVpZqfWU9pSYPZaFG6mZe7nvGuaCwIAgO/f8/picJDWu\nwDCDfN+vl69mzr137vfMxHzn3HPPOUprrRFCCCH+gcXZAQghhHB9kiyEEEKUSZKFEEKIMkmyEEII\nUSZJFkIIIcokyUIIIUSZJFkIIYQokyQLIYQQZZJkIYQQokySLIQQQpTJvSpOkpaWxrRp08jMzEQp\nRVxcHH369CEnJ4dJkyZx8uRJwsLCGDVqFL6+vmit+fjjj9m8eTO1atUiPj6eyMjIMs9z9OjRcscY\nGhpKWlpauY93BVIH1yB1cA1SB3MiIiJM7VclLQs3Nzfuv/9+Jk2axLhx41iyZAlHjhwhMTGR1q1b\nM2XKFFq3bk1iYiIAmzdv5vjx40yZMoUhQ4bw4YcfVkWYQgghLqBKkkVQUJC9ZeDt7U39+vXJyMhg\n/fr1xMbGAhAbG8v69esB2LBhA927d0cpRVRUFKdPn8ZqtVZFqEIIIc6jyvssUlNTOXjwIE2aNCEr\nK4ugoCAAAgMDycrKAiAjI4PQ0FD7MSEhIWRkZFR1qEIIIf5UJX0WZ+Tn55OQkMDgwYPx8fEptU0p\nhVLqol4vKSmJpKQkAMaPH18qwVwsd3f3Ch3vCqQOrkHq4BqkDpWrypJFcXExCQkJdOvWjY4dOwIQ\nEBCA1WolKCgIq9WKv78/AMHBwaU6ddLT0wkODj7nNePi4oiLi7M/r0hHkHSGuQapg2uQOriGGtfB\nrbVmxowZ1K9fn5tuusle3qFDB1auXAnAypUriYmJsZcnJyejtWbPnj34+PjYL1cJIYSoelXSsti9\nezfJyck0bNiQp59+GoABAwbQr18/Jk2axLJly+y3zgK0a9eOTZs2MXLkSDw9PYmPj6+KMIUQQlyA\nupSWVZVxFlIHVyB1cA01pQ5G8veo4DBUq6vKdQ6XugwlhBCifHR2FiWTXsZYvhhdXPxXeXERxtzp\n6LnT0WuWOTyOKr0bSgghxMXRW36BHVvQO7agly1CxXQDw0Dv/BUO7Eb1vgN120CHxyHJQgghXNmO\nLRAYjOW+xzG+noNe9AUoBbV9UY+OxnJ19yoJQ5KFEEK4KG0Y6F2/olrHoNp2xBJ9NRgGys2tymMx\nnSx+++03Vq9eTVZWFmPGjGH//v3k5eXRqlUrR8YnhBCVSufnojf9jAoIhuAw+OMQ+rf16Pw8LEOe\nRrl7VE0cWqM3rEL5BUDTludNAMUH90JONrSIBmyDl3FCogCTyeK7775j8eLF9OzZk7Vr1wLg6enJ\nxx9/zOuvv+7QAIUQojLphZ+jkxZS6jZQbx/Iy0WvXoqK7X3uMVlW25d0bb+LnmnignF8/xX66zm2\nOGr7weVNoMTWgW3p/xCqYWMKf10HgGretlLOWRGmksXixYt56aWXqFOnDgsXLgSgfv36FbpVVQgh\nqprOPoVO/h511TWo625Cp6eiQupA42YYE59D/28+ust1KA9P+zHG8sXoz2eC1uBTG9W+C+r+YSiL\nxdY6mP8R5Oag7n4E5VPbVBzGmmXor+egYrqhOlyD3rwWfewIeHrCsRSMj9/B8uIkCn9dD/UvRwU4\nf1CyqWSRl5d3zvwkxcXFuLtLl4cQovrQS7+BwgLULQNQEQ1RtLRvs9x6H8bbL6GTf0D1vMmWCBZ9\nbutQbhODatYGDu1Fr/oR6kaget+BXvUjOsn2A1rv3Y7l/mHo9FT0r+vBmgbagNp+WAY8hqp3mW2/\nTWvQc6ZCszaoB59AeXig2nf5K8aNazBmjEf/kEjhzt9QsTdW7Zt0Aaa+7Zs3b05iYiK33367vey7\n776jZcuW/3CUEEI4l967A+PHRCzX9oUrmqKX/Q/ad0ZFNDx352ZtIKoV+rsvMbx90GuWwu6tqGt6\nou4fjnJzsyWQkmL0grkYtf3QX7wPzaOx3DwA48O3MN5+yfZawWEQ0QAsbnBwD8a/n8by6Gj0vp3o\nxfOhURSWx59DeZynf6R9Z2jRFr1gDmiNauH8S1BgcgS31WplwoQJZGdnk5GRQZ06dfD29mbMmDEE\nBgZWRZymyAhuqYMrkDo4n9aa2uuTyf5oMhja9gu/XgM4loLlxbdRlzc5/3F7tmFMfN72JLQu6tq+\nqF63luqn0Lk5GK+NgrQT4BeA5ZUpqIAgdM4p9Oa1ttdu0Mh+jE5PxXj3dThyCADV7XrUgCGlLnWd\nE8fxIxivjgSlsEz+DFXLq3LemPMwO4Lb9HQfWmv27dtHWloaISEhNGnSBIvFtQaAS7KQOrgCqYPz\nGYmfov83H9rEYBk0HL3ye/T3X0GzNriNfPmfj12XjAoMhiYtUBf4jtMH92J89DaWAUNQLdqVGY/O\nz0N/PRsub4Llmrgy9wcwln6Ld2EeBTfeZWr/8qr0ZHGGYRilnrtSwpBkIXVwBVIH59JaYzw1CM8r\nW1H86NP2L3ydfQo8PR36K72yudIU5ab6LA4cOMCsWbP4/fffKSwsLLVt3rx5Fx+dEEI4yok/IDuL\nWld3o+SsH7PKz9+JQVV/ppLFtGnTuOqqq3j88cepVauWo2MSQohy03u2A+DZoi25To7lUmIqWaSl\npTFgwIBKG4wihBAOs3c7+AfiFtEA0tOdHc0lw1SHQ0xMDL/++qujYxFCiArTe7ajmraUH7eVzFTL\noqioiLfeeotmzZqdc6vs8OHDHRKYEEJcLJ2eChkn4YbbnB3KJcdUsrjsssu47LLLHB2LEEJUyJn+\nChUlA4Yrm6lkcdddjr3PVwghKsXe7eBTGyIud3Ykl5wLJosdO3bQokULALZt23bBFzAzRfn06dPZ\ntGkTAQEBJCQkADBp0iT7uIjc3Fx8fHyYOHEiqampjBo1yn7vb9OmTRkyZIj5GgkhagSdmQ7+QaUG\nzuk9223TfbvQ+K9LxQWTxaxZs+xf7O+9995591FK8e6775Z5kh49etC7d2+mTZtmLxs1apT98Zw5\nc/Dx8bE/Dw8PZ+LEiWVHL4SokfTxPzBeHYFq3xkeftI2b9OxI3DiD1S3650d3iXpgsniTKIASn3J\nl0eLFi1ITU097zatNT///DMvv/zPQ/CFEOIMvXE1lBSj1/8EygKdYjE+fNs2hXi7Ts4O75Lk9DnG\nd+7cSUBAAPXq1bOXpaam8swzz+Dt7c0999xD8+bNz3tsUlISSUlJAIwfP/6cadQvhru7e4WOdwVS\nB9cgdXC89N/Woa5sRa2YruR8OgO9biXuVzQh4Jk3cP9zKnBXr4MZrlSHCyaLxx9/3NQLXOgSlVmr\nV6/mmmuusT8PCgpi+vTp+Pn5ceDAASZOnEhCQkKpy1RnxMXFERf316RcFZlDpTrPhXOG1ME1SB0c\nS588jnFgD+quBzFi+6CKiiH1GMYdD5Dp4QV/xu3KdTCrWswNNWLEiEoL5kJKSkpYt24d48ePt5d5\neHjg8ecc75GRkdStW5djx47RuHFjh8cjhHB9etMaAPuCQZa4W5wZTo1xwWRx5k4oR9q6dSsRERGE\nhITYy06dOoWvry8Wi4UTJ05w7Ngx6tat6/BYhBDVg964Bi5vggqV74WqZHoE93//+19Wr15NdnY2\ns2fP5tdff+XYsWP07n3u4uZ/N3nyZHbs2EF2djZDhw6lf//+XHfddedcggLbLbvz58/Hzc0Ni8XC\no48+iq+vb/lqJ4S4pOj0k3BwD+r2B5wdSo1jKlnMnj2bjIwMRo4cyRtvvAFAgwYNmD17tqlk8cQT\nT5y3fNiwYeeUderUiU6d5G4GIYSNLirCmD4OTmXCn0skqKs6OzmqmsdUsli3bh1TpkzBy8vLPjlX\ncHAwGRkZDg1OCCH0z8tg2yZoHg1eJahmrVF1zHXKispjKlm4u7ufs0LeqVOn8PPzc0hQQggBoEtK\nbMuhXtEUy6h/yUyyTmRqTHynTp1499137QPrrFYrs2bNokuXLg4NTghRs+n1P8HJ41j63iWJwslM\nJYt7772XOnXq8NRTT5Gbm8vIkSMJCgqSCQaFEA6jDQO9+Euofzm0udrZ4dR4pi9DDR48mMGDB9sv\nP0mWF0I4kl75PRxLQT06WiYGdAGmksWRI0fw9fUlMDAQT09PvvzyS5RS3HLLLbImtxCiUuniYvR/\nP0YvXQRXtkZ1uKbsg4TDmUrX77zzDrm5tqXP58yZw86dO9m7dy/vv/++Q4MTQtQsWmuMaa+jly5C\nxd2K5YmxKIubs8MSmGxZpKamEhERgdaadevW8fbbb+Pp6SlLqgohKteRQ7BtE6rfQCx9+zs7GnEW\nU8nC09OTvLw8jhw5QmhoKP7+/pSUlFBUVOTo+IQQNYj+ZSW4uaG6lz3YV1QtU8nimmuu4V//+hd5\neXn2EdsHDx6kTp06Dg1OCFFzaMNAr0+GFu1Qfv7ODkf8jalkMXjwYH799Vfc3Nzsy6gqpXjgAZmf\nRQhRSfbthIw0mffJRZle/Cg6OrrUc5kyXAhRmfS6leBZCxUtYypckalkUVJSwpIlS+wzx55t7Nix\nDglMCFFz6OIi9IbVqLYdUV7ezg5HnIepW2dnz55NUlISLVq04MCBA3Ts2JGsrCxatmzp6PiEEDXB\n1o1wOht1dayzIxEXYCpZ/PLLLzz//PP06dMHNzc3+vTpw9NPP8327dsdHZ8Q4hKni4swvp4NdepB\ny7bODkdcgKlkUVhYaF/NztPTk4KCAurXr8+hQ4ccGZsQogbQS7+F439guedRlLuHs8MRF2Cqz6J+\n/frs37+fJk2aEBkZyZdffom3tzfBwcGOjk8IcQnTmRnoRV9AmxhU6w7ODkf8A1Mti8GDB2P5cyKv\nBx54gIMHD7Jx40aGDBni0OCEEJc2/dVsKCnCcvfDzg5FlMFUy6JJkyb2x/Xq1eOll166qJNMnz6d\nTZs2ERAQQEJCAgDz589n6dKl+PvbBt8MGDCA9u3bA7BgwQKWLVuGxWLhwQcfpG1buY4pxKVG7/oN\nvXY5qk9/WfmuGjA9zmLbtm2sWrUKq9VKUFAQ11xzDa1btzZ1bI8ePejduzfTpk0rVd63b19uueWW\nUmVHjhxhzZo1vP3221itVl577TXeeecde8tGCFE96bxc0BrlU9u2rvZn70FYOKqvrItTHZj6Bl60\naBGTJ0/G19eX9u3b4+fnx5QpU1i0aJGpk7Ro0QJfX19T+65fv54uXbrg4eFBnTp1CA8PZ9++faaO\nFUK4LmP6GxhjHsZI+gb93Ze2Tu17H0N5yjIH1YGplsW3337Lyy+/TMOGDe1l3bt35/XXX+fmm28u\n98mXLFlCcnIykZGRDBo0CF9fXzIyMmjatKl9n+DgYDIyMsp9DiGE8+nTObB7G/j5o+d9CIDq0BXV\n6ionRybMMn0ZKjw8vNTzunXrVujE119/PXfeeScA8+bNY86cOcTHx1/UayQlJZGUlATA+PHjCQ0N\nLXc87u7uFTreFUgdXIPU4Vz5u38jSxsEPTcBw5pGfvKP+D36JG7Bjnuf5HOoXBdMFoZh2B/fdddd\nzJgxg7vuuouQkBDS0tL46quv6N+//PPNBwYG2h/37NmTCRMmALaWRHp6un1bRkbGBW/RjYuLIy4u\nzv48LS2t3PGEhoZW6HhXIHVwDVKHcxk/rwCf2mQF1UGF1oOmrbEagAPfJ/kczImIMHdzwQWTxYAB\nA84pW716dannq1atomfPnhcZms2ZjnKAdevW0aBBAwA6dOjAlClTuOmmm7BarRw7dqzU3VhCiOpF\na43evhmaR6PcZNW76uqCyeLdd9+ttJNMnjzZPgnh0KFD6d+/P9u3b+fQoUMopQgLC7OP2WjQoAGd\nO3fmySefxGKx8PDDD8udUEJUZ0d/h8x0VMv2zo5EVMAFk0VYWFilneSJJ544p+y666674P633347\nt99+e6WdXwjhPHrbJgBJFtWc/GQXQjiU3r4JIhqiHNiZLRxPkoUQwmF0QT7s3Y5qJa2K6k6ShRDC\nYfQ3/4HiYlR0R2eHIirIVLL46KOPzlv+ySefVGYsQohLiN60Bv1DIuraPqgoWSitujOVLFauXHne\n8uTk5EoNRghR/eniIvSB3RifTIErmqLukhllLwX/OIJ72bJlgG0N7jOPz0hNTcXPz89xkQkhXIbx\nv/no3w+AAhVSB3XrfefM6aQz0jCmvwG/HwBtgI8vlqHPojxkQaNLwT8mi59++gmA4uJi++MzAgIC\nGDZsmOMiE0K4BJ2fi174GfgHgndt9Kaf0Yf2Yhn+Esrbx7ZPURHGjPFw4g9Unzuhbn3Ula1QwZV3\nC75wrn9MFq+88goAX3zxBffcc0+VBCSEqDrGws9Aayz9Bv5VtnYFhZc3gnqX2woO77ft88BIVOur\nMH5Zif54MkbCi1juHwYNrkB/PhMO7sHy+HOo9p2dVBvhSKYmEuzfv3+puaLOJqOrhai+9IbVkJuD\nvvU+lFJow0D/ZwY5DSNh9Bu2fQ7tte18hW02aEvHWLSXD8bMCRivj4Ja3lCQh+pzlySKS5ipZHG+\neaLOmDdvXqUFI4SoOlpryEiFwkJIT4XQunAsBfJyKdq3E0t+HsrLGw7uhZA6KD9/+7EqOgbLG++j\nd2+FPdvB3R11671OrI1wNFPJ4u/zRFmtVhITE+nQQRZYF6LayjllSxSAPrgHFVoXvX+XbVtJCezb\nCa3aow/tRTWKOudwFRiM6hgLHWOrMmrhJKauIYWFhZX6FxUVxfDhw1m4cKGj4xNCOEp66l+PD+z+\n87+7wMcX3NzQu7eis7Ns+13R9PyvIWoM04sf/V1ubi6nTp2qzFiEEFXpTLLw8UUf3AOA3r8bmjTH\nozCfot1b7YPplCSLGs9Uspg6dSpKKfvzgoICdu7cSbdu3RwWmBDCsfSfyUK174xeuwKdZYXjR1Cd\neuDpZqFowafoXVtBWeDyxk6OVjibqWTx9yVVa9WqRa9evWjTpo1DghJCVIH0k+DljWrVHr3qR3Ty\nEgBU42Z4+PnBV3PQP/0A9S6zdXSLGs1UsrjrrrscHYcQoorp9FQIqQONrrQ9X/4/WyviiqZ4hoWB\nmzvknUa16+TkSIUrMN1nsXz5cpKTk+1rYnfv3p1rr73WkbEJIRwp/SQEh9nWmQgMgcx0aNAI5eWN\nquUFjaJg3w5oJP0VwmSy+Prrr1m5ciU333yzfQHxb775BqvVKivaCVFdZaSimjS3PY6Mgk0/oxo3\ns29WV7ZC79uBdG4LMJksli5dyquvvlpqqdXo6GheeeUVSRZCVEM6LxdyT0OI7W9aRV6J3vQzRJ6V\nLGJvtF2KahjprDCFCzGVLAoKCvD39y9V5ufnR+GfA3rKMn36dDZt2kRAQAAJCQkAzJ07l40bN+Lu\n7k7dunWJj4+ndu3apKamMmrUKCIiIgBo2rQpQ4YMuZg6CSHKcua22ZA6AKi2ndCb16JatrXvooJC\nUDfLnHDCxlSyaNu2LVOmTOG+++4jNDSUkydP8vnnnxMdHW3qJD169KB3795MmzbNXtamTRvuvfde\n3Nzc+PTTT1mwYAEDB9omMwsPD2fixInlqI4QwpT0kwD2WWFV3QjcxrzpzIiEizOVLB566CE++ugj\nRo8eTUlJCe7u7nTq1ImHHnrI1ElatGhBampqqbKzE01UVBRr1669iLCFEBWhM0q3LIQoi6lk4ePj\nw/Dhw4mPjyc7Oxs/P79KnW122bJldOnSxf48NTWVZ555Bm9vb+655x6aN29+3uOSkpJISkoCYPz4\n8YSGhpY7Bnd39wod7wqkDq6hOtQhOzeHXA9PQiOboM7zt1wd6lAWqUPlMn3rbG5uLkePHiU/P79U\neatWrSoUwNdff42bm5t9NHhQUBDTp0/Hz8+PAwcOMHHiRBISEvDx8Tnn2Li4OOLi4uzP09LSyh3H\nmbu8qjOpg2uoDnUwUg5BUCjpGRnn3V4d6lAWqYM5Z/qHy2IqWaxYsYJZs2bh5eWFp6envVwpdc6M\ntBdjxYoVbNy4kZdfftk+nYiHhwcefy7DGBkZSd26dTl27BiNG8t0A0JUFp1x0n4nlBBmmEoWn3/+\nOU8++STt2rWrtBNv2bKFhQsXMnbsWGrV+mst31OnTuHr64vFYuHEiRMcO3aMunXrVtp5hahJdHER\neskCVNuOqPqX/7UhPRXVJsZ5gYlqx1SyMAzD9J1P5zN58mR27NhBdnY2Q4cOpX///ixYsIDi4mJe\ne+014K9bZHfs2MH8+fNxc3PDYrHw6KOP4uvrW+5zC1GT6cTP0Eu+Ri/+EnX/MCydeqCLCuFUprQs\nxEUxlSxuvfVWvvrqK+64445ydWw/8cQT55Rdd9115923U6dOdOokc9EIUVF656/oHxagOsaiM06i\nZ71Nyaof4czfcLDcCSXMu2CyePzxx0s9z8zM5JtvvjnnV/57773nmMiEEOWmT2djfDQZ6kag7h+G\ncnNHL/oCvW0DaA2Nm9nXqhDCjAsmixEjRlRlHEKISqS//xqyM7EMn2ibFBBQtw2E2wY6OTJRXV0w\nWbRo0cL++Oeff6Zz587n7CMD6YRwTfrwPmjYGHV5E2eHIi4RpjogZsyYcd7ymTNnVmowQohK8sdh\nVEQDZ0chLiH/2MF94sQJwHY3VGpqKlrrUtvOHnMhhHANOvuU7W6niMvL3lkIk/4xWYwcOdL++O99\nGIGBgbKCnhCu6OjvAKXHVQhRQf+YLObNmwfAK6+8wtixY6skICFExeijh20PIho6NxBxSTHVZyGJ\nQohq5I/D4FMbAoOdHYm4hFywZTFu3DheeOEFgFJzN/2dJBIhXIv+43eIuPyCf7NClMcFk0VsbKz9\n8YVGWwshXIvWGo7+jorp6uxQxCXmgsmia9e//mfr0aNHVcQihKiorAzIzZH+ClHpTM0N9cwzz9Ci\nRQv7P5nYTwgX9YfcCSUcw1SyGDRoEDt27GDx4sVMmTKF8PBwe+KQSf+EcB36D7kTSjiGqWTRqlUr\n+4p42dnZfPvtt3z//fcsWbLEfnutEMIFHD0M/oEovwBnRyIuMaaSxebNm9m5cyc7duwgPT2dpk2b\ncu+995aaP0oI4Xz6aIq0KoRDmEoW48ePp27duvTr14/Y2Fjc3NwcHZcQ4iJpo8R2J1TXXs4ORVyC\nTCWLsWPHsnPnTtauXcu8efNo0KABLVq0oHnz5jRv3tzRMQohzNi1FQryUU2lxS8qn6lk0axZM5o1\na8Ztt91GVlYWixcvZuHChcybN0/6LIRwEXrtcvD2AVlbWziAqWSxbt06tm/fzo4dOzh27BiRkZH0\n7t37ovospk+fzqZNmwgICCAhIQGAnJwcJk2axMmTJwkLC2PUqFH4+vqitebjjz9m8+bN1KpVi/j4\neCIjI8tXQyFqAF2Qj960FhXTFeUhs0GLymcqWSxevJgWLVrwwAMPEBUVVa6pyXv06EHv3r2ZNm2a\nvSwxMZHWrVvTr18/EhMTSUxMZODAgWzevJnjx48zZcoU9u7dy4cffsgbb7xx0ecUoqbQW36BgjxU\np2udHYq4RJmaSPDVV1+lf//+tGrVqtxrWJxvMN/69evt04rExsayfv16ADZs2ED37t1RShEVFcXp\n06exWq3lOq8QNYFeuwKCw0D6K4SDmEoWjpKVlUVQUBBgWx8jKysLgIyMDEJDQ+37hYSEkJGR4ZQY\nhXB1+pQVdmxGdYxFWZz6Jy0uYaYuQ1UFpdRFz5KZlJREUlISYLu99+wEc7Hc3d0rdLwrkDq4hqqu\nw+mflpBjGATfeBvulXRe+RxcgyvVwanJIiAgAKvVSlBQEFarFX9/fwCCg4NJS0uz75eenk5w8Llz\n88fFxREXF2d/fvYxFys0NLRCx7sCqYNrqMo66IJ8jAWfQvNoMr39oJLOK5+Da6iKOkRERJjaz6lt\n1g4dOrBy5UoAVq5cSUxMjL08OTkZrTV79uzBx8fHfrlKCPEXvWIxZGdhueVeZ4ciLnGmWhY5OTl8\n8803HD58mPz8/FLbzC5+NHnyZHbs2EF2djZDhw6lf//+9OvXj0mTJrFs2TL7rbMA7dq1Y9OmTYwc\nORJPT0/i4+MvslpCXPp0fi76+6+gZTtUExkcKxzLVLJ45513KC4upnPnzuW+G+qJJ544b/nLL798\nTplSikceeaRc5xGiptDL/gc52dKqEFXCVLLYs2cPH374IR4eHo6ORwhhgk49hv7+a2jdARV5pbPD\nETWAqT6Lhg0bkp6e7uhYhBAm6IJ8jOlvgMWCZcAQZ4cjagjT61m88cYb9OjRg8DAwFLbZH1uIaqO\n1ho9eyocTcHyf6+gwsKdHZKoIUwli127dhESEsLWrVvP2SbJQoiqo7//Cr3+J9Ttg1At2zk7HFGD\nlJkstNYMHTqU0NBQWcdCCCcy1iWjv56Duro7qvcdzg5H1DBl9lkopRg9evRFj64WQlQevWc7+uPJ\nENUSNfj/5O9RVDlTHdxXXHEFx44dc3QsQojz0FpjfPIOhNTFEv88Su5KFE5gqs+iZcuWvPHGG8TG\nxp4zT4n0WQjhYCkH4eRx1AMjULX9nB2NqKFMJYvdu3dTp04ddu7cec42SRZCOJbeshaUBRV9tbND\nETWYqWTxyiuvODoOIcQF6C2/QJNmKL8AZ4ciajBTfRaGYVzwnxCi4vTJ45SM/T/07/tLl6edgJSD\nqLYdnRSZEDamWhYDBgy44LZ58+ZVWjBC1FQ66Rs4chBjwVzc/u/Vv8q3/AIgyUI4nalk8e6775Z6\nbrVaSUxMpEOHDg4JSoiaROfmoFcnQW0/2LYJvX8XqnEz27Ytv0D9y1F1zK05IISjmLoMFRYWVupf\nVFQUw4cPZ+HChY6OT4hLnl71IxTkY4l/Dnz9Mb79wlaenQV7t6OipVUhnK/cK+Xl5uZy6tSpyoxF\niBpHl5TYphqPaomKaoW64Tb0V7Mxvp6NXrMMNKgO1zg7TCHMJYupU6eWGjFaUFDAzp076datm8MC\nE6JG2LIW0lOx3G1bv0X16INoyG9uAAAgAElEQVResgD93VfQpDmWx59DNWjk5CCFMJkswsNLz2xZ\nq1YtevXqRZs2bRwSlBDVnU5PhcP7Ue07/1V2LAWOpqCu6mIvM5J/gJA6EG1bUlh5eWMZ/iLknoZW\n7WVaD+EyTCWLtm3b0rRp03PK9+3bR5MmTSo9KCGqs8LtmzHGj7GtYjfsBVTbjuiiQoxpb8DJY1je\nmo3yC0Dn5sDu31Bxt6Isf03SeaZzWwhXYipZvP7668yePfuc8nHjxvHxxx+X++RHjx5l0qRJ9uep\nqan079+f06dPs3TpUvz9/QHbrbvt27cv93mEqAo64yR60xqsX82G0LrgF4jx2XtYolqhf1gAJ/6w\n7bdhNeraPuitG6GkBNWuk5MjF6Js/5gszgy601rb/51x4sSJCk9ZHhERwcSJE+3neuyxx7j66qtZ\nvnw5ffv25ZZbbqnQ6wtRFfSRQ7aV604eB8AzOobiB0dB6lGMfz+D8WEC7NiM6nQtOuUAet1KuLYP\nevPPEBAEjaKcXAMhyvaPyeLswXj33HNPqW0Wi4Xbbrut0gLZunUr4eHhhIWFVdprClEV9LJv4VQW\n6u5HUE1bEtguhvSMDGgUhep5MzppIfj6o/o/DD8tQS+Yiz5+BLZtQnXsgbKYuoNdCKf6x2Tx7rvv\norXm1VdfZezYsWitUUqhlMLf3x9PT89KC2T16tVcc81ftwguWbKE5ORkIiMjGTRoEL6+vpV2LiEq\nizZK0Ft+QbXpgCXO1hI++8tf9bsPnXYCS9deKD9/iOmGXjAXY+40KMhHtZMxFKJ6UPrsa0tlMAyD\nrKwsgoKCKjWI4uJiHnvsMRISEggMDCQzM9PeXzFv3jysVivx8fHnHJeUlERSUhIA48ePp7CwsNwx\nuLu7U1xcXO7jXYHUoeoV7tqK9bnHCHhyLF7degFl1yFjzBCKdm9DefsQNnsxyqPyfnRVlur2OZyP\n1MEcsz/6TXVwnz59mg8//JC1a9fi7u7O3Llz2bBhA/v27Tvn8lR5bN68mUaNGhEYGAhg/y9Az549\nmTBhwnmPi4uLIy4uzv48LS2t3DGEhoZW6HhXIHWoesaKJeDmTvblUeT8GXdZdTDad4Hd26DVVaRn\nuebA1ur2OZyP1MGciAhzU8mYulj6wQcf4OPjw/Tp03F3t+WXqKgo1qxZU/4Iz/L3S1BWq9X+eN26\ndTRo0KBSziNEZdJaozevhStbo3xqmz5OxXSDsHBU17iydxbCRZhqWWzdupWZM2faEwWAv78/WVlZ\nFQ4gPz+f3377jSFDhtjLPv30Uw4dOoRSirCwsFLbhHAZx49A6lFUr4u7a0/5BeD2xvsOCkoIxzCV\nLHx8fMjOzi7VV5GWllYpfRdeXl589NFHpcpGjBhR4dcVoqJ0dhbG+xOx9Bt43oFyevNaAJnoT9QI\npi5D9ezZk4SEBLZt24bWmj179jBt2jR69erl6PiEcBq9dQPs+g1j6mvoY0dKb9MavXENXNEUFRTi\npAiFqDqmksWtt95Kly5dmDVrFiUlJbz33nt06NCBPn36ODo+IZxnzzbwrg1ubhiTX0Fb08/ath1+\n34/q0tN58QlRhcq8DGUYBitWrKBXr16SHESNovdshytbYbnpHoyJz2O8+zqWMW+iPDwwvv8v+AWg\nrpFkIWqGMlsWFouFOXPm4OHhURXxCOEStDUdTh63rTFxeWMsj4yC3/ejE+fa1snetgkVdwvKs5az\nQxWiSpi6DHXVVVexYcMGR8cihEMZq5dSMuYRdH5umfvqPdsAUFEtbf9t28m21sQPiRgfTQZvH1QP\naWmLmsPU3VBFRUW8/fbbREVFERISUmqO/eHDhzssOCEqk964GtJT0euSUd17//POe7aDlzectfCQ\nuutB9N7t8Mdh1I13XNTYCiGqO1PJokGDBjIwTlRruqQE9m63PV7xHbrbDSil0Ns3o7dvQt10T6kv\nf713OzRpUXqdCc9aWB57Br34S1SvflVeByGcyVSyuOuuuxwdhxCVRqefRO/6FbKsqN63277wf98P\n+XlwZWvYvRUO7kEHh2G8PxFyc9CbfsbyyFOoJs3RpzLhWAqq83XnvLaq1wD18JNOqJUQzmUqWQjh\nKnRJCXrNUlS9BhAZZf/lr0/noNcuR//0A/xx2L6/uuwKaBOD3r0VAMugYRj/GmVrXeTmQFEh6uFR\n6IX/wZj4nO1W2Lq2uXLO9FcIISRZiGpGr09Gz3kXDeDrByF1IecUZGZASbFtkFz/h1FXtsaY/ArG\nTz/idiZZ1GuAqhOB6hSLTl4CWqPuehBLp2vR0R3RiZ/akk1RIXjWgssbO7u6QrgMSRbC5eiCAjhl\nRYWFn7ttxXdQtz7q1nvhtw3onCxbKyMwGBXTFdXwry941aUn+sdEdEYa7N2J6nytrTz2RvTK76Fx\nM9SZNSi8fVADhqD73oVe+q1tsSJ3uV1ciDMkWQiXo+e+i964BsuLb6PqX/5X+e/7Yf8u1N2PYInp\nBjHd/vF1VNde6CVfY3z+PhTkoa5sZStv0Aj16GhU05alOrABlH8Q6rb7K79SQlRzpsZZaK1JSkpi\n7NixjB49GoAdO3ZU2hTlQpxhZFnRG1ZDcRHGh2+ji4rs2/SK78DTE9Xl3I7n81Hh9SGqJWyxTfhH\nVCv7NsvV3WVOJyEugqlkMW/ePJYvX05cXJx9IY6QkBAWLlzo0ODEpUWnHKTk7ZcomfQyJe++jt62\n6Zx98pZ/ByXFqNsfgCMH0Qs/tR2bm4P+ZaVtzWof80vsqq7X2x5ENET5B/7zzkKICzKVLFauXMmz\nzz7LNddcYx+QV6dOHVJTUx0anKi+dH4eevNatFFiLzO+ngMH9thuYT28H2P6G+iDe/86RmvyflgI\nTVpgufEOVPfe6B8SKZn0Csb0f0NhASr2xouKQ7XvYpvDqfVVlVY3IWoiU8nCMAy8vLxKleXn559T\nJgSATjuBMf4ZWzL48Rtb2e/7YdtG1I134PbcRCwvTQL/QIxpr6PTT9oO3L2VkmMpqO43AKD6P4S6\nJg5OZ9sWGoq+GnWRdyipWrWw/Gsa6taBlVpHIWoaUx3c7dq1Y86cOTzwwAOA7RfgvHnzuOoq+bVW\nE+miItQFJpbU+3dhTBsHxcXQKAr9zWfo9p3R330FXt6oa23zKSn/QCwjX7YllYQXUB1j0ft3oXz9\nUFd1se1Tywv1QMUXwlK+/hV+DSFqOlMti0GDBmG1Whk8eDC5ubkMGjSIkydPct999zk6PuFidNoJ\njCfuxViz7NxtJSUYH7wFXt5Ynp+IZegYsLhhzHwTvXE16to+pfobVERDLMNehNp+6P99CTt/xfva\nPjKTqxAuyPSyqk8//TSZmZmkpaURGhpKYKB0FtZEeuX3UFiAXvgZOqZb6RbGll8gPRXL48+hwi8D\nQN3+APo/M8DD0z6m4Wzqyla4vZCAzj0Nh/fhG9OFgpzTVVUdIYRJppKFYRgA+Pv74+/vby+zWEw1\nTMo0bNgwvLy8sFgsuLm5MX78eHJycpg0aRInT54kLCyMUaNG4etr/i4YUfl0USF61Q8QFg4nj6NX\n/Wi/rARgJH0DIXWg7dX2MhXbG/bthIaNUP4XXrNd+dSG5tEoL2+QZCGEyzGVLAYMGHDecjc3N4KC\ngujYsSP9+/evUIf3K6+8Yk9EAImJibRu3Zp+/fqRmJhIYmIiAwdKJ6Uz6Q2rIScby6NPYyz6Ar14\nPrprHMrDE314H+zbYZtq4+yZWi0W1KNPOTFqIURlMNU0ePDBB2nVqhUvvvgikyZN4oUXXqB169YM\nHDiQRx99lN27d/PJJ59UamDr168nNjYWgNjYWNavX1+pr1/T6ZxTtmk1/mmfokKMDxMwln2LNgz0\nisUQXh+aR2O59V7IzEAvWYAuKkInLYJa3ra7l4QQlxxTLYv//e9/TJgwAR8fHwAiIiJo3LgxY8aM\nYerUqTRs2JBnn322QoGMGzcOgF69ehEXF0dWVhZBQbbLFoGBgWRlZVXo9cVf9O5tGNPHQW0/LCNf\nQYXXRxcUoH/6HtW4OapRlG2/hf9B/7ISflmJXvUjpBxE3f2IbaxNszbQPNrWd/HtPDCMPzuwZUEg\nIS5FppJFbm4uBQUF9mQBUFBQQG6ubXnKwMBACgsLyx3Ea6+9RnBwMFlZWbz++utERESU2q6UKrU6\n3xlJSUkkJSUBMH78eEJDQ8sdg7u7e4WOdwVm6pCX/AOnpo7DrW49jOxT6AnP4HPnYHIX/xedegy8\nvAl48S1w98D6YyLecTfj0aIt2R9NBi9vQm++C0ttPwCMlxIo3LyWov27KTn+B34DHsGtgu9hTfkc\nXJ3UwTW4Uh1MJYvY2Fhef/11brzxRkJDQ0lPT2fx4sX2y0S//vrrOV/wFyM4OBiAgIAAYmJi2Ldv\nHwEBAVitVoKCgrBaraX6M86Ii4sjLu6vyx5npiIpj9DQ0Aod7wrKqoOx4jv0Z+9BVCt0/POo3ByM\nKf8i55OpUK8BlsfHYCz4FOtrT4GvPwQGU3DLfRR6+6D+9R6cziYjrwDyzrp8FdXG9g+wAlTwPawJ\nn0N1IHVwDVVRB7Pf3aaSxcCBAwkPD2fNmjVYrVYCAwO54YYb7F/ULVu2ZOzYseUKND8/H6013t7e\n5Ofn89tvv3HnnXfSoUMHVq5cSb9+/Vi5ciUxMTHlen1hY6xeaksUbWKwDB1ju+W1ti+W596EXVuh\nTQzK3R1LZDOMhBfh+BEsT4xFedtak8rPH/xkcJsQNZWpZGGxWLj++uu5/vrrz7vd09Oz3AFkZWXx\n1ltvAVBSUkLXrl1p27YtjRs3ZtKkSSxbtsx+66wom7F+FRzeZ1tO1NcfbZSgk39A/2cmtGiLZeiz\npcZGKB9faN/5r+eBwVieHQ9HU2SlOCGEndJaazM7ZmZmsm/fPrKzszn7kOuuMzdddFU4evRouY+9\nFJqsQRZNWvw9UJAHPr6o2BvQm9fC8T/gytZYRryMquXao6Mvhc9B6uAapA7mVOplqHXr1jF16lTq\n1atHSkoKDRo0ICUlhWbNmrlUsqjpcua+ByVFWIa/iLF0kW0+pvqXYxn6LLTrjKqkQZRCiJrHVLKY\nN28e8fHxdO7cmQcffJA333yT5cuXk5KS4uj4hEl6307yV3yP6nMXKvpqLG1iwJoGgSGSJIQQFWYq\nWaSlpdG5c+dSZbGxsQwZMoRBgwY5JDBxYTovF46loFOPQpYViorQ63/CEhIGN94J2G43JjjMyZEK\nIS4VppKFv78/mZmZBAYGEhYWxp49e/Dz87PPGSWqjj6833a3Ut7f5k/y9MTvyX+R4+XtnMCEEJc0\nU8miZ8+e7Nq1i06dOtG3b1/Gjh2LUoqbbrrJ0fGJs+i0ExhT/wXe3lge+j+oWx+CQsDdE9zc8AoL\nI6ead+gJIVyTqWRxyy232GeYjY2NpWXLluTn53PZZZc5NDjxF33aNoCOokIsoyag6jd0dkhCiBqk\nzJ5PwzC4//77KSoqspeFhoZKoqhi+rv/QupRLPEvSKIQQlS5MpOFxWIhIiKC7OzsqoinRtPHj6Ct\n6eeWa43esApatENd2coJkQkhajpTl6G6du3KhAkTuPHGGwkJCSk1qV+rVvLlVRl0fi7Gv58BNzcs\nT40r3Xo4tBfSU1G3nH9dESGEcDRTyeKHH34A4MsvvyxVrpTi3XffrfyoaiCd/APk5kBtP4yEF0ol\nDL1hNbi5o9p2dHKUQoiaylSymDZtmqPjqNF0URH6x0TblBwD4zHeesGWMJ6bCKF1/7wE1dY2j5MQ\nQjiB6aG9xcXF7Ny5kzVr1gC22WLz8/MdFtilzvjpB4xvPrctOrR2OWRmYOl9Byq8PpbRr0NJCcbU\n12DnFsg4iepwjbNDFkLUYKZaFr///jsTJkzAw8OD9PR0unTpwo4dO1i5cqXMBlsOOj8PPW8WFOSh\nf1kBJSXQMBJatgNAhV+GZeizGO+8ijHtDbkEJYRwOlMtiw8++IC7776byZMn4+5uyy8tWrRg165d\nDg3uUqXX/wQFeag7B4PWts7r3neUunFANY9GDXgMCgvkEpQQwulMtSyOHDlCt27dSpV5eXlVaCnV\nmkyv+hHqNUBdfxuqR184sMu2pvXfWGJ7Y/j4oi5v7IQohRDiL6ZaFmFhYRw4cKBU2b59+wgPD3dI\nUJcy/cdhOLAb1e1629ritWrZWhHnWWMcwBLTFVWnXhVHKYQQpZlqWdx9992MHz+eXr16UVxczIIF\nC/jxxx957LHHHB3fJUNrjVIK/dMPtj6ITtc6OyQhhDDNVLK46qqreP7551m6dCktWrTg5MmTjB49\nmsjISEfHV+1pazrGhwlweD9ERsGhfah2nWxrWgshRDVhKlmcOnWKRo0a8cgjj1TqydPS0pg2bRqZ\nmZkopYiLi6NPnz7Mnz+fpUuX4u9v+0IdMGAA7du3r9RzVwW9eyvGzDehsADVoSv68D7b4+tktl4h\nRPViKlnEx8fTsmVLunbtSkxMDF5eXpVycjc3N+6//34iIyPJy8tjzJgxtGlj6+jt27cvt9xyS6Wc\nxxmMNcvQs6dAnQgso8ehIv4cjW0YsnKdEKLaMZUspk+fzs8//8wPP/zABx98QPv27enatSvt2rXD\nzc2t3CcPCgoiKCgIAG9vb+rXr09GRka5X89VGEnfoOd9CM2jsTz+HMrbx75NEoUQojoyvVLeDTfc\nwA033MDJkydZvXo1X3zxBe+99x6zZs2qlEBSU1M5ePAgTZo0YdeuXSxZsoTk5GQiIyMZNGgQvr6u\nP85Aa41e9AV60efQvjOWR0ajPDycHZYQQlSY0lrrizlg3759rFq1ip9//platWoxZcqUCgeRn5/P\nK6+8wu23307Hjh3JzMy091fMmzcPq9VKfHz8OcclJSWRlJQEwPjx4ys07sPd3Z3i4uJyH6+1Juez\nmeR+NQev6/riHz8GVYFWV3lUtA6uQOrgGqQOrqEq6uDp6WlqP1PJ4siRI6xatYrVq1dTWFhI586d\n6dq1K02aNKlwoMXFxUyYMIHo6OjzLtOamprKhAkTSEhIKPO1jh49Wu44QkNDSTO5JKne8ovtQfNo\nVC0v9Imj6KSF6BXfobr3Rt031CmXmy6mDq5K6uAapA6uoSrqEBERYWo/U5ehXnrpJTp27MiQIUNo\n2bKlfYnVitJaM2PGDOrXr18qUVitVntfxrp162jQoEGlnK8y6O2bMaaNsz1x94CAIEhPBUD1vBl1\n9yMXHGAnhBDVlalk8cEHH9jnhKpMu3fvJjk5mYYNG/L0008DtttkV69ezaFDh1BKERYWxpAhQyr9\n3GbpvFxQCuXljc7Owvh4MkQ0xNL/YfS2jei0VNT1/VCtO6DCZES7EOLSZCoDuLu7k5mZyb59+8jO\nzubsK1fXXXdduU/erFkz5s+ff065K4yp0IaBXrEY/fUcW7KIvdE2VcfpHCxPvIq6rBHqz1lihRDi\nUmcqWaxbt46pU6dSr149UlJSaNCgASkpKTRr1qxCycJVaWs6xgcTYe8OaNUe5V0b/UMiaAN1z6Oo\nyxo5O0QhhKhSppLFvHnziI+Pp3Pnzjz44IO8+eabLF++nJSUFEfHV+X0yeMYb78E2adQD/4fqvN1\ntjmd+t2HPrgXdXV3Z4cohBBVzlRPdVpaGp07dy5VFhsbS3JyskOCchZ9/AjGm89B7mksT72OpUtP\ne2e1qhOBpWOsdF4LIWokU8nC39+fzMxMwDZd+Z49ezhx4gSGYTg0uKpU/PsBjInPQ0kxlqfHoRo1\ndXZIQgjhMkxdhurZsye7du2iU6dO9O3bl7Fjx6KUOu+4iOpIHzlExqSXQVmwjH4dVe8yZ4ckhBAu\nxVSy6Nevn/1xbGwsLVu2JD8/n8suq/5fqvrIIYyEF7DU8kKNeg1V19wAFSGEqEnKNXgiNDS0suNw\nHr8AaNiYoOHPk+lRObPpCiHEpabGT4GqAoJwG/Uv3OXSkxBCXFCNTxZCCCHKJslCCCFEmSRZCCGE\nKJMkCyGEEGWSZCGEEKJMkiyEEEKUSZKFEEKIMkmyEEIIUSZTa3ALIYSo2aRl8acxY8Y4O4QKkzq4\nBqmDa5A6VC5JFkIIIcokyUIIIUSZ3F599dVXnR2Eq4iMjHR2CBUmdXANUgfXIHWoPNLBLYQQokxy\nGUoIIUSZyrX40aVky5YtfPzxxxiGQc+ePUutCuiq0tLSmDZtGpmZmSiliIuLo0+fPuTk5DBp0iRO\nnjxJWFgYo0aNwtfX19nh/iPDMBgzZgzBwcGMGTOG1NRUJk+eTHZ2NpGRkYwYMQJ3d9f93/T06dPM\nmDGDlJQUlFI8/vjjREREVKvP4dtvv2XZsmUopWjQoAHx8fFkZma6/Ocwffp0Nm3aREBAAAkJCQAX\n/BvQWvPxxx+zefNmatWqRXx8vEtc3jlfHebOncvGjRtxd3enbt26xMfHU7t2bQAWLFjAsmXLsFgs\nPPjgg7Rt27bqgtU1WElJiR4+fLg+fvy4Lioq0qNHj9YpKSnODqtMGRkZev/+/VprrXNzc/XIkSN1\nSkqKnjt3rl6wYIHWWusFCxbouXPnOjNMUxYtWqQnT56s//3vf2uttU5ISNCrVq3SWms9c+ZMvWTJ\nEmeGV6apU6fqpKQkrbXWRUVFOicnp1p9Dunp6To+Pl4XFBRorW3v//Lly6vF57B9+3a9f/9+/eST\nT9rLLvTeb9y4UY8bN04bhqF3796tn3vuOafE/Hfnq8OWLVt0cXGx1tpWnzN1SElJ0aNHj9aFhYX6\nxIkTevjw4bqkpKTKYq3Rl6H27dtHeHg4devWxd3dnS5durB+/Xpnh1WmoKAg+68ib29v6tevT0ZG\nBuvXryc2NhawrZXu6nVJT09n06ZN9OzZEwCtNdu3b6dTp04A9OjRw6XrkJuby86dO7nuuusAcHd3\np3bt2tXuczAMg8LCQkpKSigsLCQwMLBafA4tWrQ4p8V2ofd+w4YNdO/eHaUUUVFRnD59GqvVWuUx\n/9356hAdHY2bmxsAUVFRZGRkALa6denSBQ8PD+rUqUN4eDj79u2rslhdq11ZxTIyMggJCbE/DwkJ\nYe/evU6M6OKlpqZy8OBBmjRpQlZWFkFBQQAEBgaSlZXl5Oj+2SeffMLAgQPJy8sDIDs7Gx8fH/sf\nSnBwsP0PxRWlpqbi7+/P9OnTOXz4MJGRkQwePLhafQ7BwcHcfPPNPP7443h6ehIdHU1kZGS1+hzO\ndqH3PiMjg9DQUPt+ISEhZGRk2Pd1VcuWLaNLly6ArQ5Nmza1b6vqz6VGtyyqu/z8fBISEhg8eDA+\nPj6ltimlUEo5KbKybdy4kYCAAJe4blxeJSUlHDx4kOuvv54333yTWrVqkZiYWGofV/8ccnJyWL9+\nPdOmTWPmzJnk5+ezZcsWZ4dVKVz9vS/L119/jZubG926dXN2KEANb1kEBweTnp5uf56enk5wcLAT\nIzKvuLiYhIQEunXrRseOHQEICAjAarUSFBSE1WrF39/fyVFe2O7du9mwYQObN2+msLCQvLw8Pvnk\nE3JzcykpKcHNzY2MjAyX/jxCQkIICQmx/9rr1KkTiYmJ1epz2Lp1K3Xq1LHH2LFjR3bv3l2tPoez\nXei9Dw4OJi0tzb6fq/+tr1ixgo0bN/Lyyy/bE97fv6+q+nOp0S2Lxo0bc+zYMVJTUykuLmbNmjV0\n6NDB2WGVSWvNjBkzqF+/PjfddJO9vEOHDqxcuRKAlStXEhMT46wQy3TvvfcyY8YMpk2bxhNPPEGr\nVq0YOXIkLVu2ZO3atYDtD8aVP4/AwEBCQkI4evQoYPviveyyy6rV5xAaGsrevXspKChAa22vQ3X6\nHM52ofe+Q4cOJCcno7Vmz549+Pj4uOwlqC1btrBw4UKeffZZatWqZS/v0KEDa9asoaioiNTUVI4d\nO0aTJk2qLK4aPyhv06ZNzJ49G8MwuPbaa7n99tudHVKZdu3axcsvv0zDhg3tvzoGDBhA06ZNmTRp\nEmlpadXils0ztm/fzqJFixgzZgwnTpxg8uTJ5OTk0KhRI0aMGIGHh4ezQ7ygQ4cOMWPGDIqLi6lT\npw7x8fForavV5zB//nzWrFmDm5sbV1xxBUOHDiUjI8PlP4fJkyezY8cOsrOzCQgIoH///sTExJz3\nvddaM2vWLH799Vc8PT2Jj4+ncePGzq7CeeuwYMECiouL7f/PNG3alCFDhgC2S1PLly/HYrEwePBg\n2rVrV2Wx1vhkIYQQomw1+jKUEEIIcyRZCCGEKJMkCyGEEGWSZCGEEKJMkiyEEEKUSZKFqJGefPJJ\ntm/f7pRzp6Wlcf/992MYhlPOL0R5yK2zokabP38+x48fZ+TIkQ47x7Bhw3jsscdo06aNw84hhKNJ\ny0KICigpKXF2CEJUCWlZiBpp2LBhPPTQQ7z11luAbXrx8PBwJk6cSG5uLrNnz2bz5s0opbj22mvp\n378/FouFFStWsHTpUho3bkxycjLXX389PXr0YObMmRw+fBilFNHR0Tz88MPUrl2bqVOnsmrVKtzd\n3bFYLNx555107tyZ4cOH8/nnn9vnXvrggw/YtWsXvr6+3HrrrcTFxQG2ls+RI0fw9PRk3bp1hIaG\nMmzYMPvo48TERL777jvy8vIICgrikUceoXXr1k57X8Wlq0ZPJChqNg8PD2677bZzLkNNmzaNgIAA\npkyZQkFBAePHjyckJIRevXoBsHfvXrp06cIHH3xASUkJGRkZ3HbbbTRv3py8vDwSEhL48ssvGTx4\nMCNGjGDXrl2lLkOlpqaWiuOdd96hQYMGzJw5k6NHj/Laa68RHh5Oq1atANsMvU899RTx8fF88cUX\nfPTRR4wbN46jR4+yZMkS/v3vfxMcHExqaqr0gwiHkctQQpwlMzOTzZs3M3jwYLy8vAgICKBv376s\nWbPGvk9QUBA33ngjbm5ueHp6Eh4eTps2bfDw8MDf35++ffuyY8cOU+dLS0tj165d3HfffXh6enLF\nFVfQs2dP+2R4AM2aNY2U6aMAAAIYSURBVKN9+/ZYLBa6d+/OoUOHALBYLBQVFXHkyBH73FTh4eGV\n+n4IcYa0LIQ4S1paGiUlJfaJ28A2y+/Zi2SdvYgO2BLMJ598ws6dO8nPz8cwDNMTB1qtVnx9ffH2\n9i71+vv377c/DwgIsD/29PSkqKiIkpISwsPDGTx4MF9++SVHjhwhOjqaQYMGufTU26L6kmQharS/\nL44TEhKCu7s7s2bNsq8UV5bPP/8cgISEBHx9fVm3bh0fffSRqWODgoLIyckhLy/PnjDS0tJMf+F3\n7dqVrl27kpuby/vvv89nn33GiBEjTB0rxMWQy1CiRgsICODkyZP2a/1BQUFER0czZ84ccnNzMQyD\n48eP/+Nlpby8PLy8vPDx8SEjI4NFixaV2h4YGHhOP8UZoaGhXHnllfznP/+hsLCQw4cPs3z5clOr\nox09epRt27ZRVFSEp6cnnp6e1XplOOHaJFmIGq1z584APPzw/7dvxygQwlAURd+qXIdNGhuVEGwE\nwcYl2Ii7sLTJhrKAFIKtFlMPw/C1v6cN+ZDqEki8pmmSJPV9r/u+NY6j2rbVuq46juPvDOecUkqq\n61rzPKsoiq/1siy177uaplGM8Wf/MAzKOavrOi3LIufcoz8Z13Vp2zZ57xVC0HmeqqrqzfGBx3g6\nCwAwcbMAAJiIBQDARCwAACZiAQAwEQsAgIlYAABMxAIAYCIWAAATsQAAmD7RB4HLQp6xnwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEnCAYAAABYPm8eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd8FVX+//HXuakE0hNKqAaMIfQS\nuoQSG7iaVVdWRQXXFYmAoriy7m9B9qssrLJBmg0EFl1FFkFURIlAEBANvYQWAQ1ieiGF1Dm/Py5c\njLRJyM29CZ/n48HDm7kzd94nkXyYOWfOUVprjRBCCHEFFkcHEEII4fykWAghhLgqKRZCCCGuSoqF\nEEKIq5JiIYQQ4qqkWAghhLgqKRZCCCGuSoqFEEKIq3I1s5PWmq+//pqtW7eSn5/Pa6+9RlJSErm5\nufTr18/eGYUQQjiYqSuL5cuXs3HjRqKjo8nMzAQgMDCQTz75xK7hhBBCOAdTxSIhIYEXXniB/v37\no5QCoHHjxqSnp9s1nBBCCOdgqlgYhoGnp2elbcXFxRdtE0IIUT+ZKhbdunXjP//5D2VlZYC1D2P5\n8uX06NHDruGEEEI4B2Vm1tmioiLmz5/Pnj17KC8vx93dnc6dOzNu3DgaNGhQGzmFEEI4kKlicV5e\nXh4ZGRkEBQXh5+dnz1xCCCGcSJWLRXFxcaVtTZo0qfFQQgghnIup5yz27NnDG2+8QW5u7kXvLV++\nvMZDCSGEcC6misWiRYu49957GTRoEO7u7vbOJIQQwsmYKhYFBQXccssttmcshBBCXF9MDZ0dMmQI\nGzdutHcWIYQQTspUB/eUKVNITk4mODj4olFQ06ZNs1s4IYQQzsFUsdi0adNl3xs0aFANxhFCCOGM\nqjR0VgghxPXpsh3cmzdvZuDAgQBs2LDhsh8wZMiQmk8lhBDCqVy2WGzdutVWLL755pvLfoAUCyGE\nqP/kNpQQQoiruuyVhWEYpj7AYpGVWYUQor677JXFiBEjTH2ATPchhBD132WLRUZGhqkPCA4OrtFA\nQgghnE+V+iwMwyAvLw9/f397ZhJCCOFkTM0NVVhYyMKFC9m+fTuurq4sW7aMHTt2kJyczB//+Ed7\nZxRCCOFgpnqn33nnHby8vFiwYAGurtb6EhYWxrZt2+waTgghhHMwdWWxf/9+3nrrLVuhAPDx8SEv\nL89uwYQQQjgPU1cWXl5e5OfnV9qWmZkpfRdCCHGdMFUshg4dyqxZszhw4ABaa44ePcr8+fO55ZZb\n7J1PCCGEEzA1GkprzRdffMH69evJzMwkKCiI6Ohohg0bJgsiCSHEdaDWpvsoLCzkzTffJCUlBaUU\nY8eOJSQkhLi4ODIyMggODmbixIk0atQIrTWLFy9m9+7deHh4EBsbS2ho6FXPcfr06WplCwoKIjMz\ns1rHOgtpg/OoD+2QNjiH2mhDSEiIqf1M3YY6cOAA6enpAOTm5jJv3jwWLFhAbm6u6UCLFy+ma9eu\nzJ49m1dffZXmzZuzevVqOnXqxJw5c+jUqROrV68GYPfu3aSmpjJnzhyeeOIJFi5caPo8Qgghap6p\nYrFo0SLbHFBLly6loqICpRRvvfWWqZMUFRVx6NAh2wy1rq6uNGzYkMTERKKiogCIiooiMTERgB07\ndjBw4ECUUoSFhVFYWEhOTk6VGyeEEKJmmBo6m52dTVBQEBUVFezdu9f2vMWYMWNMnSQ9PR0fHx8W\nLFjAjz/+SGhoKKNGjar0NLifn59tKO75850XGBhIdnb2RaOv4uPjiY+PB2DGjBmVjqkKV1fXah/r\nLKQNzqM+tEPa4BycqQ2mikWDBg3Izc0lJSWFFi1a4OnpSXl5OeXl5aZOUlFRwYkTJ3jssce48cYb\nWbx4se2W03lKqSp3lkdHRxMdHW37urr39uTepnOoD22A+tEOaYNzcKY+C1PF4vbbb+evf/0r5eXl\njBo1CoDDhw/TvHlzUycJDAwkMDCQG2+8EYA+ffqwevVqfH19ycnJwd/fn5ycHHx8fAAICAio9A3K\nysoiICDA1LmEEELUPFPFIiYmhl69emGxWGjatClg/YX+5JNPmjqJn58fgYGBnD59mpCQEPbv30+L\nFi1o0aIFCQkJxMTEkJCQQGRkJAA9e/Zk3bp19O/fn2PHjuHl5SUPAAohhAOZKhZw8aWK2UuX8x57\n7DHmzJlDeXk5jRs3JjY2Fq01cXFxbNiwwTZ0FqBbt27s2rWLCRMm4O7uTmxsbJXOJYQQomaZes6i\nqKiIFStWkJSURH5+Pr8+5I033rBrwKqQ5yykDc6gPrRD2uAcrtYGXVaGXv0eauidqIDqrS1Uo89Z\nLFy4kBMnTnDfffdRUFDAY489RlBQEMOHD69WOCGEEOYY276mYvwIjFXvoYsKbNt1RirGzBfQX61C\n79th9xymbkPt27ePuLg4vL29sVgsREZG0rZtW2bOnMmdd95p74xCCHHd0pu+AA167UfoTWuhTTvw\nbACH94EGy1Mvorr2sXsOU8VCa42XlxcAnp6eFBUV4efnR2pqql3DCSGEPWitbUP1tdaQnQkNGqC8\nGtVujrIycHW97GMDFWmn4cRR1L2PoiK6otd9jM5Mg9xsaN0Oy8NPoYKb1kpWU8WidevWJCUl0alT\nJ8LDw1m4cCGenp40a9bM3vmEEKJGGe8tQG+JB18/aOQDGWlwthCatsAyZTbKzb12cnz9GXrFIvBo\nAM1aoFqGQrv2qJs6ovwCASjeYn3oWEXejApsjHri+VrJdimmisWYMWNsndqjR4/mv//9L4WFhYwb\nN86u4YQQoiYZ3yWgE9ZBtz4oTy90fh4qNBwaeaM/W47+9EPUPY/Y9teF+eiP/4Pevgm8fSGoCZbo\n31W67aOzM8DVDeXjd2Hbr65cLplj/SfojxZBRDdUcBP0L6fQ326ETWvRLq5YJk5D3dSJ4m/WQ9tw\nVGBju3w/qsJUsWjSpIntta+vL2PHjrVbICGEsAedlYF+/01oG45lzAsoF5dK7xs5megvP0b37A/N\nWqK3fo3+5H0oKkD1jgLDQJ84ivHmv2y/zI3tm9DvzgY0tGqLatIc/fNJSD0FoTehbr4N1b0fysPj\nQob4T9Dxa6BHPyyPT0KdW4FUV1TAqZMYC1/DeOtfWB5/looff0A98EQtf6cuzfQU5Rs2bGDr1q22\nJ6779+/P4MGDnWo9Cxk6K21wBvWhHfWhDYG+vmR88TEkHwJ3D/SxJEg7bb3V1PjiW+i6sABj6lPg\n5g4lxZCfB+3aY3noSVSLGy7sM/MFyMtGDb0L/dmHENYRFd4ZfWCnte+jRRtU42bo/Tsg/RewWCC4\nGXj7wA9HAI3qH40aGXtRwQLQp3/CmD4JKsrBMLC8uhjlY7+Hkmt0uo/33nuPxMREhg8fbvuf6NNP\nP+X06dOMHDnymoIKIURNMzZ/Sebaj9BZGdDQG7QBGtTDsZcsFACqYSMsD43FeHMGdOiO5Za7Ibxz\npX8Qq4aNsEyYgjF9EvrTDyCiG5bYF61XDneOqPR5+v4/wdED6MP70L+cgqx01B33oQbeesXbSiqk\nFerR8ei3X8W9SyQVdiwUVWGqWGzatImZM2cSGBho29a9e3deeOEFKRZCCKeiM1LRy+bjGt4JRj4F\nHbqZvgOiuvXBMu+jK3Zyq6AmWJ79B3rXdtQd9152X2WxWItNeOcqt8ESeTPa4oJ3p26YXzXIvkzP\nOtugQYOLtp0fTiuEEM5C79oGgO8zU8lxqfrIJjOjoVSLG2y3puxF9eiHa1AQOMntwMsWi7S0NNvr\nYcOG8dprrxETE0NAQABZWVmsWbNGnuAWQjgdvWMrtG6HS5MQp/lFWx9ctlhMmDDhom0HDx6s9PWB\nAwe4/fbbaz6VEEJUg85Mg5PHUPc+6ugo9c5li8Xy5ctrM4cQQlwzvdN6C0r16O/gJPWPqYkEhRCi\nLtA7rbegamsKjOuJFAshRJ2jS0rQO7eiy8subMtKt86j1KOfA5PVX6YXPxJCCGehP/8Q/cVK62R6\njz8LJcUYH7wNIMXCTqRYCCHqFF1cZJ3fqXU7yEzDmPY0lJeBty9q1NOoxlVbxVOYY+o21L/+9a9L\nbn/ttddqNIwQQlyN3hIPRYVYHhyD5aU5qO59UXfci+XlN7H0H+roePWWqSuL3w6Zvdp2IYSwB11R\nYZ2Er10EKvQmANSfJzk41fXhisXi/PDZ8vLyi4bSpqWlERxcvTVfhRCiKrRhgNboHVsgKx3LHx93\ndKTrzhWLRVZWFgCGYdhenxcUFMT9999vv2RCCAHo5CSMOf+As0XWDY1DoHMvx4a6Dl2xWMTGxgIQ\nFhZGdHR0rQQSQojztGFgfPAOeHqhbv09KIXq2MM6SZ+oVab6LDp16lRprqhf+/XCSEIIUZP09k3w\n0w+oPz2Lpc8gR8e5rpkqFpeaJ+o8mRZECGEPuqQEvWqZ9YnsXgMdHee6Z6pY/LYg5ObmsmLFCtq3\nb2+XUEKI65fWGn46jv56DeRmYfnzJLnt5ASq9VCen58fo0aN4umnn2bAgAE1nUkIcZ3S2ZkYr70I\nGanW/olBw1BhHRwdS3ANT3CfPn2akpIS0/s/9dRTeHp6YrFYcHFxYcaMGRQUFBAXF0dGRgbBwcFM\nnDiRRo0aobVm8eLF7N69Gw8PD2JjYwkNDa1uVCFEHaG//BiyM1CjJqA6R6K8fR0dSZxjqlhMmTKl\n0rKEJSUlpKSkcN9991XpZFOnTsXHx8f29erVq+nUqRMxMTGsXr2a1atXM3LkSHbv3k1qaipz5szh\n2LFjLFy4kOnTp1fpXEKIukWfyUV/8xWqz2As/WX0pbMxVSyGDBlS6WtPT09at25Ns2aXXvjcrMTE\nRF566SUAoqKieOmllxg5ciQ7duxg4MCBKKUICwujsLCQnJwc/P2dY+FyIUTN0/FroLwMdfu9jo4i\nLsFUsRg0aFCNnOyVV14B4JZbbiE6Opq8vDxbAfDz8yMvLw+A7OxsgoKCbMcFBgaSnZ19UbGIj48n\nPj4egBkzZlQ6pipcXV2rfayzkDY4j/rQjtpug1GYT2bCF3j0G4Jfxy418pnyc6hZpopFeXk5H3/8\nMZs3b7b9C3/gwIHcc889uLqa6/b4v//7PwICAsjLy+Pll18mJKTyzJBKqUq3usyIjo6u9LBgZjXX\n2w0KCqr2sc5C2uA86kM7arsNxmcfoosKKRvyuxo7r/wczPnt7+LLMfWb/r333uOHH37gz3/+M8HB\nwWRkZLBy5UqKiooYNWqUqRMFBAQA4OvrS2RkJMnJyfj6+tqKT05Ojq0/IyAgoNI3KCsry3a8EKJ+\n0Wmn0Wv/B937olrJQBZnZWrw8vbt2/nLX/5Cly5dCAkJoUuXLkyaNIlvv/3W1EmKi4s5e/as7fW+\nffto1aoVPXv2JCEhAYCEhAQiIyMB6NmzJ5s3b0ZrzdGjR/Hy8pL+CiHqIW0YGP+ZC65uWB54wtFx\nxBWYurLQWl/TSfLy8mxrX1RUVDBgwAC6du1K27ZtiYuLY8OGDbahswDdunVj165dTJgwAXd3d9sc\nVUKI+kVv/hKOHkQ9Oh7lF+joOOIKTBWLvn37MnPmTO677z7bPbSVK1fSt29fUydp0qQJr7766kXb\nvb29mTJlykXblVI8/rhMQSxEfaYzUtErl0D7LigZKuv0TBWLkSNHsnLlShYtWmTrY+jfvz/33itD\n3IQQVafLyzDefhWUBcsj46o8uEXUPlPFwtXVlREjRjBixAh75xFC1ENaa/R/3wIfP9SgYeh1/4OT\nx7CMnYwKkpmr6wLT032cPn2akydPUlxcXGn7bx/YE0KIi/x0HL1pLQD6i/9BWal13qfu/RwcTJhl\nqlh8/PHHrFy5ktatW+Ph4VHpPSkWQoir0Xu/s95ymvQy+tuN6IIzqPsfc3QsUQWmisXatWuZPn06\nrVu3tnceIUQ9pPd8B23DUWEdUWEdHR1HVIOp5yzc3d1p3ry5vbMIIeohnZUOKSdQXWXd7LrsssXC\nMAzbnxEjRvDuu++Sk5NTabthGLWZVQhRB+m93wOguvR2cBJxLS57G+qBBx64aNvXX3990TZZVlUI\ncSV6z3fQtDmqqdydqMsuWyzmzZtXmzmEEPWQLiqEowdQ0Xc7Ooq4Rpe9DRUcHGz78+2331b6+vyf\n7777rjazCiHqGL17O1RUSH9FPWCqg3vlypVV2i6EEDrtNHr5Qmh5A4Te5Og44hpdcejsgQMHAGtn\n9/nX56WlpdGgQQP7JRNCOAVtVKA3rkW1bgtt25uamkMXF2HMfwVcLFhiX0RZXGohqbCnKxaLN954\nA4DS0lLba7BO9Ofn58djj8lDNULUZbqkBNzcUJYr3GQ4cgD94TtogCbNUYNuR0XdgXJzr/xZ6afR\nm76AgjPoUych7Wcsz0yT6TzqiSsWi/nz5wPWzu5x48bVSiAhRO3QRgXGXx9HDR+BGnrn5ff7MRkA\n9eCT6O83o5cvQn/1CerO+1Hd+qG8fdA7t2IsmQPl5eDrDw0aWqcdb18zS6QKxzP1BLcUCiHqodwc\nyM9DH90P54qFLirA+H9jKX7qr9A2wrrt5DEIbopl8DAYPAx9eB/Gx/9BL1uAXrYAGjeD9F/ghjAs\nY15ABQY7slXCTi5bLCZOnEhcXBwAY8eOvewH/Pr2lBCiDsk5t3TxT8cvbDt+FPLzKPl2o61YcDIZ\ndUOYbRcV3hnLX1+F40fQR/ajkw+heg5A/e6PKFe3WmyAqE2XLRZjxoyxvR4/fnythBFC1KLzxSIz\nDV1UgPJqZL2KAEoP7AKtoSAfstJh8LBKhyqlrHM9tQ2v7dTCQS5bLMLDL/xPEBERUSthhBC1R2dn\nXvji1EkI62jrnzCyMrCknYbMNABU63YOSCiciak+i8cee4z27dsTERFBREQEbdq0kZWthKjrcrLA\nYgHDQKecsM4Ge/IY3BAGJ46iD++Dwnzrvq3aOjarcDhTxWL69OkcOnSIpKQk1q5dS1FRETfddBMR\nERHcdddd9s4ohLADnZNh7ZwuKrQuTpSbBbnZqNt+jzqTa+2PKC+3Dpf1aujouMLBTBWLpk2b0rRp\nUwYPHszp06dJSEhg3bp17N27V4qFEHVVdib4B0FgY3TKcdTJc0Nk29yIe6ceFO/YCq5usv6EAEwW\ni6+++oqkpCSOHDlCQEAA7du35+mnn67UryGEqGNyslAduoK3H3r9J+jkQ9bbUi3b4l6UT/GmL6z7\ntZH+CmGyWCxatIgmTZpw77330qNHD/z9/e2dSwhhR7qiAvJyrFcWIa2gohz9XQKEtEJ5eODesbtt\nX+ncFmCyWLzxxhskJSVx6NAhvvjiC8rLy20d3gMHDrR3RiFETcvNBm2AfxCq5Q3WqTxys1AdugHg\n0rgZBDeFzHRoFerQqMI5mCoWAQEBDBgwgAEDBnDixAm2b9/OunXr2LhxoxQLIeqic89YqIAgaye3\nuweUlkCbG227qN5R6JPJKE+ZMFSYLBafffYZSUlJHD58GA8PDyIiInj44Yfl+Qsh6ih9/oE8/yDr\njLAt2sDxI6gbLhQLy90POSaccEqmisWPP/5IZGQkjz76KE2aVH8GScMwmDx5MgEBAUyePJn09HRm\nz55Nfn4+oaGhjB8/HldXV8rKypg3bx7Hjx/H29ubZ555hsaNG1f7vEKI38i+UCzAOgJKnzoJzVs7\nLJJwbqYWP3rqqacYPHjwNRUKgLVr19K8+YV1eN977z2GDx/O3LlzadiwIRs2bABgw4YNNGzYkLlz\n5zJ8+HDef//9azqvEOI3cjLBowE08AJA/e6PWP4yQ+Z2EpdlqljUhKysLHbt2sXQoUMB0Fpz8OBB\n+vTpA8CgQYNITEwEYMeOHQwaNAiAPn36cODAAbTWtRVViHpP52RCQJBtJgbVyMe6uJEQl2HqNlRN\nWLJkCSNHjuTs2bMA5Ofn4+XlhYuLdQWtgIAAsrOzAcjOziYwMBAAFxcXvLy8yM/Px8fHp9JnxsfH\nEx8fD8CMGTMICgqqVjZXV9dqH+sspA3Ooy60I+tMLpYmzfC/TM660IarkTbUrFopFjt37sTX15fQ\n0FAOHjxYY58bHR1NdHS07evMzMwr7H15QUFB1T7WWUgbnEddaEdFRhqqSfPL5qwLbbgaaYM5ISEh\npvarUrHIzMwkOzubsLCwq+/8K0eOHGHHjh3s3r2b0tJSzp49y5IlSygqKqKiogIXFxeys7MJCAgA\nrFcZWVlZBAYGUlFRQVFREd7e3lU6pxDi0nR5GZzJgQDn+BerqBtMFYvMzExef/11Tp48CcCyZcvY\nvn07e/bs4cknn7zq8Q8++CAPPvggAAcPHuTTTz9lwoQJ/Pvf/2b79u3079+fTZs20bNnTwB69OjB\npk2bCAsLY/v27XTo0EFmuRWipuRmW9eq8JdiIcwz1cH99ttv061bN5YuXYqrq7W+dO7cmX379l3T\nyR966CE+++wzxo8fT0FBAUOGDAFgyJAhFBQUMH78eD777DMeekjGewtRHbqoEOP7zeiSkgsbc7IA\nUFIsRBWYurJITk5m8uTJWCwXaouXlxdFRUVVPmGHDh3o0KEDAE2aNOGf//znRfu4u7vz7LPPVvmz\nhRAX6KICjH9PgR+T0b7+qOEjUOGd0ccPW3eQ21CiCkwVC19fX1JTUyt1hJw6dcppeumFEJXZCsWp\nk6g/PIbevR393zexDUB3cYWAYEdGFHWMqWLxu9/9jpkzZxITE4NhGGzZsoVVq1YRExNj73xCiGow\n3p0Np05iGftXVJdI9C13w7GD6LwclJsbBDSWOZ9ElZgqFkOGDMHb25v4+HgCAwPZvHkzI0aMoFev\nXvbOJ4SoIq01HD2AuvkWVJdIAOsAkbCOyDARUV2mh85GRkYSGRlpzyxCiJpwJhfOFkHTlo5OIuoR\nU6Oh3n33XY4cOVJp25EjR1iyZIk9MgkhrkXqzwCops2vsqMQ5pkqFlu3bqVt28rzxoSGhrJlyxa7\nhBJCVJ9OO2V9IcVC1CBTxUIphWEYlbYZhiGT+wnhjFJ/Bnd3eehO1ChTxSI8PJwPP/zQVjAMw2DF\nihWEh4fbNZwQoup06s/QOARlqbVJpcV1wFQH9+jRo5kxYwZjxoyxTWzl7+/PCy+8YO98QoiqSvsZ\nWt7g6BSinjFVLAIDA5k5cybJycm2Cf7atWtX6YluIYTj6fIyyExD9bzZ0VFEPWN66KzFYiEsLKxS\n34VhGFIwhHAmGWlgGNK5LWqcqWJx/PhxFi1axE8//URpaWml95YvX26XYEKIajg3EkqGzYqaZqpY\nzJ8/nx49ejB27Fg8PDzsnUkIUU363DMWNJFiIWqW6fUsHnjgAVlTQghnl/oz+PihvBo6OomoZ0x1\nOERGRrJ37157ZxFCXCOd9rP0Vwi7MHVlUVZWxmuvvUZ4eDh+fn6V3hs3bpxdggkhqiH1Z1S3Po5O\nIeohU8WiRYsWtGjRwt5ZhBDXQBfmQ8EZubIQdmGqWPzhD3+wdw4hxLX65dxIqCbyDztR80w/Z1Fe\nXs7p06c5c+ZMpe0dO3as8VBCiKrTu7aBiwuEhjk6iqiHTBWLw4cP8+9//5uysjLOnj1LgwYNKC4u\nJjAwkHnz5tk7oxDiKnR5GXr7JujSC+Xt6+g4oh4yNRpq6dKl3HXXXSxevJgGDRqwePFi7r33Xm69\n9VZ75xNCmLEvEfLzsAy4xdFJRD1lqlicPn2aYcOGVdoWExPD559/bpdQQoiqMbbEg18ARHRzdBRR\nT5kqFl5eXpw9exYAPz8/Tp06RUFBAcXFxXYNJ4S4Op2TBQd2ofoNRbm4ODqOqKdM9Vn07t2b3bt3\nM2DAAAYPHsy0adNwcXGhTx8Zzy2Eo+ltX4M2UP2jHR1F1GOmisWoUaNsr++66y5uvPFGiouL6dKl\ni71yCSFM0GWl6E1fwE2dUI2bOTqOqMdMD539tfbt29d0DiFENegt6yE3C8tjzzg6iqjnLlssXnnl\nFf72t78BMGXKlMtOIjht2rSrnqS0tJSpU6dSXl5ORUUFffr04f777yc9PZ3Zs2eTn59PaGgo48eP\nx9XVlbKyMubNm8fx48fx9vbmmWeeoXHjxtVsohD1ky4rQ6/9H7SLgPDOjo4j6rnLFouoqCjb6yFD\nhlzTSdzc3Jg6dSqenp6Ul5czZcoUunbtymeffcbw4cPp378/b7/9Nhs2bODWW29lw4YNNGzYkLlz\n57J161bef/99Jk6ceE0ZhKhvbFcVo5+WGaGF3V22WAwYMACwroaXlpbGPffcg5ubW7VOopTC09MT\ngIqKCioqKlBKcfDgQZ5++mkABg0axIoVK7j11lvZsWOHbYqRPn368O6776K1lr8QQpyjy8rQX/wP\n2rWH9tJ3KOzvqn0WFouFr7766prnhzIMgxdeeIHU1FRuu+02mjRpgpeXFy7nhvoFBASQnZ0NQHZ2\nNoGBgQC4uLjg5eVFfn4+Pj4+lT4zPj6e+Ph4AGbMmEFQUFC1srm6ulb7WGchbXAetdGOwo+XUZCT\nid8zU/AIDq7xz68PPwtpQ80y1cE9cOBA1q9fz2233VbtE1ksFl599VUKCwt57bXXOH36dLU/67zo\n6Giioy8MF8zMzKzW5wQFBVX7WGchbXAe9m6HzsnC+GgxdO1Nfkgb8u1wrvrws5A2mBMSEmJqP1PF\nIjk5mXXr1rFmzRoCAwMr3Q4y08H9aw0bNqRDhw4cPXqUoqIiKioqcHFxITs7m4CAAMB6lZGVlUVg\nYCAVFRUUFRXh7e1dpfMIUV/plUugogLL/X9ydBRxHTFVLIYOHcrQoUOrfZIzZ87g4uJCw4YNKS0t\nZd++fdx999106NCB7du3079/fzZt2kTPnj0B6NGjB5s2bSIsLIzt27fToUMH6a8QAtDHktDfJaCG\n348KburoOOI6YqpYDBo06JpOkpOTw/z58zEMA601ffv2pUePHrRo0YLZs2fz4YcfcsMNN9hGXQ0Z\nMoR58+Yxfvx4GjVqxDPPyBhyIXRZKcay+eAfhLrjPkfHEdcZpbXWZnbMzc0lOTmZ/Px8fn3ItQ6r\nrUnV7QeRe5vOoT60AezXDmPFYvRXq7A8/RKqY/ca//xfqw8/C2mDOTXaZ/H9998zd+5cmjVrRkpK\nCi1btiQlJYXw8HCnKhZC1FeqhLtqAAAgAElEQVT6WBJ6/WrUwNvtXiiEuBRTxWL58uXExsbSt29f\nRo8ezb/+9S82btxISkqKvfMJcd3T5WUYi2dDYGPUH0Y5Oo64TpmaojwzM5O+fftW2hYVFcXmzZvt\nEkoI8StHDkBGKpY/jEZ5ejk6jbhOmSoWPj4+5ObmAhAcHMzRo0dJS0vDMAy7hhNCgN77Pbi7Q8ce\njo4irmOmh84ePnyYPn36MHz4cKZNm4ZSijvvvNPe+YS4rmmt0fsSoX1XlLuHo+OI65ipYhETE2N7\nHRUVRYcOHSguLqZFixZ2CyaEAE7/BFnpqGEyVFY4lqnbUJ9//rntNhRYh3NJoRCi5uhd31IxfRL6\nbFHl7Xu/B0B1jnRELCFsTF1ZHDx4kA8++ICbbrqJAQMG0Lt3b7y8pKNNiJqgDQNj1TJIPYVe/wnq\nrgcuvLcvEVq3Q/kFOjChECaLxV/+8hcKCwvZvn07mzdv5t1336VLly7cfPPN9O7d294Zhajf9iVC\n6inwD0KvX40ePAzl7YvOz4PjR1B3jnB0QiHM3YYC6wSAQ4cOZerUqcTFxVFcXMy///1ve2YT4rpg\nfPkxBDbG8vRUKClBr/2ftWP72w2gNapLL0dHFKJqa3AfPnyYLVu28N1339GoUSPuv/9+e+US4rqg\nk5Mg+RDqj0+gmrdG9RuC3vQ5+uRRSD4ErUKhVVtHxxTCXLFYtmwZ3377LUop+vbty9/+9jfatGlj\n52hC1H/Gl6ugkTdqgHVdFvW7B9CJmyEzDfXgk6gBt8iMy8IpmCoWJSUljB8/nvbt29s7jxD1gs7P\ns95C8vG7sC0jFdw9UL7+1q+Li2D/DlT0XSgP67LDKjAYyytvQ8NGKDd3h2QX4lJMFYvHH3/c3jmE\nqDdKk/ZgTH8BPBtgmTYP5eGJLjiDMf05aNUOl4nnFgw7dggqKlAdKk8MqPwCHJBaiCsz3cEthLgy\nrTXGtg3kTJ0Ang0gKx396YfW9z7+DxTkw5F9tmcp9OG94OoKbcMdGVsIU6rUwS2EuJguOIPe8Lm1\nryH1Z9w6dqfi8UnoFe+i4z/BaNwU/c1XENYRjh6Ag7ug5wD04X3Qtr1M4yHqBLmyEOIa6fffRH/2\nIfgGoB4Zh/+UOFTDRqh7R0EDL/SyBeAfhOWpv4FXI/S+RHTBGUg5gQrv7Oj4QphiuliUl5dz6NAh\ntm3bBkBxcTHFxcV2CyZEXaCNCnTSHlS/obhMegXLzbei3NwAUN4+qD/8CZQFyx//jPJqiOrUA71/\nJ/rQPmsHuBQLUUeYug31008/MXPmTNzc3MjKyqJfv34kJSWRkJDAxIkT7Z1RCOeVchKKCuAyv/Qt\n/YagO/dENfKxbujSC75LQK/7H3g0gDY31l5WIa6BqSuLd955hxEjRjB79mxcXa31JSIigsOHD9s1\nnBDOTh/ZB4AK73TZfWyFAlAduoGLC/x0HMI6oFyl21DUDaaKxalTp7j55psrbfP09KS0tNQuoYSo\nK/Th/dC0uemJ/pRXI2gXYX19hQIjhLMxVSyCg4M5fvx4pW3Jyck0bdrULqGEqAt0eTkcPVjlfgfV\n1Tr5pmrf1R6xhLALU9fAI0aMYMaMGdxyyy2Ul5ezatUq1q9fz5gxY+ydTwjn9WMylJyterEYdId1\nHqiWN9gpmBA1z9SVRY8ePXjxxRc5c+YMERERZGRkMGnSJLp06WLvfEI4LX3Y2l9BWNVuJylXN1R7\n+bsj6hbTvWs33HCDTPshriv6yH6ML1dhefw5lFfDS75PizYob59LHC1E/WKqWCxfvvyS293c3AgI\nCKBr1674+fldch8h6ir9/Tewfwf6/Tfg8ecqzf6qy0qtU4tH3e7AhELUHlPF4pdffuH777+nXbt2\nBAYGkpWVRXJyMj169GDnzp0sWrSI5557jq5dL91hl5mZyfz588nNzUUpRXR0NMOGDaOgoIC4uDgy\nMjIIDg5m4sSJNGrUCK01ixcvZvfu3Xh4eBAbG0toaGiNNlyIq9E/JoOrG/r7zdChG6rf0Avv7dwG\nZaWyNra4bpgqFoZh8Mwzz9Cr14UVuxITE9myZQuvvPIKmzZt4v33379ssXBxceHhhx8mNDSUs2fP\nMnnyZDp37symTZvo1KkTMTExrF69mtWrVzNy5Eh2795Namoqc+bM4dixYyxcuJDp06fXTIuFMEGX\nl8HPJ1GDh6N//AH937fQbdujmoRY39+8DoKbwk0y/FVcH0x1cO/du5eePXtW2tajRw/27NkDwMCB\nA0lPT7/s8f7+/rYrgwYNGtC8eXOys7NJTEwkKioKgKioKBITEwHYsWMHAwcORClFWFgYhYWF5OTk\nVL11QlTXzz9BeTncEIblT8+CiyvGkjlow0Cf/gmOJaEG3oayyPRq4vpg6sqiadOmfPXVV9x++4X7\ns1999RVNmjQB4MyZM7i7m1uoJT09nRMnTtCuXTvy8vLw97cuBOPn50deXh4A2dnZBAUF2Y4JDAwk\nOzvbtu958fHxxMfHAzBjxoxKx1SFq6trtY91FtKGq9MlJaANlGeDq+5btGsr+UBA10hcm7Xg7J+e\n5szcV2i48xsqTqdQ5OpK0J1/wHKJtSfkZ+EcpA01y1SxGDNmDLNmzeKTTz4hICCA7OxsLBYLzz33\nHACnT59mxIgRV/2c4uJiZs2axahRo/Dy8qr0nlKqystHRkdHEx0dbfs6MzOzSsefFxQUVO1jnYW0\n4eoq5k+HogJcnr/6LU3j4B7wakiOqwcqMxPdqRdEdCV/6QKwWFDd+pJdbsAl8srPwjlIG8wJCQkx\ntZ+pYhEaGsrrr7/O0aNHyc3Nxc/Pj7CwsErzREVERFzxM8rLy5k1axY333wzvXtbn2D19fUlJycH\nf39/cnJy8PGxDkEMCAio9A3KysoiIEBWDxPVpw0DjuyHs4XozDRUUJMr7//jD9Cqre0fMEopLA8/\nhTF1HJw9ixp4W23EFsJpmL7h6urqSkREBP369SMiIsJWKMzQWvPmm2/SvHlz7rzzTtv2nj17kpCQ\nAEBCQgKRkZG27Zs3b0ZrzdGjR/Hy8rroFpQQVZJ+Gs4WAqB3br3irrqsDE6dRLVuV2m7CmqCemgs\nqkd/6dgW1x1Tv/GLiopYsWIFSUlJ5Ofno7W2vffGG29c9fgjR46wefNmWrVqxfPPPw/AAw88QExM\nDHFxcWzYsME2dBagW7du7Nq1iwkTJuDu7k5sbGx12iauY7qoAMrKUL7Wf2Tok8esb3j7ohO3wG33\nAGB8sRLcXFFD77pwG/T0j1BRDr8pFmCdcpx+Q2qlDUI4E1PFYuHChWRnZ3Pfffcxd+5cxo8fz5o1\na2y3k64mPDycjz766JLvTZky5aJtSil5WlxUi9YavX0TevlC8GyAZfrb1hFLJ5PB3QN1Swz646Xo\n9F8gIxX98VLrgcmHYfTTKA9P6/MVgGrd1oEtEcK5mCoW+/btIy4uDm9vbywWC5GRkbRt25aZM2dW\nuq0khL1pw4CCMyifyjMG6OKz6P070Ju/hMP7wC8QstKtk/3dEIY+cRRat0X1utlaLLZ9jf4uAZo0\nR/Ufil71Hjr1FJZ7H7UWFq+G1ucohBCAyWKhtbaNXvL09KSoqAg/Pz9SU1PtGk6I39Lxa9Ar3oVm\nLa1PT5eXoVOOw4ljUFYKPn6oB55A9RqI8dwj6N3boWWodb3rQXegAhtD6E3otStAayzPT0eFdUS3\nvAFj2XyMOf+wnqh9lyqPzhOiPjNVLFq3bk1SUhKdOnUiPDychQsX4unpSbNmzeydT4hK9LavoXEI\n+Pih168GVzdoeYP1AbnufaFde5TFxbrzTZ3Qe75D9exvLSQ3hAGgeg5AHz9iPSaso3Vbxx5YXnkb\nnfgNOuELVK+BjmqiEE7J9HMW5zu1R48ezQcffEBhYSHjxo2zazhxfTL++xb4+mMZfn+l7frUSfj5\nR9SDT2IZPMz6kJ2b64Xi8Buqa2/0B2+jt2+yfn1uvWvVf6j1Vta5Tm7b/q6uqL6Doe/gmm6SEHWe\nqWJx5swZbrzR+hfN19eXJ598ErCulidETdL5eehNX4BFoXsNRP2q30B/n2B9IK5nfwCUh8cVP8tW\nLDauhUbecO7ZCuXVCPX7h+3XCCHqIVPPWbz88suX3P7KK6/UaBgh9J7vQBugNXrNBxe2G4Z1yvCI\nrihvX1OfpQKCrcNfy8ugzY3SByHENbjilYVhGMC54Yjn/pyXlpaGi8ulL/+FuBRjy3r0lvXg1Qjl\nF4C660HUb+ZW0ru2QVATVPd+6PWr0bffi2reCo4fhqx01N0PVemcqmtv9I/JnL8FJYSonisWiwce\neMD2+o9//GOl9ywWC7///e/tk0rUC9owbLOy6ooK9CfvAwrKy9GH9qIz07A8M822j1GYD4f2oYb+\nDnXHvehvvsRYuQTL3Q+hE74EN3dUN3PP9pyneg5Af7ECFdGtppsnxHXlisVi3rx5aK156aWXmDZt\nmm27UgofHx/TM82K64s+W4Txbhz8/COWKa9bZ3lN2g252VjGTkZ174exeR162QL0xs9RQ38HQEni\nFqgoR3Xvi2rkg7rtHvTq9zD27wBARd6M8vS60qkvopo2xzJ3+WU7wYUQ5lyxWAQHBwOwYMGCWgkj\n6j6dfhpj3iuQ9jMYBvrrT1HD78fYEg/evnBuZTl1823oPd+jVy5FR3RFNWtJyfYE68N054e4DvsD\nqm04FBdBhQHnhrlWlRQKIa6dqdFQBQUFrFmzhh9//JHi4uJK7/36ikPUf7qsDJKTUO27XPxeaQnG\nv/4K5eVYJv4DI34N+stV6B79Ye/3qCHDUa5uwLlZXB8dj/HSOIzpk1CdelKy9zvUgFttt6WUUhDe\nuVbbJ4S4NFPF4vXXX6e8vJy+ffvKrafrnN74GXrFYtuTz5Xs3wl5OViefgkV3hlLIx+MfzyNMXuq\n9fZS/1sq7a58/bFM/D/0xs/Re7+H0lJ5GE4IJ2WqWBw9epSFCxfi5uZm7zzCyekd1um99eYvLyoW\nRuJm8PGDCOtVh2rRBtVroHUOphvCrKOafkO1CkU9Oh5tVBBggRzklpEQzsjUcxatWrUiKyvL3lmE\nk9NZ6XDiKHg1Qu/chi44c+G9s0WwbweqR/9KfQTq7ofAowFqyJUnnFQWF1yusiCREMJxTF1ZdOzY\nkenTpzNo0CD8/CrP9jlkiMztf704v2iQZdQEjAXT0ds3oqLvtr639zsoK0X1urnSMSq4KZbZ79n6\nKoQQdZOpYnH48GECAwPZv3//Re9JsajfKj0rsWOrdanRbn2sM7du/gp9btEg/f03EBAMoeEXfYYU\nCiHqPlPFYurUqfbOIWqRLi9Dr/8E1aMfqvHlF2vXh/ZivPFP1N0Pobr2hhNHUfc8AoAaeBt6yRzY\n8x26dTtI2o2KvstWWIQQ9UuV/2ZrrTEMw/ZH1C1aa/R7C9Af/wfj31PQeTnW7TlZGCuXonOsfVPa\nMDBWvAslxegP38F43TpEWvU4N4lfzwHQ0BtjwXSMFx6DigpUpIxkEqK+MnVlkZ2dzaJFizh06BCF\nhYWV3lu+fLldggn70F+tQm/9GtV3MHrnNow5/8Byx70Y778BBfnoI/uxPP9P6xxNKSdQj02En39E\nf/kxtApFNbauYaI8PLH8PQ597CBkZ4K7B7QKdXDrhBD2YqpYvP3223h4eDBlyhSmTp3KtGnTWLFi\nBd26yXw7dYnevR29cimq5wDUqKdRPQdgzHsF461/QYs2qGH3oz9ahP7gLfThfdDiBlTvKJTFgg7v\nBL+Z9E8FNrauPCeEqPdMP2exYMECPD09UUrRpk0bxo4dy//7f/+P6Ohoe2cUNUAfPYDx9qvWqbpH\nP23tW+gcieWJSehTJ1HD70e5uWOcyUWvWwmA5empF56m7tjDkfGFEA5mqlhYLBbbdOQNGzbkzJkz\nNGjQgOzsbLuGE1Wntb5o3QadcgJj3ssQ1ATL+Cko9wuLBqmeA6z9D+e/jhmJTvsZlIIO3WsttxDC\nuZkqFu3atWP37t306tWLLl26EBcXh7u7O23btrV3PlEFuqwM4+WJ4O2L5dHxqOCm1n6J9xaApxeW\nidNQ3j5X/Azl4oJL7IuXLDpCiOuXqWIxfvx428JHo0aN4tNPP+Xs2bMMHz7cruFE1egt6+H0T+Du\njjHtaWh7EyTtgVZtsfx5knXlOJOkUAghfs1UsaioqMDHx/ovUnd3d+699167hhJVp0tL0Gs/gnYR\nWB5/FmPJHDh6ABUzEnXbPShXUz9qIYS4JFO/QWJjY+nQoQP9+/enV69eeHp62juXqKKzX662Li70\np2dRgY2xPPt/UHK2yosFCSHEpZgqFgsWLODbb79l/fr1LFy4kO7duzNgwAC6detmah3uBQsWsGvX\nLnx9fZk1axZgXSMjLi6OjIwMgoODmThxIo0aNUJrzeLFi9m9ezceHh7ExsYSGirj9y9HV1RAVjqF\nHy+Dmzqhzq3/oJQCKRRCiBpiqlj4+Phw2223cdttt5GRkcHWrVv58MMPeeONN1i0aNFVjx80aBC3\n33478+fPt21bvXo1nTp1IiYmhtWrV7N69WpGjhzJ7t27SU1NZc6cORw7doyFCxcyffr06rewntEn\njlqXLC0qBMOAogLrf5XCMuYvjo4nhKinqjzdR15eHrm5ueTn59OwYUNTx0RERNCoUaNK2xITE4mK\nigIgKiqKxMREAHbs2MHAgQNRShEWFkZhYSE5OTlVjVkv6aJC6wN0JSWorn1QPfujbr8P9cg4Al57\nF9UuwtERhRD1lKkri1OnTrFlyxa2bt1KaWkpffv25fnnn6ddu3bVPnFeXh7+/v4A+Pn5kZeXB1in\nFgkKCrLtFxgYSHZ2tm3fX4uPjyc+Ph6AGTNmVDquKlxdXat9bG3RWpO39HVKcrLwf2UB7uGdKr3v\n6uqKW3m5g9LVjLrwczCjPrRD2uAcnKkNporF3//+d3r37s0TTzxBhw4dsNTwzKJKqWoN1YyOjq70\nBHlmZma1zh8UFFTtY2uLsfVr9JavUTEjORPUDH6Tty604WrqQxugfrRD2uAcaqMNISGXn3n610wV\ni3feeQfXGh566evrS05ODv7+/uTk5NiG5gYEBFT65mRlZREQEHC5j7lu6HUrrUuT3iHDloUQte+y\nFWDDhg2mPqC6ix/17NmThIQEYmJiSEhIIDIy0rZ93bp19O/fn2PHjuHl5XXJW1D1kT5xFEJaozw8\nKm/PSIXUU6g//rnSkqVCCFFbLlssvvnmG9trrTVHjhzBz8+PwMBAsrKyyM3NJTw83FSxmD17NklJ\nSeTn5/Pkk09y//33ExMTQ1xcHBs2bLANnQXo1q0bu3btYsKECbi7uxMbG1sDzXR++sdkjOmTrJP7\nPfW3SosI6QM7AVCdZDI/IYRjXLZY/Hp1vHfffZfIyMhK03usXbuW1NRUUyd55plnLrl9ypQpF21T\nSvH444+b+tz6RCesA2WBfYnozz5E3fXghff274TGza64qp0QQtiTqZ7qb775hjvuuKPStttvv73S\n1YeoPl1chP5+M6rvYFT/oehPP0Tv+c76XmkJHN6H6tTTwSmFENczU8XCz8+PHTt2VNq2Y8cOW6e0\nqDp9YCc6K8P6+vvNUFKMGngb6qGx0Lodxrtx1r6KIwegrFTWkxBCOJSpIU6jR49m1qxZrFmzhsDA\nQDIzMzl16hTPPvusvfPVSzozzbqmtY8flqenohO+hOatIfQmlFJYxk7G+MfTGG/9C9UqFNzd4aaO\njo4thLiOmSoWnTt3Zt68eezevZvs7Gy6d+9O9+7d8fb2tne+ekknnrt9Z7FgzJwMpSWoB8fYnjVR\ngY2xjH4GY/4r6B+ToXMkys3dgYmFENc70w9PeHt7M3DgQHtmuW7o77+B0JuwjHkBY/ZUyM5E9Y6q\ntI/q2ht1y93o9Z/ILSghhMOZXs/iyy+/tA1//bVp06bZJVh9pX9JgVMnUCMeRwUEYfnbLCg4g/Jq\ndNG+6p5HIKQVKlKKtBDCsUx1cC9dupT4+HgiIiI4fvw4vXv3Ji8vjw4dOtg7X72jE78BpWzrXisP\nT1Rg40vuq1zdsAy45aKH9IQQoraZKhbfffcdL774IsOGDcPFxYVhw4bx/PPPc/DgQXvnqxf0nu3o\nIwfQWltvQYV1RPnJFCZCiLrD1G2o0tJSAgMDAeuyqiUlJTRv3pyTJ0/aM1u9YHy1Cr1isfWLkFaQ\n9jPq1hjHhhJCiCoyVSyaN2/ODz/8QLt27QgNDWXFihU0aNBAJvi7ivOFQvUcAOGd0V+thgZeqO59\nHR1NCCGqxFSxGDVqlG1a8kcffZSFCxdy9uxZnnjiCbuGq8uMr1bbCoV6/DmUiwv65lusw2RluVMh\nRB1jqlj8epGjZs2a8fe//91ugeoDY/0n6BXvonr0txUKwDpjrBQKIUQdVLOrGAmM+E/QHy2CHv0q\nFQohhKjLanZFo+ucsf5coejeD8vjk1A1vGCUEEI4ilxZVJHOzqDi9WkYX6xEF5yxbjMMa2f2uSsK\ny5+lUAgh6hf5jVYFuqIC453X4MRR66yxn34AQU0gIxXKyy70UUihEELUM6Z+q2mt+frrr9m6dSv5\n+fm89tprJCUlkZubS79+/eyd0WF0Vjp60xeo1m2he1/0mv9C8iFrQWjRBr1pLTony7rWRPPWqF4D\npVAIIeolU7/Zli9fzv79+xk2bBjvvPMOAIGBgSxdurReFgtdVob+ahV67UdQWooG6xVEVjrq5lux\nnJv0Tz001qE5hRCitpgqFgkJCcycORMfHx8WLlwIQOPGjUlPT7drOEfQ+XkY816G40esHdV/GA0/\nJmOs+xi8fVEj/uzoiEIIUetMFQvDMPD09Ky0rbi4+KJtdZ1OO43x+kuQm41lzF9sk/0R1ASXHv0d\nmk0IIRzJ1Giobt268Z///IeysjLA2oexfPlyevSoP+ss6ONHMGb8Bc4WYnnu5QuFQgghhLli8cgj\nj5CTk8OoUaMoKirikUceISMjg4ceesje+WpFSeJWjFl/gwZeWCa/imob7uhIQgjhVEzdhvLy8uL5\n558nNzeXzMxMgoKC8PPzs3e2WmFs20Du0rnQ8gYsE/6O8vF3dCQhhHA6pvssAHx8fPDx8bFtOz+5\nYF2mGjfDPbI/ZSOfQnk2cHQcIYRwSqaKxQMPPHDJ7S4uLvj7+9O7d2/uv//+Otnhrdq1x6/PzWRm\nZjo6ihBCOC1TxWL06NEkJiYSExNDYGAgmZmZrFmzhu7duxMSEsKKFStYsmQJTz75pL3zCiGEcABT\nxeLzzz9n5syZeHlZp9cOCQmhbdu2TJ48mblz59KqVSteeOGFGg22Z88eFi9ejGEYDB06lJgYWV1O\nCCEcxVSnQ1FRESUlJZW2lZSUUFRUBICfnx+lpaU1FsowDBYtWsSLL75IXFwcW7du5dSpUzX2+UII\nIarG1JVFVFQUL7/8MnfccQdBQUFkZWWxdu1aoqKs017s3buXkJCQGguVnJxM06ZNadKkCQD9+vUj\nMTGRFi1a1Ng5hBBCmKe01vpqOxmGQXx8PNu3bycnJwc/Pz/69u1LdHQ0FovFdlXh7u5eI6G2b9/O\nnj17bH0gmzdv5tixY/zpT3+qtF98fDzx8fEAzJgxo9pXN66urpSXl19baAeTNjiP+tAOaYNzqI02\nmP29berKwmKxcOutt3Lrrbde08lqWnR0NNHR0bavqzuiKSgoqM6PhpI2OI/60A5pg3OojTaYvStk\nej7t3NxckpOTyc/P59cXI0OGDKl6uqsICAggKyvL9nVWVhYBAQE1fh4hhBDmmCoW33//PXPnzqVZ\ns2akpKTQsmVLUlJSCA8Pt0uxaNu2Lb/88gvp6ekEBASwbds2JkyYUOPnEUIIYY6pPovnnnuO++67\nj759+zJ69GgWL17Mxo0bSUlJ4ZFHHrFLsF27drF06VIMw2Dw4MHcc889djmPEEKIqzM1dDYzM5O+\nfftW2hYVFcXmzZvtEgqge/fuvP7668ydO9fuhWLy5Ml2/fzaIG1wHvWhHdIG5+BMbTBVLHx8fMjN\nzQUgODiYo0ePkpaWZpszSgghRP1mqs9i6NChHD58mD59+jB8+HCmTZuGUoo777zT3vmEEEI4AZeX\nXnrppavtFBYWRsuWLQFo06YNUVFRDBo0qF6tvx0aGuroCNdM2uA86kM7pA3OwVnacNUObsMwePjh\nh1myZAlubm61lUsIIYQTuWqfhcViISQkhPz8/NrII4QQwgmZGjr7ySefsG3bNu644w4CAwNRStne\n69ixo10DCiGEcDxTxeKpp5669MFKMW/evBoPVZvq4lTomZmZzJ8/n9zcXJRSREdHM2zYMAoKCoiL\niyMjI4Pg4GAmTpxIo0aNHB33igzDYPLkyQQEBDB58mTS09OZPXs2+fn5hIaGMn78eFxdTU80UOsK\nCwt58803SUlJQSnF2LFjCQkJqVM/h88++4wNGzaglKJly5bExsaSm5vr1D+HBQsWsGvXLnx9fZk1\naxbAZf//11qzePFidu/ejYeHB7GxsU7RD3CpNixbtoydO3fi6upKkyZNiI2NpWHDhgCsWrWKDRs2\nYLFYGD16NF27dq3dwPo6VlFRoceNG6dTU1N1WVmZnjRpkk5JSXF0rKvKzs7WP/zwg9Za66KiIj1h\nwgSdkpKily1bpletWqW11nrVqlV62bJljoxpyqeffqpnz56t//nPf2qttZ41a5besmWL1lrrt956\nS3/55ZeOjHdVc+fO1fHx8VprrcvKynRBQUGd+jlkZWXp2NhYXVJSorW2fv83btzo9D+HgwcP6h9+\n+EE/++yztm2X+77v3LlTv/LKK9owDH3kyBH917/+1SGZf+tSbdizZ48uLy/XWlvbc74NKSkpetKk\nSbq0tFSnpaXpcePG6YqKilrNa3oR7fLycg4dOsS2bdsAKC4upri42G5FrDb8eip0V1dX21Tozs7f\n39/2L6MGDRrQvHlzsjMGFz0AAAoJSURBVLOzSUxMtE0bHxUV5fRtycrKYteuXQwdOhQArTUHDx6k\nT58+AAwaNMip21BUVMShQ4dsU964urrSsGHDOvdzMAyD0tJSKioqKC0txc/Pz+l/DhERERddrV3u\n+75jxw4GDhyIUoqwsDAKCwvJycmp9cy/dak2dOnSBRcXF8A6CjU7Oxuwtq1fv364ubnRuHFjmjZt\nSnJycq3mNXVd+dNPPzFz5kzc3NzIysqiX79+JCUlkZCQwMSJE+2d0W6ys7MJDAy0fR0YGMixY8cc\nmKjq0tPTOXHiBO3atSMvLw9/f3/AuiBVXl6eg9Nd2ZIlSxg5ciRnz56F/9/evcc0db4BHP/Sau0Q\nKVDEGi9RGVHXzUYDQbTeopIYYrxkarzE1bHABuKmy7L9ZWKMUVEim2LABqJGxEuiLGQxxnhHNDiC\ni5uruk2JHXPQFBRCkVK6PwgnMuc4/n4CrXs+f5W2p+fpeTl9zvuec54XaGpqIjQ0VNlZoqKilJ0l\nENXV1REeHs7+/fupqalh3Lhx2Gy2oGqHqKgoFi5cyCeffIJOp8NisTBu3LigaocuL9vubreb6Oho\n5X1GoxG32628N1BduHBBuT3B7XYTFxenvNYfbaKqZ2G321mxYgW5ubnKuOU777yDw+Ho1eDEv2tt\nbSUnJwebzaZMedslJCSk24UIgaaqqgqDwRAQY8f/K5/Px4MHD0hOTiY7O5tBgwZRWlra7T2B3g7N\nzc3cvHmTvLw8CgoKaG1t5datW/0d1v8t0Ld7T06dOoVWq2XGjBn9HYpCVc/C6XS+ELRer3+tU6n2\nh2Auhd7e3k5OTg4zZswgMTERAIPBQENDA5GRkTQ0NBAeHt7PUb7c3bt3+f7776murqatrQ2Px8PB\ngwdpaWnB5/Oh1Wpxu90B3R5GoxGj0agc8U2dOpXS0tKgaofbt28TExOjxJiYmMjdu3eDqh26vGy7\nR0VFdZsTItD380uXLlFVVcXmzZuVhPf336r+aBNVPYuhQ4fy22+/dXuua7w/mD1fCr29vZ2Kigri\n4+P7O6we+f1+8vPzGTFiRLeSK/Hx8Vy+fBmAy5cvk5CQ0F8h9mjVqlXk5+eTl5fHZ599xrvvvsuG\nDRswm83cuHED6NxpArk9IiIiMBqN1NbWAp0/vCNHjgyqdoiOjub+/fs8e/YMv9+vfIdgaocuL9vu\n8fHxXLlyBb/fz7179wgNDQ3YIahbt27x7bff8uWXXzJo0CDl+fj4eCoqKvB6vdTV1fHHH3/w9ttv\n92lsqi6draqqIj8/n/nz51NWVsbSpUs5d+4c6enpWCyWvoiz1wRjKXSHw8HmzZsZPXq0cuSxcuVK\n4uLi2LNnDy6XKygu2ezy008/UVZWxldffcWff/5Jbm4uzc3NjB07lqysrICuHPDw4UPy8/Npb28n\nJiaGjIwM/H5/ULXDiRMnqKioQKvVMmbMGD7++GPcbndAt0Nubi537tyhqakJg8HA8uXLSUhI+Mft\n7vf7KSws5IcffkCn05GRkUFsbGx/f4V//A6nT5+mvb1d+X+Ji4sjLS0N6ByaunjxIhqNBpvNxuTJ\nk/s0XlXJAuDBgwecP3+e+vp6jEYj8+bNC+rxZiGEEOqpShZPnz4N6HFXIYQQvUtVslizZg1msxmr\n1UpCQgJ6vb4vYhNCCBEgVPcsrl+/Tnl5OTU1NUyZMgWr1crkyZOVa7GFEEK8uVSfs+hSX1/PtWvX\nKC8vp6GhgcLCwt6KTQghRIBQXe6jy5MnT2hsbKSpqUkpcCWEEOLNpqpn4XQ6KS8v59q1a7S1tZGU\nlITVau3z63yFeF02bdpEamoqZrO5z9ftcrnYuHEjhw4dQqN55eM1IfqFqmSxbt06EhMTmT59Omaz\nWf7BxRvjxIkTPH78mA0bNvTaOjIzM0lPT2fSpEm9tg4hepuqch92uz2gatkLESi6SmII8aZTfYK7\nsbGRX375haamJp5fpKs8sxDBJDMzkw8//JDdu3cDneXFTSYTu3btoqWlhUOHDlFdXU1ISAhz5sxh\n+fLlaDQaLl26xPnz54mNjeXKlSskJycze/ZsCgoKqKmpISQkBIvFQmpqKoMHD2bv3r2Ul5czYMAA\nNBoN77//PklJSaxfv56SkhKl9pLdbsfhcBAWFsaiRYuYN28e0NnzcTqd6HQ6KisriY6OJjMzU7kD\nubS0lDNnzuDxeIiMjOSjjz7ivffe67ftKt5cqroLlZWV7N27l+HDh/Po0SNGjRrFo0ePmDBhgiQL\nEbQGDhzIkiVLXhiGysvLw2Aw8M033/Ds2TN27NiB0Whk/vz5ANy/f59p06Zht9vx+Xy43W6WLFnC\nxIkT8Xg85OTkcPLkSWw2G1lZWTgcjm7DUHV1dd3i+Prrrxk1ahQFBQXU1taydetWTCaTMmVxVVUV\nn3/+ORkZGRw7doyioiK2bdtGbW0tZ8+eZfv27URFRVFXV0dHR0cfbT3xX6Pq5MPx48fJyMggOzsb\nvV5PdnY2aWlpjB07trfjE6JPNTY2Ul1djc1mQ6/XYzAYSElJUSb9gs7JpxYsWIBWq0Wn02EymZg0\naRIDBw4kPDyclJQU7ty5o2p9LpcLh8PB6tWr0el0jBkzhrlz5yoF8QAmTJjAlClT0Gg0zJw5k4cP\nHwKg0Wjwer04nU6lNlWwF/cUgUtVz8LlcpGUlNTtuVmzZpGWlsbatWt7JTAh+oPL5cLn8ynF26Cz\nyu/zk2Q9P5EOdCaYgwcP8vPPP9Pa2kpHR4fqwoENDQ2EhYXx1ltvdfv8X3/9VfnbYDAoj3U6HV6v\nF5/Ph8lkwmazcfLkSZxOJxaLhbVr1wZ0+W0RvFQli/DwcBobG4mIiGDo0KHcu3ePIUOGSJdXBL2/\nT5BjNBoZMGAAhYWFqk9cl5SUAJCTk0NYWBiVlZUUFRWpWjYyMpLm5mY8Ho+SMFwul+offKvVitVq\npaWlhQMHDlBcXExWVpaqZYV4FaqGoebOnavMipeSksKWLVv44osvSE5O7tXghOhtBoOB+vp65cAn\nMjISi8XC4cOHaWlpoaOjg8ePH//rsJLH40Gv1xMaGorb7aasrKzb6xERES+cp+gSHR3N+PHjOXr0\nKG1tbdTU1HDx4kVVM6TV1tby448/4vV60el06HS6oJ4dTgQ2VT2LxYsXK49nzZqF2WymtbWVkSNH\n9lpgQvSFpKQkrl69SmpqKjExMezcuZP169dTXFzMpk2b8Hg8DBs2jEWLFr30M5YtW8a+ffv44IMP\nMJlMzJw5k++++055ffHixRQVFXHkyBGWLl3K1KlTuy3/6aefYrfbSU9PJywsjGXLlqm6J8Pr9VJc\nXMzvv/+OVqtl/Pjx3YbPhHidXrk2lBBCiP8euRVbCCFEjyRZCCGE6JEkCyGEED2SZCGEEKJHkiyE\nEEL0SJKFEEKIHkmyEEII0SNJFkIIIXr0Fy+JjF314FN6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "util.plot_curve(loss_list_without_baseline, \"loss without baseline\")\n", + "util.plot_curve(avg_return_list_without_baseline, \"average return without baseline\")\n", + "util.plot_curve(avg_advantage_variance_list_without_baseline, \"average advantage variance without baseline\")" ] }, { @@ -453,6 +671,341 @@ "If you answer is right, your will solve CartPole with roughly ~ 80 iterations." ] }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# set the hyperparameter for generalized advantage estimation (GAE)\n", + "LAMBDA = 0.98 # \\lambda\n", + "class PolicyOptimizer_actor_critic(PolicyOptimizer):\n", + " def __init__(self, env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate=.99):\n", + " PolicyOptimizer.__init__(self, env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate=.99)\n", + " \n", + " def process_paths(self, paths):\n", + " for p in paths:\n", + " if self.baseline != None:\n", + " b = self.baseline.predict(p)\n", + " b[-1] = 0 # terminal state\n", + " else:\n", + " b = 0\n", + " \n", + " \"\"\"\n", + " 1. Variable `b` is the reward predicted by our baseline\n", + " 2. Calculate the advantage function via one-step bootstrap\n", + " A(s, a) = [r(s,a,s') + \\gamma*v(s')] - v(s)\n", + " 3. `target_v` specifies the target of the baseline function\n", + " \"\"\"\n", + " r = util.discount_bootstrap(p[\"rewards\"], self.discount_rate, b)\n", + " target_v = util.discount_cumsum(p[\"rewards\"], self.discount_rate)\n", + " a = r - b\n", + " \n", + " p[\"returns\"] = target_v\n", + " p[\"baselines\"] = b\n", + " p[\"advantages\"] = (a - a.mean()) / (a.std() + 1e-8) # normalize\n", + " p[\"advantage_variance\"] = np.var(a) # My additional code for plotting advantage variance.\n", + "\n", + " obs = np.concatenate([ p[\"observations\"] for p in paths ])\n", + " actions = np.concatenate([ p[\"actions\"] for p in paths ])\n", + " rewards = np.concatenate([ p[\"rewards\"] for p in paths ])\n", + " advantages = np.concatenate([ p[\"advantages\"] for p in paths ])\n", + " advantage_variances = np.array([ p[\"advantage_variance\"] for p in paths ])\n", + "\n", + " return dict(\n", + " observations=obs,\n", + " actions=actions,\n", + " rewards=rewards,\n", + " advantages=advantages,\n", + " advantage_variances=advantage_variances\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1: Average Return = 22.2 | Average Advantage Variance: 0.0\n", + "Iteration 2: Average Return = 21.61 | Average Advantage Variance: 2.618711848254234\n", + "Iteration 3: Average Return = 23.1 | Average Advantage Variance: 1.6063604018694964\n", + "Iteration 4: Average Return = 23.73 | Average Advantage Variance: 1.6772316325092151\n", + "Iteration 5: Average Return = 25.26 | Average Advantage Variance: 1.974914730986716\n", + "Iteration 6: Average Return = 27.16 | Average Advantage Variance: 1.9638738826857867\n", + "Iteration 7: Average Return = 29.46 | Average Advantage Variance: 2.752185232343\n", + "Iteration 8: Average Return = 31.67 | Average Advantage Variance: 2.629188374708864\n", + "Iteration 9: Average Return = 31.46 | Average Advantage Variance: 2.9513828524634333\n", + "Iteration 10: Average Return = 35.63 | Average Advantage Variance: 2.033179000863392\n", + "Iteration 11: Average Return = 38.5 | Average Advantage Variance: 2.8707111426854315\n", + "Iteration 12: Average Return = 32.51 | Average Advantage Variance: 4.274929735704571\n", + "Iteration 13: Average Return = 41.42 | Average Advantage Variance: 1.8315472218041209\n", + "Iteration 14: Average Return = 42.57 | Average Advantage Variance: 1.955783426353485\n", + "Iteration 15: Average Return = 43.11 | Average Advantage Variance: 1.8658563437673097\n", + "Iteration 16: Average Return = 44.83 | Average Advantage Variance: 1.7473483790314435\n", + "Iteration 17: Average Return = 46.88 | Average Advantage Variance: 2.106799944891474\n", + "Iteration 18: Average Return = 43.77 | Average Advantage Variance: 1.5194944765792555\n", + "Iteration 19: Average Return = 44.45 | Average Advantage Variance: 1.2141827451708258\n", + "Iteration 20: Average Return = 47.32 | Average Advantage Variance: 1.8099085342257455\n", + "Iteration 21: Average Return = 49.28 | Average Advantage Variance: 2.2192375391553707\n", + "Iteration 22: Average Return = 54.02 | Average Advantage Variance: 1.6319310799430438\n", + "Iteration 23: Average Return = 48.88 | Average Advantage Variance: 1.5496540494114912\n", + "Iteration 24: Average Return = 48.74 | Average Advantage Variance: 1.6239565244819028\n", + "Iteration 25: Average Return = 54.36 | Average Advantage Variance: 1.1978108330452915\n", + "Iteration 26: Average Return = 49.49 | Average Advantage Variance: 1.6782422983063028\n", + "Iteration 27: Average Return = 51.34 | Average Advantage Variance: 1.2313562619874323\n", + "Iteration 28: Average Return = 57.35 | Average Advantage Variance: 1.4294406253303642\n", + "Iteration 29: Average Return = 58.83 | Average Advantage Variance: 1.1913636062614104\n", + "Iteration 30: Average Return = 56.69 | Average Advantage Variance: 1.2219937151829687\n", + "Iteration 31: Average Return = 55.69 | Average Advantage Variance: 1.421956092736856\n", + "Iteration 32: Average Return = 59.72 | Average Advantage Variance: 1.051743620877975\n", + "Iteration 33: Average Return = 59.54 | Average Advantage Variance: 1.2373861018340848\n", + "Iteration 34: Average Return = 59.1 | Average Advantage Variance: 1.4226768926799587\n", + "Iteration 35: Average Return = 62.81 | Average Advantage Variance: 1.1535522682342747\n", + "Iteration 36: Average Return = 59.03 | Average Advantage Variance: 1.2822561787338882\n", + "Iteration 37: Average Return = 63.48 | Average Advantage Variance: 1.4728389988006851\n", + "Iteration 38: Average Return = 71.23 | Average Advantage Variance: 1.374428174922424\n", + "Iteration 39: Average Return = 72.4 | Average Advantage Variance: 1.2048704671380506\n", + "Iteration 40: Average Return = 69.25 | Average Advantage Variance: 1.7760063270860524\n", + "Iteration 41: Average Return = 72.4 | Average Advantage Variance: 1.2322784278657506\n", + "Iteration 42: Average Return = 67.4 | Average Advantage Variance: 1.3099197707716028\n", + "Iteration 43: Average Return = 70.46 | Average Advantage Variance: 1.5135125211987688\n", + "Iteration 44: Average Return = 73.0 | Average Advantage Variance: 1.1910475208944094\n", + "Iteration 45: Average Return = 77.91 | Average Advantage Variance: 1.1220510591925463\n", + "Iteration 46: Average Return = 74.39 | Average Advantage Variance: 1.3415130481043016\n", + "Iteration 47: Average Return = 80.87 | Average Advantage Variance: 1.3414752845955136\n", + "Iteration 48: Average Return = 89.58 | Average Advantage Variance: 2.0035944243499086\n", + "Iteration 49: Average Return = 90.87 | Average Advantage Variance: 1.5454279382205494\n", + "Iteration 50: Average Return = 95.23 | Average Advantage Variance: 1.5349575543528546\n", + "Iteration 51: Average Return = 100.3 | Average Advantage Variance: 1.9620685037342693\n", + "Iteration 52: Average Return = 110.5 | Average Advantage Variance: 1.972112497055272\n", + "Iteration 53: Average Return = 117.66 | Average Advantage Variance: 1.5754476356397804\n", + "Iteration 54: Average Return = 121.0 | Average Advantage Variance: 0.9747368814393738\n", + "Iteration 55: Average Return = 128.16 | Average Advantage Variance: 1.0525259839006103\n", + "Iteration 56: Average Return = 124.59 | Average Advantage Variance: 1.1647503483115063\n", + "Iteration 57: Average Return = 121.33 | Average Advantage Variance: 1.1417377782772933\n", + "Iteration 58: Average Return = 127.83 | Average Advantage Variance: 0.7981933912859183\n", + "Iteration 59: Average Return = 125.66 | Average Advantage Variance: 1.3983114330700905\n", + "Iteration 60: Average Return = 127.39 | Average Advantage Variance: 1.2834272765846502\n", + "Iteration 61: Average Return = 131.23 | Average Advantage Variance: 0.8663537653116978\n", + "Iteration 62: Average Return = 134.27 | Average Advantage Variance: 0.632562390658519\n", + "Iteration 63: Average Return = 131.09 | Average Advantage Variance: 1.4796075148558734\n", + "Iteration 64: Average Return = 136.26 | Average Advantage Variance: 0.8212163557241312\n", + "Iteration 65: Average Return = 131.25 | Average Advantage Variance: 1.0785313154517895\n", + "Iteration 66: Average Return = 134.23 | Average Advantage Variance: 1.21557946905642\n", + "Iteration 67: Average Return = 137.9 | Average Advantage Variance: 1.456212814053223\n", + "Iteration 68: Average Return = 134.23 | Average Advantage Variance: 1.0428060784560123\n", + "Iteration 69: Average Return = 137.62 | Average Advantage Variance: 1.1523876226276624\n", + "Iteration 70: Average Return = 129.83 | Average Advantage Variance: 1.0669030813148008\n", + "Iteration 71: Average Return = 128.04 | Average Advantage Variance: 1.235354755657983\n", + "Iteration 72: Average Return = 128.84 | Average Advantage Variance: 1.267212306877897\n", + "Iteration 73: Average Return = 134.32 | Average Advantage Variance: 1.2198946578166363\n", + "Iteration 74: Average Return = 133.14 | Average Advantage Variance: 0.9603402687981378\n", + "Iteration 75: Average Return = 137.94 | Average Advantage Variance: 1.1631231890715796\n", + "Iteration 76: Average Return = 133.1 | Average Advantage Variance: 1.1121362927780853\n", + "Iteration 77: Average Return = 139.86 | Average Advantage Variance: 1.2310431668518336\n", + "Iteration 78: Average Return = 135.66 | Average Advantage Variance: 1.1680614602207675\n", + "Iteration 79: Average Return = 147.45 | Average Advantage Variance: 0.9828707477899856\n", + "Iteration 80: Average Return = 150.57 | Average Advantage Variance: 0.6843394546289409\n", + "Iteration 81: Average Return = 158.78 | Average Advantage Variance: 0.6272488790590012\n", + "Iteration 82: Average Return = 158.36 | Average Advantage Variance: 0.45672131811462435\n", + "Iteration 83: Average Return = 159.56 | Average Advantage Variance: 0.46968466271899234\n", + "Iteration 84: Average Return = 152.86 | Average Advantage Variance: 0.6873588158338724\n", + "Iteration 85: Average Return = 153.1 | Average Advantage Variance: 0.604007217470471\n", + "Iteration 86: Average Return = 150.9 | Average Advantage Variance: 0.6157551980678242\n", + "Iteration 87: Average Return = 143.22 | Average Advantage Variance: 0.7804170470043517\n", + "Iteration 88: Average Return = 147.32 | Average Advantage Variance: 1.102859585202047\n", + "Iteration 89: Average Return = 156.67 | Average Advantage Variance: 0.7110400090625277\n", + "Iteration 90: Average Return = 149.9 | Average Advantage Variance: 0.8075188490363938\n", + "Iteration 91: Average Return = 160.0 | Average Advantage Variance: 0.5343356536146188\n", + "Iteration 92: Average Return = 163.01 | Average Advantage Variance: 0.5614915022985459\n", + "Iteration 93: Average Return = 163.07 | Average Advantage Variance: 0.4859600697462536\n", + "Iteration 94: Average Return = 155.56 | Average Advantage Variance: 0.6427236044338821\n", + "Iteration 95: Average Return = 151.8 | Average Advantage Variance: 0.49612595587004404\n", + "Iteration 96: Average Return = 146.86 | Average Advantage Variance: 0.7278669050307421\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 97: Average Return = 144.54 | Average Advantage Variance: 0.7622247405890629\n", + "Iteration 98: Average Return = 137.01 | Average Advantage Variance: 0.7156952549156059\n", + "Iteration 99: Average Return = 138.43 | Average Advantage Variance: 0.7426439940438947\n", + "Iteration 100: Average Return = 151.15 | Average Advantage Variance: 1.0073336471407874\n", + "Iteration 101: Average Return = 161.88 | Average Advantage Variance: 0.6208734443790099\n", + "Iteration 102: Average Return = 167.13 | Average Advantage Variance: 0.5069164085843254\n", + "Iteration 103: Average Return = 166.72 | Average Advantage Variance: 0.4812595651801905\n", + "Iteration 104: Average Return = 165.26 | Average Advantage Variance: 0.5982363819871821\n", + "Iteration 105: Average Return = 160.76 | Average Advantage Variance: 0.5328720201851901\n", + "Iteration 106: Average Return = 161.03 | Average Advantage Variance: 0.6354634235509983\n", + "Iteration 107: Average Return = 152.72 | Average Advantage Variance: 0.6312697928647074\n", + "Iteration 108: Average Return = 144.88 | Average Advantage Variance: 0.8073272645956786\n", + "Iteration 109: Average Return = 147.77 | Average Advantage Variance: 0.8261131774218611\n", + "Iteration 110: Average Return = 150.2 | Average Advantage Variance: 1.0174551003310466\n", + "Iteration 111: Average Return = 155.17 | Average Advantage Variance: 0.8305768063599963\n", + "Iteration 112: Average Return = 162.21 | Average Advantage Variance: 0.7100680089660294\n", + "Iteration 113: Average Return = 169.29 | Average Advantage Variance: 0.5112088875851885\n", + "Iteration 114: Average Return = 163.94 | Average Advantage Variance: 0.7542355056059245\n", + "Iteration 115: Average Return = 167.45 | Average Advantage Variance: 0.5312420371663541\n", + "Iteration 116: Average Return = 164.38 | Average Advantage Variance: 0.5616659550789885\n", + "Iteration 117: Average Return = 161.74 | Average Advantage Variance: 0.6943714157162019\n", + "Iteration 118: Average Return = 153.4 | Average Advantage Variance: 0.693319407611283\n", + "Iteration 119: Average Return = 163.5 | Average Advantage Variance: 0.6427182721528508\n", + "Iteration 120: Average Return = 152.46 | Average Advantage Variance: 0.6670032225551854\n", + "Iteration 121: Average Return = 154.75 | Average Advantage Variance: 0.8271243707273764\n", + "Iteration 122: Average Return = 162.87 | Average Advantage Variance: 0.6022595609981034\n", + "Iteration 123: Average Return = 165.55 | Average Advantage Variance: 0.4952388630358368\n", + "Iteration 124: Average Return = 175.8 | Average Advantage Variance: 0.417058805372984\n", + "Iteration 125: Average Return = 179.2 | Average Advantage Variance: 0.5082330224968594\n", + "Iteration 126: Average Return = 179.61 | Average Advantage Variance: 0.3413316861189067\n", + "Iteration 127: Average Return = 183.65 | Average Advantage Variance: 0.6249603942343005\n", + "Iteration 128: Average Return = 181.0 | Average Advantage Variance: 0.43443150617250154\n", + "Iteration 129: Average Return = 174.36 | Average Advantage Variance: 0.47529196424970005\n", + "Iteration 130: Average Return = 170.24 | Average Advantage Variance: 0.5481818693197641\n", + "Iteration 131: Average Return = 162.22 | Average Advantage Variance: 0.6699927206707567\n", + "Iteration 132: Average Return = 158.41 | Average Advantage Variance: 0.5055151909768815\n", + "Iteration 133: Average Return = 160.93 | Average Advantage Variance: 0.5997417576724554\n", + "Iteration 134: Average Return = 160.03 | Average Advantage Variance: 0.6934194223882717\n", + "Iteration 135: Average Return = 159.7 | Average Advantage Variance: 0.5641904074455997\n", + "Iteration 136: Average Return = 158.1 | Average Advantage Variance: 0.5950847195736103\n", + "Iteration 137: Average Return = 166.83 | Average Advantage Variance: 0.458922793578491\n", + "Iteration 138: Average Return = 162.65 | Average Advantage Variance: 0.43796215163124386\n", + "Iteration 139: Average Return = 177.24 | Average Advantage Variance: 0.42542727286918675\n", + "Iteration 140: Average Return = 169.23 | Average Advantage Variance: 0.357635427493088\n", + "Iteration 141: Average Return = 173.01 | Average Advantage Variance: 0.3862795652255352\n", + "Iteration 142: Average Return = 181.62 | Average Advantage Variance: 0.44544831326144596\n", + "Iteration 143: Average Return = 179.41 | Average Advantage Variance: 0.3571544298944646\n", + "Iteration 144: Average Return = 180.47 | Average Advantage Variance: 0.39164152549599257\n", + "Iteration 145: Average Return = 175.67 | Average Advantage Variance: 0.5872865717334753\n", + "Iteration 146: Average Return = 181.69 | Average Advantage Variance: 0.4440724652594749\n", + "Iteration 147: Average Return = 186.16 | Average Advantage Variance: 0.45588128098025843\n", + "Iteration 148: Average Return = 182.13 | Average Advantage Variance: 0.3769393523749071\n", + "Iteration 149: Average Return = 184.34 | Average Advantage Variance: 0.3984993717896604\n", + "Iteration 150: Average Return = 182.48 | Average Advantage Variance: 0.43892768146626937\n", + "Iteration 151: Average Return = 182.2 | Average Advantage Variance: 0.6255471725880455\n", + "Iteration 152: Average Return = 183.28 | Average Advantage Variance: 0.3949747154362002\n", + "Iteration 153: Average Return = 179.01 | Average Advantage Variance: 0.4426888448939406\n", + "Iteration 154: Average Return = 175.48 | Average Advantage Variance: 0.5114608553781348\n", + "Iteration 155: Average Return = 169.82 | Average Advantage Variance: 0.43277049367405135\n", + "Iteration 156: Average Return = 172.78 | Average Advantage Variance: 0.550584656986368\n", + "Iteration 157: Average Return = 173.09 | Average Advantage Variance: 0.5543947119925517\n", + "Iteration 158: Average Return = 167.23 | Average Advantage Variance: 0.42735825506878267\n", + "Iteration 159: Average Return = 169.56 | Average Advantage Variance: 0.472411969516844\n", + "Iteration 160: Average Return = 168.98 | Average Advantage Variance: 0.4039837464946324\n", + "Iteration 161: Average Return = 166.76 | Average Advantage Variance: 0.48076327380790235\n", + "Iteration 162: Average Return = 171.22 | Average Advantage Variance: 0.4173885135459038\n", + "Iteration 163: Average Return = 174.69 | Average Advantage Variance: 0.3701853574566973\n", + "Iteration 164: Average Return = 175.65 | Average Advantage Variance: 0.3478973563767562\n", + "Iteration 165: Average Return = 179.56 | Average Advantage Variance: 0.3529044024578056\n", + "Iteration 166: Average Return = 182.09 | Average Advantage Variance: 0.43192536522108055\n", + "Iteration 167: Average Return = 182.73 | Average Advantage Variance: 0.3368232093949944\n", + "Iteration 168: Average Return = 186.84 | Average Advantage Variance: 0.45364047392213797\n", + "Iteration 169: Average Return = 185.76 | Average Advantage Variance: 0.4037368533037325\n", + "Iteration 170: Average Return = 188.49 | Average Advantage Variance: 0.4460219373726739\n", + "Iteration 171: Average Return = 186.03 | Average Advantage Variance: 0.5224019058033579\n", + "Iteration 172: Average Return = 183.8 | Average Advantage Variance: 0.558488897415905\n", + "Iteration 173: Average Return = 181.42 | Average Advantage Variance: 0.3713059388381771\n", + "Iteration 174: Average Return = 180.01 | Average Advantage Variance: 0.2988560269435438\n", + "Iteration 175: Average Return = 178.97 | Average Advantage Variance: 0.41949143778288045\n", + "Iteration 176: Average Return = 176.03 | Average Advantage Variance: 0.509069854199177\n", + "Iteration 177: Average Return = 175.91 | Average Advantage Variance: 0.4438047968253216\n", + "Iteration 178: Average Return = 172.65 | Average Advantage Variance: 0.4066252972683355\n", + "Iteration 179: Average Return = 172.06 | Average Advantage Variance: 0.3469279686434082\n", + "Iteration 180: Average Return = 178.09 | Average Advantage Variance: 0.4671773887722697\n", + "Iteration 181: Average Return = 176.46 | Average Advantage Variance: 0.4221562298505554\n", + "Iteration 182: Average Return = 171.18 | Average Advantage Variance: 0.3389583240414483\n", + "Iteration 183: Average Return = 172.76 | Average Advantage Variance: 0.44029185813282423\n", + "Iteration 184: Average Return = 175.45 | Average Advantage Variance: 0.3452279027568473\n", + "Iteration 185: Average Return = 172.97 | Average Advantage Variance: 0.39664798303552457\n", + "Iteration 186: Average Return = 176.49 | Average Advantage Variance: 0.37056479869686904\n", + "Iteration 187: Average Return = 176.37 | Average Advantage Variance: 0.3818859171403693\n", + "Iteration 188: Average Return = 176.04 | Average Advantage Variance: 0.3121444259287643\n", + "Iteration 189: Average Return = 174.8 | Average Advantage Variance: 0.32957777784207537\n", + "Iteration 190: Average Return = 174.89 | Average Advantage Variance: 0.34212199462264925\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 191: Average Return = 181.72 | Average Advantage Variance: 0.3973691078990239\n", + "Iteration 192: Average Return = 182.9 | Average Advantage Variance: 0.2939822335636896\n", + "Iteration 193: Average Return = 180.39 | Average Advantage Variance: 0.3127256627043685\n", + "Iteration 194: Average Return = 184.88 | Average Advantage Variance: 0.2979888181824994\n", + "Iteration 195: Average Return = 184.91 | Average Advantage Variance: 0.39057182841201565\n", + "Iteration 196: Average Return = 182.3 | Average Advantage Variance: 0.35510879795742\n", + "Iteration 197: Average Return = 186.67 | Average Advantage Variance: 0.34924674040547965\n", + "Iteration 198: Average Return = 188.83 | Average Advantage Variance: 0.39613644184273566\n", + "Iteration 199: Average Return = 181.39 | Average Advantage Variance: 0.40448112973191436\n", + "Iteration 200: Average Return = 180.25 | Average Advantage Variance: 0.4814011798512973\n" + ] + } + ], + "source": [ + "sess.run(tf.global_variables_initializer())\n", + "\n", + "n_iter = 200\n", + "n_episode = 100\n", + "path_length = 200\n", + "discount_rate = 0.99\n", + "# reinitialize the baseline function\n", + "baseline = LinearFeatureBaseline(env.spec) \n", + "sess.run(tf.global_variables_initializer())\n", + "po = PolicyOptimizer_actor_critic(env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate)\n", + "\n", + "# Train the policy optimizer\n", + "loss_list, avg_return_list, avg_advantage_variance_list = po.train()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXm0HFd9Lvrtnscz9OkzaJZ1PMuy\njS2DcEg86d0QyOPq2iY4xEmI8yB+C+xnOyyunYDNxVFihwsGLBzgPQMBA4/BRgRuHmAhLBMbgewg\nY1k21mDLms/QfYY+PVft98feu2pXdVV3dZ/uM2l/a2kddfeuql1V3fur3+/7DYRSSqGgoKCgoNBG\n+OZ7AgoKCgoKSw+KXBQUFBQU2g5FLgoKCgoKbYciFwUFBQWFtkORi4KCgoJC26HIRUFBQUGh7VDk\noqCgoKDQdihyUVBQUFBoOxS5KCgoKCi0HYpcFBQUFBTajsB8T2A+ceLEiZa2S6fTGBsba/NsZo+F\nOi9g4c5Nzas5qHk1j4U6t1bntXz5ck/jlOWioKCgoNB2KHJRUFBQUGg7FLkoKCgoKLQdilwUFBQU\nFNoORS4KCgoKCm2HIhcFBQUFhbZDkYuCgoKCQtuhyEVBQUFhFqCUQn/mZ6Dl0nxPZUFBkYuCgoLC\nbPDGYdCvfhZ48bn5nsmCgiIXBQUFhdkgOwoAoMXiPE9kYUGRi4KCgsIsQLMZ9p+KcovJUOSioKAw\nL9B//r+gf23bfE9j9sjy+lzl8vzOY4HhjC5cqaCgMI84sB/00MvzPYvZY2Kc/a0ocpGxYMhl7969\n+MpXvgJd13Hddddhy5Ytls8rlQq2bduGw4cPI5lM4o477sDAwABGRkZw5513GpU6zznnHHzgAx+Y\nj1NQUFBoAlSrLomnfTrB3WJL4FzaiQVBLrqu49FHH8VHP/pR9PX14Z577sHGjRuxcuVKY8zOnTsR\nj8fx8MMP45lnnsE3vvEN3HnnnQCAoaEhfPKTn5yv6SsoKLQCTVsaT/tZYbkozUXGgtBcDh48iKGh\nIQwODiIQCODKK6/Enj17LGOee+45XH311QCATZs2Yd++faCUzsNsFRQU2gJNA8rlxf87Ntxilfmd\nxwLDgrBcMpkM+vr6jNd9fX04cOCA6xi/349YLIbp6WkAwMjICD7ykY8gGo3ipptuwgUXXDB3k1dQ\nUGgNWhWgOvsbCM73bFoCLeSBYoG9UJaLBQuCXGaD3t5ePPLII0gmkzh8+DA++clP4lOf+hRisVjN\n2B07dmDHjh0AgAceeADpdLqlYwYCgZa37SQW6ryAhTs3Na/m0M55ZXw+VAD0JZPwxRMt70efyWHm\nm19C3w1/CRIOt2VuXlE9+jq43YIQIehxuDYL5V5WjhyCL9kFf6ofQOfntSDIJZVKYXx83Hg9Pj6O\nVCrlOKavrw+apiGfzyOZTIIQgmCQPfWsW7cOg4ODOHnyJIaHh2uOs3nzZmzevNl43Wrr0aXWtnQu\nsFDnpubVHNLpNE5/6E9B/vB6+N56zaz2pfEn/vFTJ0G6e1vej77nF6Df/SryA8tBLt00qzk1C/ra\nQeP/pdy04z1bKPdS+6e7Qc6+AL733Q7gDGlzPDw8jJMnT2JkZATVahXPPvssNm7caBlz+eWX46mn\nngIA7N69G+vXrwchBFNTU9B1HQBw+vRpnDx5EoODg3N9CgoKZwSopgHHj7B/swX/3aJBTa6GmkyG\nLZD0tQP1x3UAVOgtieTCjxYrzIBOTczZ4RaE5eL3+3HLLbdg69at0HUd11xzDVatWoVvf/vbGB4e\nxsaNG3Httddi27ZtuO2225BIJHDHHXcAAPbv34/vfOc78Pv98Pl8eP/7349EonUTW0FBoQ6qVfa3\nHVFeGt9X1V0I13/9NOh3vwzf1i+ChFxcXjyJkb4+9+RiRIr1L1v4mkulAsxMz9nhFgS5AMBll12G\nyy67zPLee97zHuP/oVAId911V812mzZtwqZNc2sKKyicqaCCCNpRAVjT+L7qENWpY8BEBjj6GjB8\nvvOcMqy2F14/AKrrIL45dMhMjAOxBBBPAtOTc3fcVlCtADO5OTvcgnCLKSgoLBJ0glzqPfHz49S1\nSrhbDPkZYOTk7OfVBOhEBujtA0KhuhbYfINSysllas6OqchFQUHBMyh3i7Wld4lwi9WzXMRnr73q\nPiY7huC569m8Xq8zrhOYyADdKZBgqD2E2yloGkApMDMDKrSuDkORi4KCgnd0xHKpRy7Ccjno+DGt\nVICpCYQufQsQjgAu4zqGySyLdAuGFna1gSqfG9WBYn5ODqnIRUFBwTNMzYUtVrRcYhFkrYBvR+ta\nLpzETh8HzTvoBTxayz8wBKxYA3rs9dbm0gKorgNTE0APJ5eFHC1WqZr/nyPdRZGLgoKCZwi3mFj0\n9fvvAP3p91vbmd5Yc6GyNeBklXC9xdc3wER1kS0/F5jJMdded4ppLgvacpH0oDmKGFPkoqCg4B2S\nW4xSCoyeAsZOt7YvT5pLCRhaAcBZ1Ke8C6Q/PQASjgClOSSXSVYNmbnFwkBlAddJk4lvjiyXBROK\nrKCgsPBBK5LmUq0y11apxfa+XjWX7hRbEMdHaz/nlos/Pcg0lzloNaz/+HEAAFm1jr3R1ctIFmDn\n4paPM5+QLBc6Mw0yB4dUlouCgoJ3yEmU3EpoOXJMs7rYHFHmi3UsARRmaj/PjgGxBEgkCkSirRNd\nE6C/2Q36iydBueViaC7Awq2MbHGLKc1FQUFhgcGSRCn0jZbJhYfE1ssPKZdYZn4s7ijo08wYkOLF\nF8NRoFTovGuqUmaWirCkhOYCLNws/YrSXBQUFBYynMil1PyCSnWdhcUCjTWXUAiIxlmSpB3jI0Av\nJ5dIhNUr67SwXmWtAuiBl4BIlGk9AU4uCzViTFkuCgpLE3QyC33Pf8z3NGYNI1qMUvMJuBXLRQ5f\nrve0zzUMEosbbjE6egp0ZprpP6eOgaxcw8aGI+xvp11jgrwOvsysFgDEsFwWBrnQfc9De/C/gxoR\neTK5zE2WviIXBYU5AP3lTtAv/XN7MtvnE7IwPMVrabVyTrpELg0tF+YWQ4El/+mf/R+g3/wScOIN\nRlKreHuNSJT97XQ4srgGlTIgWgUEuYi/QCwX+rt9jPxEgIOYMyGgKlpMQWEJQSw6rSYcLhBQ2b2S\nmwW5aFJSn8vTPqWU7TsYBnx+ID/D3suMMv3lvIsAAGQNi9oi4Sgo0HnLRboGRh+ahaa5iGADPlcj\nyi/ZPWeaiyIXBYW5gFhM5UV1MaIqzd+wXFpYzCWSdc3Qr1aZ+y0UAgjLI8HMNPtbKYP++mlmraSH\n2HjhFuu05SK7mAzLZWFpLnSS920RRCj+9qSU5qKgsKQgFmV9CVkuovHUrC0Xl+3FfsPcLQZYqx7/\n7kVg9TqzxH5kjjSXqgO5CMul2nlyoS+/AH3Xj+sPmsry+djIpTulosUUFJYUjMZYi5tc5Kd2Oi3I\npdx8pV1NGu8mggtyCYZZtBgAaiupbyQyAqbm0sEsfaprzOrifeiFoC80l7p10mZz3JPHQN84xP7/\ni5+Cfuf/MYMrnDDJyaVibchGunuBfG5OKgkoclFQ8Aj9649A/+YXW9tYWyqWi7Sgyc2xmo2Ski0X\ntwVZWDQiWgwwLZcB3sd99bA5PszIhXYyS58v1uTc9YDPB7J8NXs/GGR/Z3LQ/uffgx5pb3Vm/btf\nhv71RwDwpNVymTVQcwCtVoEcjwiTgw8AZmlp2pyUyVHkoqDgEfTYa6DHnH/QDSEW5aUk6E9LIa3N\nusYsocj1LRcSMi0XjJxg773lKvZ33bnmeCMUuYMLpzj/NcPwffZbIGs4uQm32NHDwO9eBH31pfYe\nNzNqRMsZbQgOvew8NjfJtCp5vhVJcwHmRHdR5KKg4BWaZhW0m9p2aVgulvMXbjGgLrnQY6+BHj9i\nfVNch0DAnVxEcmYoZGguwi1Grvtj+D6+DWRopTk+LEKRay0XSin0f/8uqNAiWoWYayDISs4ICLfY\naUZ+yLVZ15jMmtdY/D30ivtYAUNz4RbXslXAhW8yyaeDUNFiCgpeoWmtWx7VpREtZrFc5Iz5OiK6\n/q3/G/D74b/rfvNNcR0i0TpuMf5+yCbo+/2snlg8aR0fCgHE52y5jJ0G/f7XgVgc5Op3uM61IcT5\ni+gwAfFakEsbExVptcLcXOJ8DcvFA7lUJEE/EAA5bwP8521o29zqQVkuCgpeoVVb7pNOjVDkuWkx\n2zG4nX89t1gxXxseLEg6Emss6IfCQDTB/j8zDSS6QEhtXV9CCIsYcyI68V5hli4zcf6BoPXYgQDg\n85n5JQ6WC33jEGihhS6QIipPaFDiemXHQB0qRVMny6VSriXEDkORi4KCV+h6y+SydCyXKuB3cHg0\nqmxsJxDZcmkUihwMMatEHDfR5X6scMQ5z0WQy2xb/HJLgNjIhc3TLLVvL7JJdR36g/+9tcZqgixE\nVF65BKxcy/Z7+He146ckd6Uciuw05w5CkYuCglfMwnJZOppLBYjGzNcxblHUK15ZKdeWohcWXCTG\nFk0HDcAI6w2FmVUiXGN1ycWl7L4gqgYJlvoXHoS++yn3AYZbzGGhDkmWQc7mFuMRXvTE0brHd4Sw\nhgB2Hctlpp3YP3MYT+eRXBaM5rJ371585Stfga7ruO6667BlyxbL55VKBdu2bcPhw4eRTCZxxx13\nYGBgAADw/e9/Hzt37oTP58Nf/dVf4dJLL52PU1BY6tBnIegvpWixUJhZEVoV6OoG8rkGlkvJrIAs\nIMhWEFW1Uuu2kd1iAIsYm54EqUcukShoPculgVuKvvBrkHgC2HS18wBJ0K+BPH97oqKoYmDL0/EC\nOiG5ucol9q+rh712sMTo5ITRfsAg9QrTXOYSC8Jy0XUdjz76KP7u7/4ODz30EJ555hkcO3bMMmbn\nzp2Ix+N4+OGH8c53vhPf+MY3AADHjh3Ds88+i09/+tP4+7//ezz66KPQm03oUlDwAm0WbjFt8ZIL\npRT6j77NIrWqVbZIiQU/2c3G1COXSrlWtOfXwYi4chL1y1K0GGBaLskGbjEHy4Xy92gdtxjVNHZ/\n6+XJuAn69vfsmouw7EZPNp/AKGso5SK7LtEYuy5OZDmVBfp4kid/qKFO5N1hLAhyOXjwIIaGhjA4\nOIhAIIArr7wSe/bssYx57rnncPXVVwMANm3ahH379oFSij179uDKK69EMBjEwMAAhoaGcPBgexOY\nZNCJDPRWRDmFxY/ZuMUWs+UyPQn6g2+APv8sK4Dol8hFPEHXK7ni6BaTNBfAWXeRo8UAj24xF81F\ncotRSqF/9yugJ96wjhEEVC9PRmS817NcelJAuQQq60xin6WiVRPxAtn1JfJTgrzHjdNaNJkF+phX\nx5LnciZqLplMBn19fcbrvr4+ZDIZ1zF+vx+xWAzT09M126ZSqZpt2wn9K5/B+B1/DvryCx07hsIC\nBXeLtVQ6YzFrLkKcLpfYYuUPGNYEEeTiYrlQEb5tJw9xHYRbzM1y8fkMIZ+IRMpEt+tUiVurY0PQ\nLwDTE6A//T7oC7+2Ha9Y91wAmLXDgg4uJmFhrTyL/ZWtF1mTEuHKHmGJ/hJaTijM9CoXciGG5SJp\nLk46UQexYDSXucCOHTuwY8cOAMADDzyAdDrd9D7KN9+K6c//I6qf/hh6H/gSQrzs90JAIBBo6Zxa\nReXIIeSf+Dq6PvR3IA1M7rmem1c0M68RXQcFkO7pbni+dowB0AAk43FEPBxvIV2v8vgpZAFE/T5o\nmoZAJAL4CKoAYoPLMAMgFvQj4TBfvTCDUQDQdfT19oBwoijGYpgEEEulMQOgNxFHwLb9tN+HQiiC\n/n62UE71plAAkFy+HFHbWHG9prp7UKqUaq7dTMCPHAB/uYSeYBDjAGJ+65yrpTzGAQS1KlIu174Q\niWAKQG//YM18M7E4KgBi561Hft/z6AkFEEynEQgE0BUJQ9gricJ0zfzrYXxmGtVAEKhWkPQBkwAS\nqT4Ukl3waRX0Svui1SpGyiXEhlaw+xIKIpFOIwMA0ZjlvDr9HVsQ5JJKpTA+Pm68Hh8fRyqVchzT\n19cHTdOQz+eRTCZrts1kMjXbCmzevBmbN282Xo+NjTU/2f7l6P345zD2/i2YePE38PUNNb+PDiGd\nTrd2Ti1Cf+bnoE//FOW3XMNqLdXBXM/NK5qZl6irNXbqFIgcMeUBGn9ynspmkfNwvIV0veiJ4wCA\nwmQWwUoZVcCwJvJglkU+m0HRYb5UcgGNnTwBEmHXTecidZ5bgdmR0yAxq7tLn5wEDQaN66D72DFz\nlGDGdixxvXQQ0EK+5trpWebN0GamkT3O3GH5Ceuc6Wkmtldy067XXs+wtSaby4HYxmiEOYIKfE2Y\nOPYGSLybkd7IaWPc9OEDmLnE+73VxkeA9ABw6jimTrJ7kSuXQYMhYGrSMlfKE1vzOgX8fuQnJ1Ec\nG4NWyAOJpGVsq9+x5cuXexq3INxiw8PDOHnyJEZGRlCtVvHss89i48aNljGXX345nnrqKQDA7t27\nsX79ehBCsHHjRjz77LOoVCoYGRnByZMncfbZZ3d0vr7eFMsEdgoDPJPAfdv0QJvrKC1UCL2klYgx\nse0idIsZORulEksGlTWXcISVxG+UZQ9YdRcRihxuIOiHzNwRU3Nxd4sxzaVY67qUkyhnJDefDCHk\n19OPxL13cjEFQ0AwBDLIF1/JLSYCCuD3NxUxRnWdaTT9y9gbvJ4bq7cWs1ZJAEzXXijMNJYzPRTZ\n7/fjlltuwdatW6HrOq655hqsWrUK3/72tzE8PIyNGzfi2muvxbZt23DbbbchkUjgjjvuAACsWrUK\nb33rW3HXXXfB5/Phr//6r+HzdZYziT/AQjAnlha50EIeKJdAuntBX34B9I1D8P3h9e4b8MgbenD/\nHM1w/kB13QynbUXUX8xJlJxcaLnIziMYYp0hAUYOobC7TiGThvx/Q9DnFqBDlj61kwuPTDN6qDgh\nEmX3qVxmpGccm8+vVAAVuoV9zmJhrifou2ToAwDp6wddudYIOKAzUzDqCIh9D62saRtQF7kpQNdB\n+odYl00R4hwMg0RjtWHXQtsJ28ilUnFO/OwgFgS5AMBll12Gyy67zPLee97zHuP/oVAId911l+O2\n119/Pa6/vs4i2Al0p6xC2xIAffyroAdfhv/jD4Pu+jELWqhLLvyLfegVUF0DEQvOUoRscbRCLhrf\nZjFGixlP+mUW0hqNmyJ7JAoaCrsnUVosF5lceChylLcmdosWk8iFvOVqkP4hs7WwE8JSTxeZXGRr\nhJdMofY5G6J/g8g3wJlcrv9LEE2DwSiyoM/3SVatA927G5RSxxI2NRBrTP+QdZ+GoG+3XMxK0jQQ\nNB9q5kHQXxBusUWJnhQwMd543CICnZwAThwFrVZAR081XkRFpEohDxx7vePzm1fINcFmZbnMDbnQ\nl19wrDvVEgy3WNEIRSayWywUAS0XoT3wEejf/7p1W1dysVoujk22yiVL1jsJh0EuuKT+XMPO3Sip\nhVxGzP07jalWWJSbE+pZLoEAm2MozOYtJ1IKy2XZSvZQ5rEtAH3jMNv3KhaBRuVosWichVbLeX3i\nHEIRXnFalX9ZdCDdvUvOLWZkUo+PAmOngEqlbtgtLRYMFwU9sMRdY7LlYs/Z8II51lz0LzwIuuPf\n2rMzSyhylRVpFOQS4ZrLzDRw+FXQg7YeI/ICLv9fXAcjz8WFXKR6XV5AIi49XaRjUxdysRCSm+7C\nQ7FJI9d7vMtKLqUSW+xFOLXX/jcH9rFqyGvPYa/FPkMhICpaDEjnarSGjjBL5UzPc1mU6EkBuan6\nrUYXG7hrgr72KhMKqV7/SbuYB5avZgRz9PAcTXKeIGsli8ByQbnUtqZZdIa7XkpF5hazCPpcczl2\nhH1fRmw5HDJpyNdNXAdRRt4pX8OuuXhBxGHB5XM3MBty8bpIx5OgljyXIrMmxPm4uBH1p38C+pvd\nxmv66kvAORea29ktF8BaAsYm6Ju1xcrKLbZo0JNiDXeazbZdyBCuiZf+03yv6hIFBLAFIRxlX/J6\nhQuXAmahuVBdM4MB5sByoZQyMmzFwnKCzXJh5V+4uyrMF0zh+5/IWF1QlQaCvsi2dyEX0iy5hLjl\nYtdNSkUzICAzar5nH2P834WYvWoX8YTNcikyK0+cj0t0Hd3xb9Cf/gn7f2YMGD0Fcu5FTJ8JhU3N\nJRgyw+Gla0ddBf0qEDgDy78sRpBunkuzlMKR+UJAX/qN9F4dy6xYAImyJ1daL3xzKaAqk0uT1qo8\nfi4sXV0HKAV1K2XfLES4a7nEnoQDAVPbiERrCUCKhrJoKQ6CPttXtDakFmALcKjJBVGMt7vZSkWz\nVI3QKFqyXMreLJdE0pahzywX41q5ucUqZTMK89V9AAByLk/UDoVN0hOCPmAV9Y16bBE2zwrXj6ju\nXFWgg1gw0WKLDj1Ll1wwPVn7nhOKBfYFrxeKulQwm2gx2RU2F0VVBYG123IpFVmehj8IcuW1QCpt\nRosBACHMmh85AXABWo4Co5WyGZqraYDfb5bSt0c9Aa25xUS74XIJllisUhEYWA7I7ZZbIpeqJ8uF\nxLtAJcuFlkvcygs5H9vYf8V06R14iXkFVq1lr+VrIfJcAGsDNDHvcJjNs1yqX8m5g1CWS6vglgtd\nSqK+k6nu4hajlLInrGiMJ9EtcXLRZkEusrXikuei7/wR6PPPtDAxB4hj1HswsB//u1+B/uhDzh9K\nbjHKS7eTnj74Nl3D3heLHhedLXkc9SwXPw9dj8ZAncil0gK5uFkuPH/L/p4FHsiFeo26ikatrrVS\nwXQhOh1boFIy3Fz0+BFg9TozxF9s6/OxoApOLpZrZ4kW46HIdSLcOglFLq2iq5tl6S8lcnHMNXBZ\nSCtltkBEGiTRLRVIlgtt1iLQpPEumgv9+b9D/+XPm9otrVag/Y/bQV98zna85smFHjkI6hCUQTWN\nPUmLhU24xWRwFxlZew5zPcmFGeuFIovOkrF4jVuMTk+yhbFeeX0niHlKx6KUsu9nj0QuhDCylKIh\nqbDMAFC3XJeKR2E8HOWdI/n9LpXMagZA/aRTYbnkZ5h7zTi3kPUchaBfyEN/+sdMoymX2boUCLB/\n1Ur9NgEdhCKXFkF8fvZDWkqJlOWyKXqKUhtuT+kiQiUSY37kpU4u2ix0E9nqcYsWE2TdDCazwLHX\nQQ+9Yn2/FbdYIe88Xiz6vVKBQ3ubY7HYDa0ABpaDyhFjbpaLLlsuDqXjjfyOdd7PATAXUHtlAEqB\naMJ8eu/uZe/J329Z9K8r6HtYpI18G1EZoMjzX0y3nR1UzKeYZ//Pz4CITp+AeZ3F8UUo8vHXQb/+\nCOivnmLRYmHWuZNwzcW4r8pyWUToSS0ZtxgV/eF5b24sX83+uj39iqer6BliucwmidLiFnMhkHKp\n+dIwQhuzRywaEULeLRcU884uUOES65GKwdotF77okaGVIIPLrLWzKiWTRMo2txh395Bo3DwOh0ge\nxOomycVwi8n5NZIOIXQKQZay+0vu8DjbUGR7vk1NtFgJ9PUD0D5zn9n3RfzVNPb/woy1pbTYVg4D\nJwT0AM8tmplmxxHEJqLFDLfYGdiJctGiu3fpZOnzLzY561wg1Q9y4Zv4+y4LKRcRyZki6M/GcvFC\nLvIi4BW8iCGVAzCAltxiKBZcLBe26BPZcrEvUl09rO/K8tWswOJk1qx5VS6zRdDnq+8Ws2suRw8D\nfQMg8SSaAfH52X5lIjNE7oiZByPOR/7eFgtAV691Gzu8hiKLMjRyMcyQjVwO7Ade+o1Z3UK+Prlp\n3nEybr5nIxdCCAuoOc63z89YgyBEEiW/r822iZgtFLnMAmTZSuDksfotXhcLxI+xqxf+Bx8FuYjX\neXO1XLgbIxpjP9qlcA3qYVbRYo01F5TLnkiLlkvQHvgI6GsHTFKpsVxaIZe883mJumK9kuXity6u\n5Irfh+/jD4P0pIABXr1XJCpWyrxacNhd0I8xt5hF/3jjcPNWi0AoZP0+CtdUKGJYAqSXNxi0VRAg\n8QSbVz1y8WC5EHsZmnKxVtAXVcVFR0z5+mR5KXyJXIjdcgHY+fDrRvM5luciPrdbLiqJcvGAnH0h\newJ7vXNtlecMwo0g3Arii+hquQjNhbvFNM3MBl4CoJSyKtECs3GLNdBcqK6x75EXt1h2nBUK/d1v\ngRwnF1fLxds8abXKyM2pMrFwV9WxXEggALJsFfu/cCsJwhO5KsGgA7nw/URj7DVf6GkxD5w+DtIq\nuQRDtuRNXjQyLOWGpIRbzGa5hKOMBOq4xTxVFxbkUiyw61utMrecP8CsuHLJfEAT4dGStUVFomfM\nyXKRLBDZbSYsF1e3mCKXxYOzLwCwRPqZiC+2MJ35F9GNMAy3h3CLAUvLenn5Beh33Qw6xQM2ZlP+\npZFbzCgu6IFcxDWeyBhusUaWi/6FB6HXqzMmdAGnFs7CLdZjthKvEfRlcEFcFFiklRL7ToWsCz7V\nNLbIAuYCKoIHjr7Ojrlq2P049RAMteYWK5cYAYQiteVjBLy6xSJmdWYqrm84ambaN7JcMsxyIU7k\nErRZLgL5GUaksuVSqSpBfzGCJLqAZatqi/UtRgjNxbBcXPIFBAy3WHRJkgsdOcEW6Um+cM+mcGW1\ngVtMLIReyIUvlHRi3LRYSkVrhQRJc6GUskzv1w+471O20OzEKdxiMrnUE4ZFtNXUpDEHBEOs9Ii9\n/IthuYiQWkYuhpi/plW3WNhanUByi5FIDCDErLAhrCVd52J4lAnvs3SLCeuBlopmWHNYcmtJ5IIT\nR9lfR7dYHUEfMK9dOMIeBGRBPxjgvW34+Su32OICOWe90c9kUcP4AkpiINBQ0Eck1jh2fzFCLLji\nnGaTRClZPdTJ9WVECdV+RitlK3FIlotRfh2wWi+CpESNsVKxPnHJT+n2+52fYVZH3AyJJfXIJZ5g\neRbTNrdYKGTND5I0FxK1WS4jJ9ii2u3crrwhbJYLlaPFurpZAIJhWfDPxD0Ih4Fw1L2ckSDLRgib\nBTQNK1/UPePkYrhds2OsPbE853EHtxg/rlxuh4jzGL6APQiUy+bnwvsggiWU5bLIcM4F7ImL9+Ve\ntBA/LmG5BDxYLj4fK6DXoNJiPyNcAAAgAElEQVTrooT4QcrhoQLNhgxbtnUo/1KPXB77F+gP32++\nIRbKLLdceN92C7nI+ymXzJpgbpCr6krhyHR6CnT3z4EVa61Py373RYr4/Czxb1q2XMJcB7GV3A9I\n0WKAmZk+MQ709HlrpuUEmwtOdouRP7oRvjs+XptvIrmu6mouXi0XibwEuRjtAMIRdtxSgSVzAsDJ\now0FfdPykcgt0cXcbWuG2fUrFaxuMcB8EFTksrhAhrnu8trv5nkms0TFprkIy8U1iZLVFTN8yMDS\nslzyVnKxNI9q2i3GF3t/wJmYxKLrYF3QsdPAwZeNp36j6u1kli3gokOhLOrL+xFurXrkUqi1XCil\n0B/7PJDPwfcXHzRdLUDjfImuHlDhFhMNv+wiu6y58AXUCB6YyFjzapqF/ViyW6yrB2TlWeb5GOQi\n9UFxIBf9e1+BvuMH3vNcBBGUiqbmYrNcUMgDQysBcN3Forlwy6VOKDIAkLffAN8d9zFCpzr7HsiC\nPmA+PKhQ5EWGvgH245FLXixGlO2Wi4doMeEPXorkYrjF+HWZTcl9MT4UdtZcxDV2Ip5Skb1/QkQU\nlcyxYyNGsiuVLBdLjyFRmbeOW4zKlouYy9hp4D9/CfJH72aLscVyadDOOtltusUqZZZfEQxav0v2\nPBdAKts/zsKaW4U976ps0zzEGPkzTgAkHGFhxKUC6O9eBD11HABAf/U06C9/zlyNXgpXBoKMhEsF\nSXOxkUuxALJyLfvNnXjDTKYEuFVKTAtInrNEEiSVZlGrIpNf06x5LoDZA0Y+/zmAIpdZgvh8rOQF\n/xIuVhjuATlBKxB0dYvRYt784tufApcAhD/cEIbFwi83YPIKsS0P2a5BPUGfL3r0CA93l68x1UFE\nJQXZcpHzasTCUtdycXCLjZ0GAJDzWLl34vebFksDy4UkuyW3WIVbLrYF31a4UsyD6jqzyuQAgiZB\nnKLFCLE+udtduXbLJTcF/eH7QX/4LaanTmUBEdXlVRgPR4Fi0SRvmVxKXNCPxoGeNDtne+HYSMza\n8dJJ0BfnHHNwnwnNJTPKrrVcSmYOoMilHRhcvvgtl4pN0AfYj7GuW4yTi/BfL6WeLnKDLMAkhUik\n9dpioZCL5VKHXIQY/LoDuQBAbx9boJwEfQB0ZqrmPddjAEb/HqMVcKrf/EwsanU0FwBMMDfIhbUq\nJqGQzXIxy7+waLIAc0Xmpthns7VcLNFivJeKrOEERL4Jv/aG5sLDlXOslAodH2GRb7puXkOvTbe4\ne63WcgmZ0WLRKKsKXSzUlsaXCQOSkO9kgVhqkPFComI/46NAsqdxa+Y2Q5FLG0AGVwBjpxZ3y2O7\nWwyodWXIONPcYgZBRFrXXMIRlzwXfgyq10YditDjI4f4fKzXmCS7rYu5fDzAm+VicYvxuYyPsGAB\nOXlSaAaNNJdEF7NCKpU6SZSmW4wQwggyP2OUU5qdW8zBcrEtyGa+iXCL2SwXgcxYbc8mr023whFQ\nS54L9wqEwrxQaJkRWSTK7oG4PiIRVQ5DBhzdYgacClwKcsmMslJVcwxFLu3A4HK2aIinvcUIu6AP\n1HWLoVhgOQPA0iaXik1zCUdaiBaTNBenDH35uslWB6WsNhXxAcePsMW6VGT3SDyFJ7uAZLdFc7Ec\nY7qx5mIR9A232AjQ22cNOzYWrUaCPs91mZ6oW/6FyNpNlNcXE4VgZ+EWswv6NJ8zM/NlSNoMlS0X\nQS6EsPmIsGABr1FXkag1FDksWfriYUCQS6Fg/n7slcnl+cp/ZVjcYlKeC8COJQhrDjHvnShzuRwe\neughjI6Oor+/H3feeScSiVrf4FNPPYUnnngCAHD99dfj6quvBgB8/OMfRzabRYg/cX/0ox9Fd3f3\nnM0fYJYLBYDTxxnRLEbYM/TF/+uV3Dcsl6WnuZitfR3IpdXyL6Gwta+6QLVSO1Ycm+rAmrOBIweZ\nqF8uscXIF2d+emG5nDwq7UPa30yzlotwi50G0gPWceLpv16GPgCS7GG/h+w4F8BNy4WWSuycdM26\nn1ic5WOIQrCzihYLs14qlDIL5ehrZrVvy/lINfGcLJdL3gzs/ZWpdxn7b9EtJrYLhc0HlEiMdfMs\nFdg9IsTsYRNthlykPCSb5gJIZXnmEPNOLtu3b8eGDRuwZcsWbN++Hdu3b8fNN99sGZPL5fC9730P\nDzzwAADg7rvvxsaNGw0Suv322zE83GKpiHaAEwo9dRzk4ivmbx6zAS/TYfFLB4PWCBYZxYL0hMS/\nxEskz4XqmumDr9g0l3CktvdII1QlQd9eBwywunBkC0NEMK07lzXzOnWcXeNQmLmeJrNAohukqxv0\n1Rcd92EkWnrVXKqmW4ycu8E6zqvlIkrACEs+FDZql9F//Rybk6YBfslxEo1xt1iGLbBds3DjhEKM\nwLQqswpHToJceZ3DuLCpE0qWC1l/GXD1O0DWvwn63l+BHv4dsx6XrwKOH/FWW4zvC7lp6FMTQCxh\nah62JEjKLRyUWSMyEo2DQkouFVixGuS/vtcsKisjEmVzpHqtWww4M91ie/bswVVXXQUAuOqqq7Bn\nz56aMXv37sXFF1+MRCKBRCKBiy++GHv37p3rqbqCJLpYnPliFvXLDpnH9nwBDkop70/BzHzi89VW\nol3MkN1EdkE/FG65thgJhurnuQBWq0MsfL1cVC/kzV7sPSm2mMQTbCHOTZtRbI6hyO5zpsW88eRL\nKxWmHWYzDpaLR81FuMWEO0lYLrrOStGcPGYNRQaMysiYyADJ7vpVABpBbhjGtSrCWzBbIIcsF01d\nhAytgO/PbmXtAwDgtQNAV49RnNNrtBgJs1bH+viIWShTHFfAcIvljeAHI1DGLuj7/PD98U3WBmLG\nZ75aT4JMLmei5TI5OYneXsaqPT09mJysfbLLZDLo6zN9sKlUCpmMKbI98sgj8Pl8eMtb3oIbbrjB\nNbN3x44d2LFjBwDggQceQDqddhzXCIFAoGbbzIo1QGYEqRb32Q44zcsrJv0+lCMRy/aZKGtGZD8n\nWipihFLEU32I889GwlFEfARdLsefzdw6Cad5aVoZPD8aYZ8P3ek0cuEwZgCEu7pRHTvV1LlMh4LI\nBwIIx+OoADXb5oJBiG4mqa4u+NNpBAIB9ETCyABIrl6LKQBxQlEGhR6LI3T2+SiNnER6YAD5FSsx\nDSAV8MOfTiMXMvcXKOZRBUA0zXXOmWoFek8KWj6HZCSMENExRnUk1wwjKm0zkUiiBKBvYBC+hHv7\nYT0WxSiASH4KBQDJVB/0oB85gFlbfj9IPIlIPGF8X6Z6+1B89SUEc1PQ0wPoa/K7It/HfCrFrkcy\ngeLYSeQA9L3pzfB1Wd3lmXgC0DWk0mlMg6IQjaF/YLDmPFAqILBqDcJnnYOZ5/4D3X1phDzMb6qn\nB6VKGXpmDKHBZegV8+tl8wOA7qHlKI+ewEy1gjClKIfDiPSmkAcQ60sj0cR1GEt2Qcvn0DM4iGA6\njWohB9FtqmvlakRs++r0b3JOyOX+++/HxMREzfs33XST5TUhpOmSD7fffjtSqRQKhQI+9alP4emn\nnzYsITs2b96MzZs3G6/HxsYcxzVCOp2u2VZP9YO+8mLL+2wHnOblFfrUFKg/YNleAwHyMzX7FOLx\nTFVDgX9GgyEUpyZRdjn+bObWSTjNix4/Zvy/ND2FsbEx6LlpgBCUdQpaKjZ1LnpuGvAHUKpUQSuV\n2u+O9NvIjIyA+IJIp9OYOM06OubgA/wBzIyPMpeSPwD9uncBv/+HGBsbA/WzJ/XMa4dA4IM+beo6\nVd6Gm1bKrnPWpqeMp+TpbBbkAGubnAtHMSNto3NHx/jkFEjRvVcMpRQIBFE4znSg6VIZKFt1JTo9\niWKlYnxf6PAFoDt+iPILvwbWX9b0d0W+j3qJHStz6iTo/t8CfQPIlCuAbZ8a8QG5SXZ/sxnQcLT2\nuNEYUMijGu+Cxl11k/kCiIf56ZTnS42dBl2xxpxfxbQsJ4slUI1Voi6OnQb8ARQoWwPzICg2cR00\nHjAwkS+CjI2B5szuntPEj5xtX63+Jpcv96Yrzwm5fOxjH3P9rLu7G9lsFr29vchms+jqqn0iSqVS\n2L9/v/E6k8ngwgsvND4DgGg0ire97W04ePCgK7l0FPZw0EUGKnewEwiGnM+pZIvbB3hi2BLJc5E0\nFWqEIldZIlq98Gw3VLkLyO93dotVbSG6AkIIjkRNTaLEWvGyrHfu/hH6hNwegBAmpgvNRauaArfT\n+QoXUKVsaiXpQes4r4I+Icw1JhIxQyFQu8uVUjPPBQAuuxJYtgo4edRs5NUqQqZbjB45CKw923me\nosYXYA2tl5HqZzpLbx/IpW8B/vc/ZQEWXhCJAqUi9FLRek5ObjGA5dOEpFbMds2lEURxUQdBfz7c\nYvOuuWzcuBG7du0CAOzatQtXXFEriF966aV44YUXkMvlkMvl8MILL+DSSy+FpmmYmmI/nmq1iuef\nfx6rVq2a0/kbiCWAamXeu1Lq3/wC6Au1ulVDiL4bEkjAZSEtieZL1tIU833ubUOBP/H5A5Kgr7PF\nMBBsPhS5yonJ76+foS/GCsjhsUKTELW6ZHCxlop8jGrFDL2V9+cm6hcLIMJlVCmzMGRCWIKmDCOJ\nskH5FwBYtc6MYJOJUIa0H+LzgbzzT/j5zCJSDFI738lxYPQUiBsZyKHIhby11IqAyPPpToFEovC9\n60+960Hy70PKF5KrGiMaAxFkMj3Jvl9Cy7SHIjeCGO8k6M8mQKJFzLvmsmXLFjz00EPYuXOnEYoM\nAIcOHcKTTz6JW2+9FYlEAjfccAPuueceAMCNN96IRCKBYrGIrVu3QtM06LqODRs2WNxecwrR6zuf\ncw4VnCPQZ3cC1SrIJYyk6ZFD0L/6Ofju/DhIvS9YpVy7aIke3Ha4WS5LhFxonlsu3T3WisX+gNnd\nrxlovNihz4VcZEFf2je1WC5xXpa9BBKKWLcXxCB6z2gae3ot5o0WuMa+bWI0y6XJm9/fapXla3Wn\naqOi+ofg6x/05Lr2/cUHoW99jSXwhUIgwRALT+4bMPPBbBYQueJtwLHX2d/ZgH+PKe9Nb5TIqRkn\nJVEWnS0XkkqzebdiTUm/D1fLJRw1SWh6AkgPgERj7JhNWi4klmDb2fNcgiFnq6zDmHdySSaTuPfe\ne2veHx4etoQXX3vttbj22mstYyKRCB588MGOz9ETRATHTG52CWCzhVa19PmgB14Cjr0G+qunQf63\n/+q+Xbls6dkBgEeLOZGL9EQtEA4D+Rno33kU6BuE77o/nsVJzDNEAcWuXjO8Wuehs6K7XzPQeHl5\nf6B+4UoxVkAuAx/jSYaiW6IEEgjy0GRhuVTZPINBd6tIoFxmpU2icSNpluZzbH82kGvegfR/ey/G\npxxydexju3rhu/1e6P/2TVZcs8CqhpP1bwJ9+idskM0CIj4/yA1/2XDfDSFKGHG3nGsYbjhs3t9C\n3plAuMVBWrGmItLvw1LpwMy0J4EAC0UG2P0Jhpl7MBoDBlc0d7xEF/ueiYcC8berp/X2BbPAvLvF\nlgpInD9lzOTqD+w0NM06B56URnc/5Thcf2YH9J98n1suNovLLUPfXisJMDQX+oufgu7/zSxOYAFA\nkEt3r2S5CLcY6+5HnSwQG+jICei7n5LcYj6XDH03zUU0ZItImkvRDDWV0d0LalguVTbPoO1+Ollc\nckdRkTQral7ZQHx+q0unAciKNfD/n/ew0FlhFQ9fYH5vvLjXWoGodTfGLSQ3iz0aZ2TKz5k4ZfGL\nlgb2sGwPsLiNZeISDweCVGSrIhhk1+1z/y9In1TXzcvxrv1j+G77mEkkwjKcB70FWACWy5KB7Bab\nJ1BdZ24QOQs8y59m3zgEevKoGasvttnzC9boLBgEsS9GwZBVbBbbCFeC9GRGQmHQ0VNsMW7WbbTQ\nUMgDoTBLcHNyiwHsHBssjvQXT4L+5AngosvZtj4/oGvMFXVgP+h/PgtyyZut19iiuRTZMQI8sU5Y\nLk4LfHevYbnQaoUdz56P4XRfRPBCJMYIqVJh5DpL3aMGa4ZBfm8zyMUbQX/UA4ye6iC5cCITlkuX\nS8UO8ZvNTbNzdnKLXf57IN29ILzvSlPgJEpicStxhWzkImk9zZC3HaQnZalsYFQ2n4cESkBZLu2D\nSEKbR3IxnnpzJrnQiTFmXhMf6O5dtdtUq8y6yU3Vai5c0Key3x6QLBdbrwmjuu8iJ5f8DHNDicxy\ngLmzfD7Tj+3lHEtFRvaZUXYt/QEWhvvcf0D/5D2gP/sh6K4fs2OIBcaeRBnm1XxjUuVjp5LrXb3m\n54ZbzHY/65T0J9GYabkU8rXZ4bMEicTge9/tLOFYLHYNos5ahjjv8dNAIumaUU8SglwmjeZ3NWMC\nAZDzL25tHpxcfH02q6cOubS9W2Q4AjJP5KIsl3ZB1lzmC8LlMjNlhp1mx0HWngMajTl3yxSLZCHv\nkKEf5H3YpZa0gCToOzRfApoP1V1goIUZ5jKRW/Nqms1y8aC7CLIdGwFWrjHLnYgn6uWrmT5WKbOF\nrViw7reYNwk8GmfaCOBccp1bLpRSM2xazNXn4yXjHe5Lhuc5dPWYFRlc3GJtg1jsfB22XMplM8Ta\nCcJyEe6zdp8zJw1/Xz8szlDh1jT6IckPae3tFun7P+5qXrtp17Hn5ahLEdEYC9+cT7eYsFyqVdY3\nnVJWTqM3DfT1m325ZciLWU20GH9td40ZbVvlqBdJB1jslovIeQiGrOVf5AXbyznK/dn9fvNJXTyA\nDCxn4aeVsuGSsbRtKBadS4G4ucWqVWZ1VbnmIsbJkWA20OO8w+WyVUAgwCovF/LOVYTbBCNqsVNu\nMdm9W09v4EELVJB9m621xpYLu8YkEJDai7c30pRcdDmI0I3mGIpc2gRW2ye+MCwXgLnGZqbZwtWb\nAuntBzJjtS4ueZGs0VxcWh3z4olEfvJcQpaL6RYLAdUqqK4xAV8mFw/naBHqheYCMP9+OMJyS6Yn\n2RO2IA9J0KfcLQbAqgeEnQV9AEx3EfqQuH8iCtCJEE+8AfQPgUS4oF/Ms3GdDF3t7jS5SG2A67mE\nDMuFk0u7CTUsLBcbufD7QmR3mPi/1y6XiwCKXNqJeGJeycXy1DszJTVe6mOF88qlWstK82C52CPG\nSoXaBU4mlyVguZBo3DynSoVrLn6QYH3LhZZKZm8VOX8lEDQX05kcu37JbvYAUJYsFHu0mCQKCziJ\nvsYiOpmt1Vxi7uRCjx9hocJijqIiQyfJRVgTHdJciOgyCdRPHuSai7BcSLvdYokkyH/5b4j8njWF\nwij06kQubXaLzScUubQTscT8Cvq6zXIRkWK9aRBRlTVjc43JhGTXXCQXEKUU2kP3gu79lSE0WyD3\nmlj05MIjh4QlVy6bOoa/vqBP//070P+ZJftaSFlk6IMHfQhy0XVgasIU0O0Z+hFJcxFwc4sBoJNZ\nyXLh99PFLUarFeD0cZAVa9gbQYlcOukWExFNnbJcAPPedbu7xUgozBbzDlkuhBD43v1XCKxeV/vZ\n5b8HXHCJ+YZhucxfAna7oQT9diKemF/NxdI7PWfma/T0mZ0LM2PAqrPMjeRF0vbURIJBlvFbqbAn\n7P17QZetYpnjNnIhcZ4dvPZs5mpZzMhzQV9cj0qJkYAXzWUyY2pbkluMiNpiYv/hqJmoqOumpVC1\nWi4k7JFcuqyWCwkEQCl7diTxJLs39jmfOs5cqcJyCYaAaZaASzppufCcD+IUmNAuhEKMnBuVPYl3\nmeTSbs2lDny33Gl9Q7nFFOqBxObXLWZxqQi3GCHsqZZbLjRja9larZo/Kqc8F4A9gfPqukwjKNbW\nYbr0LfD97T+ArD67+Qz2BQRaqZiag9wXRKsyzSTYIFqswoMpdN1quQQkzSWfAyJRkKSUf+HkFisV\nzVwii+bisChHY8xayU0ZSZRGjS2uuVC75cLFfMNyCQRZsyl5Pp3AirXwffDvWP5Pp8DPvWEYbjxp\nRj92MkKuEYTV5LXL5SKAIpd2Ija/lkuNoD+RYaUfAgHm5/b7gayNXLSqUTWWJG0lP2RBXyToTU/y\nLPHaEiTk/ItZHshidosJay8WBzFCWktmtJgII3WpAG007KpUrLXWRPkXcYxIxJrc51RosiRHi0ml\neRwy9AkhjGCKebMKcyPN5cQb7JyGWKgqkZ+aO2i5EEJALt3kvaNjKxD3rpHlInJdgI66AhvBEPfn\nsS5hu6HcYu0Ed4u5ljbvMKjFcpkGzY4Zdc6Iz8/+b9dcKhWQ1cMg774FEE+wAkZkVBl0QrJcKAWS\nLr5sXjWY6rrZ1nUxIc/JJRo3LblK2XSLcWGdFmbgeIfFPSgXrXW9/JLInGfRYkhI5BKOsM85uVBd\nt2pb8lO12wIUjQF5Hu0lk5lLtBg9fgQYWG4u8vJiP4cuoo5AEGsdzQWQXIaAtRbYXENUQlZuMQVH\nxBPsCXe++prYLZfsuLWmUSrNCIfDSLgLBkFWnVVLBkaeS8XqFisVQdx+iM3kgSxE8HIolmixcskU\nycUTvSAhO0SIcqnItBrh+vIHzFLtus60FLk4ZCjECIFn6FO5aCX4w0Gjp9tojCWAuoYi21x52TFr\nzxbZJTOfLqJ2IBRm18ChJbAFwnIJR62h9XMN8b1aQoK+Z3LZt28fRkZYJms2m8W2bdvwyCOPOHaY\nPGMxz1n6FkE/O8YigQbMrnEi18WAqEXmFhLq4BbD9KQlRLYGi55cTLeYKeiXGXGLXCbA0lDMAnHe\npRKzXAZ4hrisuQAszyUgLX6BIOAPmpZLQRStlBZ5cWxXcombbjEpMY/Eu6xzE5jJmSVQAKuYPI8u\norYgFGYu4UbWs7g281CS3oLwGRyK/Oijj8LHb9TXvvY1aJoGQgi++MUvdmxyiw1EPCHOl+4iQpF9\nPuDASyxq6MJLzc9TaSA7zlwugLnYuDU/CvC+GLKgr+tMNHYjF9naWYwQ5CIL+pxciD/A3BbBkLvl\nYpBLAahWQAS5yNFigEkawrIJhbnlwu4hFeQlX+dY3GoB2cFb8taUqhE5MvZ7kps2F1fAHO/3L3ph\nmaQHgRUufVxkCHKdb3IR34dO6lBzDM+aSyaTQTqdhqZpeOGFF/DII48gEAjgb/7mbzo5v8WF2DyT\ni7Bckj3M0ggEgXMuND9PpZnLZGqCVU8V492+0EFJcxGWi4Cr5cK/Uos0YozKmovhoioZSZQAzN4q\nThALuLBe+5cxsg+HaywXAECyi1mYwRCoP2BoNpSX27e4H6Mx50gxDhKJsfmLkvtG+ZdatxitVhgB\nyj18BKFEY/OiGbYT5L23gtirUThB5AB1MjrOCwS5LSFB37PlEo1GMTExgf3792PlypWI8C991UsB\nvzMFhluscTOlToAKy0VEIZ1zoSWbm6R4GQoR1681sFzksNvJrPmUDViL7Tlt49QHZjFAdovJgr6I\nFgMY8TTQXIyGbbEEfP/Xx0H+4O31LZdgiH3OyclIxpXdU7IO5IRozPzu+XmEYCDAHjZ8PqvlIipn\ny24x8ZCx2F1i4NWMPYjjRoTkPFsuZPlqtn7MZ6PBNsOz5fL2t78d99xzD6rVKt73vvcBAF555RWs\nWDE/FTcXJPhTEJ3JOUcSdRqC6Hl5DbL+TdbPV7JoMHrsNZCzLzCtCzfNJcyLcU5NMHJZdx7w8gv8\nM+dFjgSCzgl7iwWFPDvncMR0M1ZKNnLhwrkTxHmLTPdQyHBN0lPHzHGirEuym12vUIi3UGb3RMuy\n0j1yLw7SPwRa78ElGjeDSQJBkI1vA1l3HnPXSvsGYFpWslssuHTIxTPiC8MtRobPh/+z35zXObQb\nnslly5YtePOb3wyfz4ehIVZlM5VK4dZbb+3Y5BYdRPSPWFjmGCIUmfSkQAGQCy61Dkj1sx/TG4fZ\na2G5uDzhkXAYWHUW6G/3sAixVWeBGuTiYrksekGfVQQmPh9oyFb+RXaLuVkuRk8dbrnI2oVM4uL6\nJSTLJRAw7qEuovpkcrnxfSD1PAVyhFcgAOL3m50UA7b8oxmeie/oFlvkkWLNgFtujl0oFWaFpvJc\nli83I4/27dsHn8+HCy+8sM4WZxZIOMzcHMLtNNfgYjB563XA+Rdby7yAJ9qtXgcqyEUsVH539wE5\nbwPokz9gL6Q8GLJUBf18zhTAA0Fmxch5LmBhykYLXTtEKDK3MIgc/SNpLoaW0iW7xQLGPdGzGfae\nlG9CgqH6Qrucm2K3RgNB726xxZ7j0gwWSrTYEoRnzeW+++7DK6+8AgDYvn07PvvZz+Kzn/0snnji\niY5NblEiPWj2h5hjGEmUXT3wbbrGUZQlq9YBx19nYct8sXGNPgIsXfhIb9pcjBrluSzSsvtU9HIB\nJ+Ng0Fq4Emgg6HNB3rBcJPehX/q5ifwV3kcF3VwfqUqWS3dvc8K6vEDa76m0bwCmey1eG4p8Rj3F\nR2PMOhyo01RMoSV4JpejR4/i3HPPBQD87Gc/w3333YetW7fiySef7NjkFiNI/9C8Wy51q82uXscW\nmZNHG0eLAcA5683M8p6UmZnvUIKE7UtUDfYW6KHv+jG0bf/gaeycQCIXAIwcyjxazIugL6wDQS4h\nF7cYJ2dy4aXwPfQYa6AVMKPF9Ox4073PLcUmG1kuDuRiZOqfQW4x4vPBt/VLIFe9fb6nsuTg2S0m\nmkydOnUKALBy5UoAwMyMy4/MI3K5HB566CGMjo6iv78fd955JxKJ2qzarVu34sCBAzj//PNx9913\nG++PjIzgM5/5DKanp7Fu3TrcdtttCNR5Eu840kPAc/8BqmnM5z2XqDYmF7J6GBQAfeOw2aGunuUS\njQFrzgZee5UtdsluRkxulkuz0WKvvQq8+pK3sXOBfI5pUwKi1bGmm26taIy1IaiUzeKQ4L8RQ9B3\n0FwsocjmAm5YCv6Acd20iYypl3hFXcslaC1cmZtmY2T3ppjrmWS5oMPVmc9geLZczjvvPHz5y1/G\n17/+dVxxxRUAGNEkk57CdFIAACAASURBVMkGW9bH9u3bsWHDBnzuc5/Dhg0bsH37dsdx73rXu/Ch\nD32o5v3HHnsM73znO/Hwww8jHo9j586ds5rPrNE/yPzz9urDcwCqCw2lDqkNLmMLytHD5kLYoGkT\nueTNLEQyGjcr+TYQ9KlXzaVStjbVcgA9cgjatn+oqerbERTyVgsgFJLcYvw6iZBzu2tM01jFA8DF\ncnHIc5EhRXTp2bHGFX3tkPWZGsvFLuhPA/Gk1e0mHgyU/qDQBngmlw9+8IOIxWJYs2YN/uRP/gQA\ncOLECbzjHe+Y1QT27NmDq666CgBw1VVXYc+ePY7jNmzYgKjNXKeU4qWXXsKmTZsAAFdffbXr9nMF\nImo1zYdrTFgudWokEZ8fWL4a9MQbZmRTg3wA8kc3wPcP/8IWIiFAuz3tNRktRitlo5Ww65iDLwMv\n/NqsEtBJ2N1ikaiZcyI0E7f6YrbCoQCseSmWPBcHcvH72bWolEFz040r+toRqW+5oFoBnciAzkwz\nzSWerB0DKHJRaAs8+4+SySTe+973Wt677LLLZj2ByclJ9PayH1FPTw8mJ72H8U5PTyMWi8HPf7Sp\nVAqZTKbBVh0Gd2XQsdNzn+uiNchbEYjGWH2wqrfxxOcHwnxh7E7xPBCXBajZaDEh/Feq5jEA0AP7\nQZ/6d5C/vssMmS53tiAopZR3oZTcsl09Zj02fp1ILM5yU+z1xeRzFiV2gi7k4lQ2389DkQWJNm25\nNBb09Uf+kRUznZm2RooBZ6xbTKEz8Ewu1WoVTzzxBJ5++mlks1n09vbiD/7gD3D99dc31Djuv/9+\nxwKXN910k+U1IaSjZSd27NiBHTt2AAAeeOABpNPplvYTCARct6W9vRjx+xGdmUKyxf23igJ3yfQN\n9MNXJ5x0ItkFLZ9DPBrBJIDe/n4EPM5V3/KnKF+wARGX5Fk9FMAogEQ4jJi0T7drlgFFBUBfMgGf\n1N8k97ODmPn10+i/8z7kw2HkAPTEogi2+ZrK89ILeYzqOuLpfsT5e5MDQygdfhUUQDzZhXg6jfKy\nFcgC6Ar6EZbmo/kAW0MD9A0tg49ngesBH0bBenf0DwzUzGUyHkeF6ugiFFkA3avXWvbfCFRPQQRI\nd6fSCEnbZqMx0EIe1dGTINkxkGQ3AstXoUcao0fDyK49B91vusL1+1Dvuz+fWKjzAhbu3Do9L8/k\n8thjj+HQoUN4//vfj/7+foyOjuLxxx9HPp83Mvbd8LGPfcz1s+7uboOsstksurq6XMfakUwmkc/n\noWka/H4/MpkMUqmU6/jNmzdj8+bNxuuxMftS4A3pdLr+tn0DKLzxGkot7r9VRLkYPD4xCTJTcB2n\nUwKan8FUlj0hZ6dzIM3Mdd0FyLmMp0X2NJ+byCIvjXG7Zhp3LY2fOglSNp/8df70Pnb6NCi3ZidO\nnwLpbu+PQZ4X5VnxMxQo8Pf0cMxwi80UCyiMjYHyeU6ePAnfSqmFgYMrdHx6GqTE7gvlWfE0FHa8\nFrqmgZZLmDzyGgBgivibuy8AKytTLGByZsayrUbBggxy08zqyk1BX3N27Tz+/lOYAACX4zb87s8T\nFuq8gIU7t1bnJec71oNnzWX37t34yEc+gksuuQTLly/HJZdcgg9/+MP45S9/2fTkZGzcuBG7du0C\nAOzatcsIFvACQgjWr1+P3bt3AwCeeuopbNy4cVbzaQvSg6Cjp+b8sFRrrLkAYHpJudS4KnIraDbP\nRTTUqtqiy8T2WsV095WY8E/L9QMAWoZctFJAdk0J96FRdt+muTi5Ai0Z+vzn5paA6g8CmgYq3GLN\nai7y3JzcYnKQSbVaq7koKLQRnsmFeqkw2gK2bNmC3/72t7j99tvx4osvYsuWLQCAQ4cO4Qtf+IIx\n7t5778WnP/1pvPjii7j11luxd+9eAMCf/dmf4Uc/+hFuu+025HI5XHvttR2ZZzMg6c7lutCprJlh\nb4fQUBr1sAiF2UJt5Lm0kVzEAuxVcxGkUraRi3hdqZrzLBdBX/kt9Dv+zFyA2wlOFpZoMXmBN8q/\nxCzjDYhzJvz6B0NWN6+4Nq6RdjzRcTLD7qHcBtkrxNxtEYMkEKxtYqfIRaGD8LyqvPWtb8WDDz6I\nG2+80TCnHn/8cSNSq1Ukk0nce++9Ne8PDw9jeHjYeP2JT3zCcfvBwUH80z/906zm0Hb0DwK5KVB7\nWGsbQP/9e6D/+Uv4//nLtZ/prI9HQ90qFOLdFYXl0r4eEiyrPeSdXAwSsVsu/LVkudBSkQnRlTIw\neqp5wbsRhEAfk0J6u3vMNrhiwQ5HGYHkbYK+KAQaj7M8EnupFkFOrtUNOLlMTcDX3dtaZ0SDXGz3\nVL7HIW652gV9BYU2wjO53HzzzXj88cfx6KOPIpvNIpVK4corr8SNN97YyfktSpD+IbYgjZ2uqe81\naxTy7iX9q1VriRE3hCJsweZupnq1xVqCvQJvPVQakEu1KvWlL7F/AJBrf3FQI+RYdos5WC6EEF4C\nxta3R5B1LMnIxV4e39fILeYHNBYu7O/tQ0u+AkEuTm4xgQsvBfb+CkRZLgodRF1y2bdvn+X1+vXr\nsX79elBKjafjV155BRdddFHnZrgYIXJdRk+1n1yqVaBcAtX12hau3HJpCLHoCY2h3RUNAgHvmkvF\n2S1GZXKpSpoL7y1Pp6faH+rNG3RZyp9YNBfJkojGavNcxDmLSsO2lrWEELYPt8ZUos3x2Gn4Vq6B\ne+aPO0iUh0k7lX8BAJ8P5KLLQff+SrnFFDqKuqvKv/zLvzi+L4hFkMy2bdvaP7PFjHTncl2MzPdK\nueYJmFarjcV8QCKXHEB87S9TEwx6L/9Skc7H8r5wi8nkUjQJYKo2tN0O/Rc/BV7dB/KXt5l1s+pB\naBKyJhKJGm4ky3WKxc1WxAJinsKt5lTB2O8Hqae5AMDp4whs+oOWyMVsl+tiuXT1gGx8GzByAlh3\nbitHUFDwhLrk8vnPf36u5rGkQOIJtsCMdSBiTJBLuVTrXpEbWtUDJxean2m/1QLUFkl0AdU1U0+p\nlK1E7OgWK5oEIMqr1MNLvwF9/hmW9PlXdzTWooTLTSIFQgizXkZPWa0Bp+KVosp0PMkbgDlUMQiE\n3DPgxb3QdQRWrkVLMXGu0WKcXLtTIPEEyLtvaWXvCgqe4TlaTKFJpIdARzsQMSY/xdtANW+Wi1Go\nL5/rGLl4qi0mu87slosRolwx91UqmZaLh4ZstFoBiA/0lz8H9v6q8XzKJRYQYb8mvLOnpR9LoqvG\nejLmKWqPOVguvvf/LcjmdzkfXyKvwMoW3anxBCNTu6UmXve454EpKLQT81g+eIkjPQicONL+/cqW\nix1yz5F6EKVH8jNtjRQzEAx5E/RlQrGHIovzlN1i5RJo0dRcPO1/aAVw8ijo6KnGLspKuUYnAWDq\nLnKwRF8/8Ns9Fv2xkeYCAOSiy92PL5Gaf+UaIO+eCOsG8rbNIIMrQOxWE99308UwFRRahLJcOgTS\nPwiMjYCKGlPtgvwUb0eTbjEUZrwFADQLewVeN8iEUmO58POT3WKy5uIlWqxaAZJdLEqrXu95+ZgO\nriwiIsbka5XqZ3OW3XPinIVQXq9rpBPE/nv64Iu11g2SdPWCXH5l7QeGW0yRi8LcQJFLp5AeYotN\nu5P9DMvFwS1WrTYXLTbTObeYJ0G/WodcKpLlwisP0LLkFpvyQC6VClvg48lZkQu6HdxioueLnPUu\nSJBbLjXWQyMIAli2srntmtm3cospzBEUuXQIRiOudpeBkVxENdBbsFw64hYLegtFLtdxi3Gykdsx\n2y2XhlUjKhV2fvEkI9IGoK7kwhdk+doKchmXyIWfMxGaS7PkwvdPlq1qbjsvMNxiilwU5gaKXDoF\nnutC2x0xJi+0NngPRebuGkrnNVrMQkA1tcWc8lyKRp4LqlWTaNxQ5Z0i4wmzZ3w9uLnFBnmhvoRU\nVLWPkQu11OtqLOjXgxFI0EnLRbnFFOYIilw6hb5+ViKk7ZYLW8Cok+bi1XKRQ5g7oLkQz4K+dA6S\n5UIpdSz/AuEWE2VLGkWMWSyXWZDLuRfB949fAhmS2gzEk2zsuAO5xFsjF5FfQ5avbm47DyDnbQD5\n/f8CrFjb9n0rKDhBkUuHQAJBRjCnT7R3x/XcYlWv0WLSAtqgC2VL8Crou4Uia1WzXbBcuLJUYNYL\nT1JtSC7VChAMsjInHtxiKJddCYHY+tkTQoBUf63lImfgO0We1cP5F8N3693AOeub284DSCoN3198\nCKQT91tBwQGKXDqJweWgIyfbu896gr7mtfyLXAZ+Pt1iLoK+rL/IlgsX8Y2F3ovlIgT93CwEfTek\n+q2CfqXKzl3sI9ic5kL8fpDLr+xowzwFhbmCIpcOggyuAE4fb2+7grqhyNXG5fbB2xYLH/w8RosZ\n9cP8flCZUGT9RdZcxLkLPauh5VLmbrEEUCo0Tuwsl5qK8CJ9NnKpmm44cs07QTbUyWlRUFjiUOTS\nSQwuZxqBhzpYnlGRSqHYQDWPociA+XTdqWixZiyXaNxKKGU7udj2JSyXOiVgmG5TZXMRGk2+gWus\nacslDUxNmCSpMcuF+HzwvfdvQFau9b4vBYUlBkUuHQQZ5ALw6eM1n9HjR6B98h5QLzWyxDa6BlCe\nlDmbJErAFPU7Zrl4EPQFicSTtoRKiUykPBcB0tXDSKCe5aLxayUEfaCxa6xpchlgf7Nj5rw7cT0V\nFBYhFLl0EgPLAADUQdSnrx8AXn0J9Nmfed+fvGA7CPrUq6APGIsoaXcvF4BZC1Q32y67QVgrsbhN\nf5HOTWToyzpRJAoku0GPH3F3dYl9B0OskCjQWNQvl5oS4UmfLddFuMUUFBQUuXQUff3sSdYpYkwk\nCf7ip941GXkhdchzga55714oFtFghywXoLFrzLBcEjZysVku1SoQTZjvRaIgV/w+sH8v9K1/yzpU\n2iGIOBAE4jw/pU44Mq1WAV1vznJZvhogBPTAS3wfynJRUBBQ5NJBEJ8f6F/maLkYC+up48CB/d52\nqJmLLp1NKDJgLqKdsFwEuTQS9UVGezRuy9YvWcdoVUvrYYQj8N3wlyA3fQA49jr7V7NvYbkEjbyT\nuomU4pjNCPrJbuCc9aDPPcPeUJaLgoIBRS6dBo8Yq4FY/MIR0N0/97avRm4xr50oAUnQn0fLpcLz\nSkIhKxHJ24nAhbjVcgEAspyXSdHM66Lv+Q/oT//Y3IcIRQbqJ1K2QC4AQDb+Hqu6fOINHvqsyEVB\nAVDk0nGQwWXA6EnmdpFRLrMM/lVnec+FaeQWq7Yi6HdIcwFc64vRqQnQkRMmuQRDrnkutMjPM1ZL\nLiaJmdeW/uInoDv/l3nsQJCN9/vray6tksub3spcY889oywXBQUJilw6DHLWeWzxO/w76wcVLh53\n9XhqfAXAJBdCLOSi/3/fAz32Og9F9kYuZE4sF+eIMfrEv0LfttWVXIzQXp/PqCVGZLdYyBbpptks\nunLJ7AoZDLKkxFjCk+VCmsyqJz0p4OwLQPfuZueryEVBAYAil87jgktYkuC+563vcxcKSXZ7z4MR\ni3U0ZiyGtFIGfeJroL9+moXfehb0hebSidpi9d1idHICGDttNucKhoFy2QxsEOQSMc/TaN8bjoKI\nRFExd5nEirxEjNiHWOwbZem3aLkAAFl7DnN9KstFQcHAvIe25HI5PPTQQxgdHUV/fz/uvPNOJBKJ\nmnFbt27FgQMHcP755+Puu+823v/85z+P/fv3IxZjfck/+MEPYu3atXM1/YYgsTgwfAHoi88D1/+F\n+UGlxBbVrh5gZhpU00AaWR1y1V1huYg+7sVCc3kuRomSDiyGvAAj8jOguSnojz0C/faPmp8X80Cl\nDDqZZYsxD12GpjFrxEiujJmVj4XmIlxigGG50GrV7DJZLrFrI2suAJBIgtZLohTHbIFc0DfIXHmZ\nsc6Uy1dQWISYd3LZvn07NmzYgC1btmD79u3Yvn07br755ppx73rXu1AqlbBjx46az/78z/8cmzZt\nmovptgRy0eWgT/wraHYcpLePvSmKJCZ7WJHG3FTjcugyuQhXWoGTS6kIqlWbCEXunOVi5PeMnACZ\nngCefxaVQ68Aq85mnxfy7O/YaXYuwhVVKdeSixgbcycXOYoOxQIjGDlaDGCWi0h2dMJsLJf0ICjQ\nuf44CgqLEPPuFtuzZw+uuuoqAMBVV12FPXv2OI7bsGEDotGo42cLHWTDZQBgcY1R7hIiXbzLoRfX\nmHD/xBOsnzylxuJLiwWmPXgli3AHNZe+frbInjoGeuIoe8/uugJYXa5g0CzwKJInZXIp2QR9S7sA\nB22nXAIoBRXiPV/sSSxRt1zMbMhF1DoDoKLFFBQ45p1cJicn0dvLnth7enowOelR3JbwrW99Cx/+\n8Ifx1a9+FRUvHRDnGivWskZTr71qvmdYLt3s9bQXcpE6HVLK9mG4xfIsCdDv8ZZ2sLYY8flZRehT\nx4GTjFwsmfTCGtE0LujbosvKZebeC4UNciHRKAtkcLJcOLlQXTfJSIj3wi22eh2QGQM9+prjnI3+\nOM32YAGA9EDtnBQUznDMyS/h/vvvx8RE7eJ50003WV4TQpouN/7e974XPT09qFar+OIXv4gf/OAH\nuPHGGx3H7tixw3CrPfDAA0in000dSyAQCDS9bWblWiAzihTfLgMKxOLoWnMWxgEkdA3RBvssRiOY\nBBDpS6MAoC8ZRzngxySAQLmIKoBYsgsJD3PLp/owDSDZ09vwuK1gYvVZqL5+CCQUQhWAT9eRTqdB\nKcWI1EEyFE8g0teHKQC98RgC6TSmA34UQmEEY3GUuRXTlerDZDiCYFc3evl89XAIowASkTBi6TRo\nsYARvt8Y1TADIDUwAH86Df2dN2L0+19DePfP0fWmK4zji3uZDwUxDSA1tAz+VPPXY7S7F/pkFtFk\nF5JtuJ6tfMfmAmpezWOhzq3T85oTcvnYxz7m+ll3dzey2Sx6e3uRzWbR1dXlOtYJwuoJBoO45ppr\n8MMf/tB17ObNm7F582bj9dhYHR98HaTT6aa31XvToC/vNbbT8jNAIomsxgpRTp84hpkG+9SzWQBA\nkbu+xk+eAD3NcmSqk4y886USih7mppeZlTBdKDQ8bivQewdAf/W00QJAK5UwNjbGLATdrDlWphTV\nIiOQ7MhpkEgC+tQkaCCIMr82ADCVz4MGQ6j4/MY1pJykcpOTyI+NgU5ljfH5kdMAgMx0DsTPxpMr\nfh+FXT9G6Y9vAomyABBxL/XMOBufmwExD+v9fFP9wGQWhUoVpTZcz1a+Y3MBNa/msVDn1uq8li9f\n7mncvLvFNm7ciF27dgEAdu3ahSuuuKLBFlZk+YJLKcWePXuwatUCjdYZXA5MZMw6WCLHIxpnrhRP\nmoutR3upaLqYhHvMo6Av8lw61plwaAVz0wmXlZh7MW+dRzDs7BYLhsye8gDgD4C89RrgYun7Yc9z\nkStF291iAMhV72CBD88/Uzvf2USLgYn6bE5Kc1FQABZAtNiWLVvw0EMPYefOnUYoMgAcOnQITz75\nJG699VYAwL333ovjx4+jWCzi1ltvxa233opLL70Un/vc5zA1xYTaNWvW4AMf+MC8nUtd8AgqjJ4E\nVp7FGlMFw8wNmOzxRi4VG7mUSyapiDBbz4I+F8Y7UVsMABlaAUs5TiG6F6zkYhH08zOgmTFGoqGQ\n9Vz8AfjefYt1W3ueS8l0t1GR0yIv9muGGSGdOlY74XIJ8PuthNYMhO6iNBcFBQALgFySySTuvffe\nmveHh4cxPDxsvP7EJz7huP19993Xsbm1E2RgOVtsT3NyEQmEANDVU7erIj32OiMfIejHk2xfpZIZ\niiwSED0L+pxcOlEVGWA11STUWC6hELNQQmHjOujf/TIwmQWGzwcCIetC7bBoE0IYwdS1XMztiM8H\n9KaB7HjtfMul1sR8AWW5KChYMO9usTMGUu4HADNaDGARY3UsF/3xf4X+2CPmIipKoZRLtZaAV8tl\n+HyQd98CnHuR1zNoCiQWZ3k7Ca6hCXIR8x3g5COSKAEWWZbPsb+hxuRivG9YLv9/e/ceHFV9N378\nffaWO5vNhQR4AOWmVDHWCVYDJiKR+VX6exoZYECqjcVqf0mgA2q1nUenM5SB5wGMheIjZbwgtVRo\nJdQ+0/FXRMJU6pAiVMtFDQqF4ZKEzZVNSDZ7nj/OnpPNZZPdsHt2xc/rH93NOZvvng3ns5/v53sJ\nWG+trUXLRPp2E7qytOyor3A3CuvD6BaTochCABJcTKMkJWtBRF+k0tsTXJRB1hdTVRXO1GqLLurd\nYvps9c4OVD1z0YVac7HZsMwpQYniN21l8i0o37gdoGfhTn8RXsn1Bxd9+ZdADZe0axPYZRes+65X\n5hIQXDxtWvbTt02uzIEnU15jcGGkv8jpHyggxNddzLvFvlZyRqPWndcCRmdAt1iaE1qbUFW1/1Ds\nZrcWeBSLFlwUxVhnS73a0dMtpgt1+RcTWJ74Caqqotb81chcVD1z0YOLvnCl/v/GzPpwMhf/awcG\nl3YPpKb1Pz4jC5ouo/p8PWuU4d8f5xozF8vTa+DGycN+DSGuJ5K5mEjJHqXVXPquezUiXeva6Rso\nAP71hfZf1QeeVq0bSZ9dH1jQ18VRcAF/XcRm66m56MElp39wUfLu1G7+0L9bLFh3X7BuMRgwc8GV\nrU3e7NsNqdd/roEy5RaUa6nbCHEdkeBippzR/kzEvwyJUdD3z9IfoO6i6sEFtKK/zaZt+aso2uu0\ne3pm+cPQi1/GQmAA8Bf0lcDgkpKKMqMY5f/MA//Cj4qtz2ixYJlLsG4xGLD+Yazt1rdrrPNqz+ch\nhLhmElzMlJ6h/dftn0furzUYxeCAIbLq+X+hfvkZ6tme4EJLE9js2tyU9ExtWLPnijYCSheNhSiv\nldWG2hWQudjs8G/jIe9OlElTUSwWLKXLUcZPQhk1Tjsu5MzF3j9z6buZWCA9M+pb1L/WmosQopc4\nvBNdv5TkVG0IcbN/Jrn+zXr8JK3rqPYEyu3a6s6+N36ldYk5ErR5LZ42rfai3zCzc7UdLDs84MqE\nf53Sng91VWQzBdRF6PBAUjKK3YG14j/6H6tvXWy3h1Zzsdp6Bgtc7dCuT1KKNnBgoC4qVzYAamMD\nvapbnVfBEX9LdAjxVSWZi5n8Q4jVJj246LPkHTB+EmrtCe3nHe3aIpddndp8DX24cEuzcZNVsnPh\n3BlQVZRemUscBpfAANDePuiIKmM/FHtCn9Fig9RcArvFEhN7alIDDQtOTdOCzgDdYopkLkJEjAQX\nM+kz65u1SXyBW+oqE6fCmVptKf7a4+DzocwvhdwxKPkztIM8bb0yF2NGul5HgPgMLja7UdBXOzza\nDpPB6JmLI6FPt1iQ9xWYFV3t0CaHGtsgD1BzURTtekm3mBBRJcHFTHpwMTKXgOAyaapWOzhTi/rp\nP7W1tO59AOuq/0a5aVrPa+g33Ozcnucy4jxz6VvQHyxzSU5FeexJlJnFPcHBZgu+WnZAQV+92qEt\na5Oorz4QpEDvykIdsKAvwUWISJHgYia9W6zZrT0OHJ008WbtZ7UnUD/9BG6cjKKv/6XvHw89m19l\njzKeUkakG6sPx2fNxd57KHLi4Ju+Wb5VhJI5sieQDrb+WWDg6vQHl0EyFwAlIwsu12v7vwCqr1ur\n0QyWUQkhwiLBxUyJSVoQaB4gcxmRDjljUN//HzhTizIlIFsJXMRRv+GODMhcklJ79q2Px9FivQr6\n7cZy90NR+r7nAV87YLRYhz+4JAyx4vP4SdB0Gd9/PUt3Q512HsjseiEiSIKLiRRF0bIXPXPp021j\nebhMWyHZ50O5Lb/3efqNT89cUtJ61hhLTunJBkJduNJMfYcih5oh2EIILoHzXPyZizJU5jJrLkrp\nj+GLz2j//1U9EzsluAgRMXF4J7rOJadCW/+9RgCUm6Zh/Y8XsLz4Joq/m8zQJ7gAoHeNJSUHBJd4\nz1w8kDR4t1iv82DQ96T0qud0aF2JQ9RcFIsFy4zZkJKKr7WlZ2KnBBchIkaCi9kC6ydBCshKygBr\nYumDAQK+xSt6UT8ppWd/lnisufiHIqtdXVogCDVz0Wstgw1SsAYErr41l6FWKE5OQfW09Sy7IzUX\nISJGgovZ9BWNIbz9Q/zfqnutYjzhJsgcqdUWjMwlDoOLnrl0hNn9ZHSLDVHQD5znkpDYE2iHWvE5\nKQVfW6s29yacdgkhhhSHfSjXN2OWPgwruATeMJXZ/xdl1gPagzjuFlP00WJ6bSPcmstg78nfLaaq\nav/gMtT1TU5BvdLas21BcsrgxwshQiaZi9n0G5h/teBQKXp3WmC3mMViZDJKnBf08Xp79nLRb/6h\nnAdDFPTtWubi7QKfr0/mMvj1VZJT8V1p68mopFtMiIiJwzvRdU6vndgdwScGDnieHlyCdPXoN9Q4\nzFyMJfc7/dsQhxpcQhktphf09UUrEwKXfwktc5HRYkJEngQXs+nBJdzl3fUbX7AitZ65xGNB3+Yf\niqwHl1BnwltD7xbjak/gUvQ5PyEU9H1XWsHj0TZjCzXoCSGGJMHFbHoG0ndr36EkDZG5DNBtFjf0\nbrFwg0vA8i/BX9uqbaSm100CM5cQCvp0dkJrEyQlhZdJCiEGFYd3outcQLdYeOf5g0eQb/FKwWzS\nxk/gSjzuhNi3Wyzs4DJIkNCHK3vaAH89xxFiQd8/ck9110u9RYgIk+BiMiUlRRstNlSXTd/zkpIH\nPU9xZZI0+SauNDQM+POYsvqXaOnq1B6H2iVojBYbpKtPP0afmJqQBKkjAFCGGv2lZ3uX66XeIkSE\nxTy4tLW1UVlZSX19PdnZ2axYsYLU1NRex5w+fZqtW7fS3t6OxWJh3rx5FBQUAFBXV8eLL75Ia2sr\nEyZMYNmyZdjisWtIl6TXXCLcLRbPbDbQF4eEMDIX/941Q9VcQCvMAyQmoeSOwfL0Gph0c/DzCBgW\n7q6DcZNCa5MQEMMhDwAAEr5JREFUIiQxr7lUVVUxbdo0Nm7cyLRp06iqqup3jMPhoKKighdeeIGf\n/exnvP7661y5ovWx/+Y3v2Hu3Lls2rSJlJQU9u3bZ/ZbCE+KXnMZZrdYPAfOYPQ263WRkAv61t7n\nD3iMnrm0aP/1Ly2jTLkFZajBDfo17eyUzEWICIt5cKmpqaGoqAiAoqIiampq+h0zevRoRo3S1tHK\nyMjA6XTS0tKCqqocO3aMu+7Stga+9957Bzw/rgx3tNhwazXxQA8AHn9wCfE9KBartor0UDP0oadb\nbIjl/HtJ7smQZV0xISIr5l+Dm5ubcblcAKSnp9Pc3Dzo8bW1tXi9XnJycmhtbSU5ORmr/xtuRkYG\nbrc76Ll79+5l7969AKxdu5asrOHtmW6z2YZ9rupKpw5ISEkjPYzXUDMzaf9/z5A44z4sA609do3t\niiZPejqtQIKvmw6Hg+yRI0M+95LNTmJKKiOCvK92l4sWIMHbSQeQNWYcSkJomVG3VUGvUCWmZwT9\nHbEQr5+ltCt88dq2aLfLlOCyatUqmpqa+j2/aNGiXo8VRRl0OGhjYyObNm2ivLwciyX8pKu4uJji\n4mLjccMwi99ZWVnDPheAxCQ6VTX817hjBp72q9B+NTrtihKff7+UjsbLYE8Ir40ZWXQkp9EZ5BzV\n43/ty/VgsdDQ0hLykGJVH2AAdCiWoL8jFuL1s5R2hS9e2zbcdo0ePTqk40wJLs8991zQnzmdThob\nG3G5XDQ2NjJixIgBj/N4PKxdu5bFixczZcoUANLS0vB4PHR3d2O1WnG73WRkZETlPUTU6HEwMrQP\n6LpgDBe+EvZABstzLw49Qx+0mktieHNVFLtD656UmosQERfzmkt+fj7V1dUAVFdXM3369H7HeL1e\n1q9fT2FhoVFfAS3TueWWW/jwww8B2L9/P/n5+f3OjzeWZ/4T5d8Xx7oZ5rEF1FzCrBkpjoTBC/PW\ngJrLMOaqGF2MElyEiKiYB5eSkhI+/vhjli9fzieffEJJSQkAp06d4uWXXwbg4MGDnDhxgv379/P0\n00/z9NNPc/r0aQCWLFnCn/70J5YtW0ZbWxv33XdfrN5KyBSL5Ws1G1wJHC0W7hDsoeivfaUlvGK+\nn6IX9ZNkRWQhIinmBf20tDSef/75fs9PnDiRiRMnAlBYWEhhYeGA5+fk5LBmzZqotlFcI2tAcBmR\nHtnXNoJL27C6Gi0pqXQDSqi7YwohQhLzzEV8DQR2i0U6c9HrOao6rG4xxT+bXzIXISJLgouIPj1z\n8fmi1y0Gw+oWs+g7g0rNRYiIkuAioi9w98woBhdlODUXPbjIwpVCRJQEFxF9gdlFpFcYCFx3bBjZ\nh2KMFpNuMSEiSYKLiL7AABDNbrGE8DMX+42TISunZ50xIURExHy0mPgasJkUXIbRLZY4YzZtN+VF\nsEFCCJDMRZghmsHFGrCopQwnFiJuSHAR0RcYAOIscxFCRIcEFxF9Uc1crm20mBAiOiS4iOjrFVwi\nPVosYN0xGU4sRNyQ4CKiL4qjxRRF6QlekrkIETckuIjoC5zoGOluMeip6UhwESJuSHAR0RfNeS4Q\nkLlIt5gQ8UKCi4g6revKn11ENbhI5iJEvJDgIkyhRDO4WG2gKJCQGPnXFkIMiwQXYQ49u4j0aDH9\ntcPc4lgIEV0SXIQpFHuUM5dhrCsmhIgeCS7CHEbmEqWai+zHIkRckYUrhSmiWnOx2XvtGSOEiD0J\nLsIc+s0/0vu5AErmyN6rAAghYk7+RQpTKDYb2B0olsj3xCo/fBLUiL+sEOIaSHAR5rDZo9MlBigW\n69AHCSFMFfPg0tbWRmVlJfX19WRnZ7NixQpSU1N7HXP69Gm2bt1Ke3s7FouFefPmUVBQAMDmzZs5\nfvw4yclaQbe8vJwbbrjB7LchhqDY7FHpEhNCxKeYB5eqqiqmTZtGSUkJVVVVVFVV8b3vfa/XMQ6H\ng4qKCkaNGoXb7ebZZ58lLy+PlBRta9qHH36Yu+66KxbNFyFSbLaoZS5CiPgT86HINTU1FBUVAVBU\nVERNTU2/Y0aPHs2oUaMAyMjIwOl00tLSYmo7xTWy2aMzgVIIEZdinrk0NzfjcrkASE9Pp7m5edDj\na2tr8Xq95OTkGM/t2LGD3//+99x6660sWbIEu12Gpcab5O8spOvSxVg3QwhhElOCy6pVq2hqaur3\n/KJFi3o9VhRl0CU8Ghsb2bRpE+Xl5Vj8o44eeugh0tPT8Xq9bNmyhT179jB//vwBz9+7dy979+4F\nYO3atWRlZQ3r/dhstmGfG03x2i4AW24uCV5vrJvRT7xeM2lXeOK1XRC/bYt2u0wJLs8991zQnzmd\nThobG3G5XDQ2NjJixIgBj/N4PKxdu5bFixczZcoU43k967Hb7cyaNYt33nkn6O8qLi6muLjYeNzQ\n0BDuWwEgKytr2OdGU7y2C+K3bdKu8Ei7whevbRtuu0aPHh3ScTGvueTn51NdXQ1AdXU106dP73eM\n1+tl/fr1FBYW9ivcNzY2AqCqKjU1NYwdOzb6jRZCCDGomNdcSkpKqKysZN++fcZQZIBTp07xl7/8\nhR/96EccPHiQEydO0Nrayv79+4GeIccbN240ivvjx4/n8ccfj9VbEUII4aeoqvq1ndt8/vz5YZ13\nvaW5ZojXtkm7wiPtCl+8tu267xYTQghx/ZHgIoQQIuIkuAghhIg4CS5CCCEi7mtd0BdCCBEdkrkM\nw7PPPhvrJgwoXtsF8ds2aVd4pF3hi9e2RbtdElyEEEJEnAQXIYQQEWf9+c9//vNYN+KraMKECbFu\nwoDitV0Qv22TdoVH2hW+eG1bNNslBX0hhBARJ91iQgghIi7mC1d+1Rw9epTXXnsNn8/H7NmzKSkp\niUk7Ghoa2Lx5M01NTSiKQnFxMQ888AA7d+7kvffeM7YuWLx4MXfccYepbSsvLycxMRGLxYLVamXt\n2rW0tbVRWVlJfX29sUBpamqqaW06f/48lZWVxuO6ujoWLlzIlStXYnK9XnrpJT766COcTicbNmwA\nCHqNVFXltdde48iRIyQkJFBWVha17oyB2rV9+3YOHz6MzWYjJyeHsrIyUlJSqKurY8WKFcZaU5Mn\nT47awrEDtWuwv/Xdu3ezb98+LBYLjz76KLfffrtp7aqsrDTWLfR4PCQnJ7Nu3TpTr1ew+4Opf2Oq\nCFl3d7daUVGhXrx4Ue3q6lKfeuop9ezZszFpi9vtVk+dOqWqqqp6PB51+fLl6tmzZ9W33npL3bNn\nT0zapCsrK1Obm5t7Pbd9+3Z19+7dqqqq6u7du9Xt27fHommqqmqf42OPPabW1dXF7HodO3ZMPXXq\nlLpy5UrjuWDX6PDhw+rq1atVn8+nfvrpp+pPf/pTU9t19OhR1ev1Gm3U23Xp0qVex0XTQO0K9tmd\nPXtWfeqpp9TOzk710qVLakVFhdrd3W1auwJt27ZN3bVrl6qq5l6vYPcHM//GpFssDLW1teTm5pKT\nk4PNZqOgoICampqYtMXlchnfLJKSkhgzZgxutzsmbQlFTU0NRUVFABQVFcXsugF88skn5Obmkp2d\nHbM2fOMb3+iXuQW7Rn//+98pLCxEURSmTJnClStXjH2MzGhXXl4eVqsVgClTpsTk72ygdgVTU1ND\nQUEBdrudkSNHkpubS21trentUlWVv/3tb8yYMSMqv3swwe4PZv6NSbdYGNxuN5mZmcbjzMxMPv/8\n8xi2SFNXV8eXX37JpEmTOHnyJO+++y4HDhxgwoQJPPLII6Z2P+lWr14NwP33309xcTHNzc3GrqHp\n6ek0Nzeb3ibdBx980OsffDxcLyDoNXK73b22o83MzMTtdhvHmmnfvn0UFBQYj+vq6vjJT35CUlIS\nixYtYurUqaa2Z6DPzu12M3nyZOOYjIyMmATEEydO4HQ6GTVqlPFcLK5X4P3BzL8xCS5fcR0dHWzY\nsIHS0lKSk5OZM2cO8+fPB+Ctt97ijTfeoKyszNQ2rVq1ioyMDJqbm/nFL37Rb/8HRVFQFMXUNum8\nXi+HDx/moYceAoiL6zWQWF6jYN5++22sViv33HMPoH07fumll0hLS+OLL75g3bp1bNiwgeTkZFPa\nE6+fna7vl5hYXK++94dA0f4bk26xMGRkZHD58mXj8eXLl8nIyIhZe7xeLxs2bOCee+7hW9/6FqB9\nG7FYLFgsFmbPns2pU6dMb5d+TZxOJ9OnT6e2than02mk2Y2NjUYR1mxHjhzhxhtvJD09HYiP66UL\ndo0yMjJ6beoUi7+7/fv3c/jwYZYvX27ckOx2O2lpaYA2XyInJ4cLFy6Y1qZgn13ff6dut9v069Xd\n3c2hQ4d6ZXlmX6+B7g9m/o1JcAnDxIkTuXDhAnV1dXi9Xg4ePEh+fn5M2qKqKi+//DJjxozhO9/5\njvF8YD/poUOHGDt2rKnt6ujooL293fj/jz/+mHHjxpGfn091dTUA1dXVTJ8+3dR26fp+m4z19QoU\n7Brl5+dz4MABVFXls88+Izk52dQusaNHj7Jnzx6eeeYZEhISjOdbWlrw+XwAXLp0iQsXLpCTk2Na\nu4J9dvn5+Rw8eJCuri7q6uq4cOECkyZNMq1doNX1Ro8e3asb3czrFez+YObfmEyiDNNHH33Etm3b\n8Pl8zJo1i3nz5sWkHSdPnuT5559n3LhxxjfJxYsX88EHH3D69GkURSE7O5vHH3/c1BvRpUuXWL9+\nPaB9e5s5cybz5s2jtbWVyspKGhoaYjIUGbRgV1ZWxq9+9Suji2DTpk0xuV4vvvgix48fp7W1FafT\nycKFC5k+ffqA10hVVV555RX+8Y9/4HA4KCsrY+LEiaa1a/fu3Xi9XuPz0ofQfvjhh+zcuROr1YrF\nYmHBggVR+7I1ULuOHTsW9LN7++23ef/997FYLJSWlvLNb37TtHbdd999bN68mcmTJzNnzhzjWDOv\nV7D7w+TJk037G5PgIoQQIuKkW0wIIUTESXARQggRcRJchBBCRJwEFyGEEBEnwUUIIUTESXARIgQr\nV67k2LFjMfndDQ0NPPzww8YcCSG+CmQoshBh2LlzJxcvXmT58uVR+x3l5eU88cQT3HbbbVH7HUJE\nm2QuQpiou7s71k0QwhSSuQgRgvLycn7wgx8Yqw/YbDZyc3NZt24dHo+Hbdu2ceTIERRFYdasWSxc\nuBCLxcL+/ft57733mDhxIgcOHGDOnDnce++9bNmyhTNnzqAoCnl5eSxdupSUlBQ2bdrEX//6V2w2\nGxaLhfnz53P33XdTUVHBjh07sFqtuN1utm7dysmTJ0lNTeW73/0uxcXFgJZZnTt3DofDwaFDh8jK\nyqK8vNyYbV1VVcWf//xn2tvbcblcPPbYY0ybNi1m11Vcv2RVZCFCZLfbefDBB/t1i23evBmn08nG\njRu5evUqa9euJTMzk/vvvx+Azz//nIKCArZu3Up3dzdut5sHH3yQqVOn0t7ezoYNG9i1axelpaUs\nW7aMkydP9uoWq6ur69WOX/7yl4wdO5YtW7Zw/vx5Vq1aRW5uLrfeeisAhw8f5sknn6SsrIzf/e53\nvPrqq6xevZrz58/z7rvvsmbNGjIyMqirq5M6joga6RYT4ho0NTVx5MgRSktLSUxMxOl0MnfuXA4e\nPGgc43K5+Pa3v43VasXhcJCbm8ttt92G3W5nxIgRzJ07l+PHj4f0+xoaGjh58iRLlizB4XBwww03\nMHv2bGMxQoCbb76ZO+64A4vFQmFhIadPnwbAYrHQ1dXFuXPn8Hq9xkZaQkSDZC5CXIOGhga6u7t7\n7YWuqmqv1XADN2ECLSC9/vrrnDhxgo6ODnw+X8iLeDY2NpKamkpSUlKv1w/cKsDpdBr/73A46Orq\noru7m9zcXEpLS9m1axfnzp0jLy+PRx55JKbbRojrlwQXIcLQd3OlzMxMbDYbr7zyirEV8FB27NgB\nwIYNG0hNTeXQoUO8+uqrIZ3rcrloa2ujvb3dCDANDQ0hB4iZM2cyc+ZMPB4Pv/71r3nzzTdZtmxZ\nSOcKEQ7pFhMiDE6nk/r6eqNW4XK5yMvL44033sDj8eDz+bh48eKg3Vzt7e0kJiaSnJyM2+3mnXfe\n6fXz9PT0fnUWXVZWFjfddBO//e1v6ezs5MyZM7z//vvG7pCDOX/+PP/85z/p6urC4XDgcDjibrdL\ncf2Q4CJEGO6++24Ali5dyjPPPANARUUFXq+XlStX8uijj/LCCy/02siqrwULFvDll1/y/e9/nzVr\n1nDnnXf2+nlJSQl/+MMfKC0t5Y9//GO/83/84x9TX1/PE088wfr161mwYEFIc2K6urp48803Wbp0\nKT/84Q9paWkxtnsWItJkKLIQQoiIk8xFCCFExElwEUIIEXESXIQQQkScBBchhBARJ8FFCCFExElw\nEUIIEXESXIQQQkScBBchhBARJ8FFCCFExP0vvUJXX+ulxacAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4VOXZ+PHvcyYJIWTPhIRA2EH2\nHVlEQQgoQhVRcbfaWuob1Etcqm3fqtSlIFJwgdbirlWB3ytga60aVgWRfZGwhTUhIXtCQhKSzHl+\nf5xkJJCQSUhmhuT+XBdXZs7MOefOyXDueXaltdYIIYQQF2F4OgAhhBDeT5KFEEKIWkmyEEIIUStJ\nFkIIIWolyUIIIUStJFkIIYSolSQLIYQQtZJkIYQQolaSLIQQQtRKkoUQQoha+Xg6gIaUmppa733t\ndjtZWVkNGE3DkLjqRuKqO2+NTeKqm/rGFRMT49L7pGQhhBCiVpIshBBC1EqShRBCiFpJshBCCFEr\nSRZCCCFqJclCCCFErSRZCCGEqJUkCyGEALTDgS4v93QYLtE7f0Snpbj1nJIshBACMN98EXPeH9Fa\nezqUi9LHD2Muehn9r0/del5JFkKIZkuXnrVKFIf3w0/bIGkf7PjB02HVSJsm5id/B63RJ4+79dxN\naroPIcTlRZ88AcEhqKAQj5zffP3PkJMJIeEQEAhBIZgr/okxYBjKsHkkpovR2zbAkQMQ3RbST6LL\ny1A+vm45t5QshBAeocvLMF95Gv3pPzxz/pxMOLAHstIhKRE1bjLGzfdCWjJ642qPxFQbvfV7CI1A\nTbodHA44ddJt55aShRDCM5L2QdEZ9O4t6NKz1s3P1w/l457bkt75IwDGY7PQh/aixk8B/5bQ+Qr0\nin+ih4xC+bd0SyzVxmc6MN98CdJPQpgd4+E/wt6dqGGjUe06ogF98jiqXUe3xCMlCyGaObPwNDop\n0e3n1Xu2WQ/OlqB3bMJ8/hHMef+Ldjjcc/4dm6BNLKrXAIyb7ka1DEAphTHt15Cfg/56uVviqNHR\nQ7BnKwSFwIE9mO+/DmeLUf2GWNVQNhu4sd1CkoUQzVzhZ29jvvJ7dOoJt55X79kKV/SFgFbojxZZ\nbQdJiej//h8Axeu/wfH8I+iMtIY/d+FpOPgTauDwC15TXXqghl6N/uZzdI57pyLXDgfmxlXowtPW\n9VEGxiPPQpcesG0j+PpBj/5WO0VUW7f+zSRZCNGMadPk7A9rrd41Xy5z33mz0iEtGTXgSlT/K61v\nzMOvtW7SKz/B8fwjnJ7/PJw8jt68rkHPbf64DnPWo6A1avBV1b5HTb0PTI1e8XGDnvtidOlZzL/P\nRr/3GvqzxeiftkOXHqhWgRiTb7fe1KMfqkULK8a2HSDlmNvik2QhRHN29CBmThZEt0Vv+Q6dXv8F\nxKpjrv8vjhcft9okzqH37gBA9RmMuuY6aN8Fdct9qHviURNvhaAQAm68Azp0Re/a0mDx6OxM9Puv\nQUg4xhMvotp3rvZ9yh6FGvcL9A+r0YfcU0WnV34CuzZDp+7ozevheBKqzyDrxd6DUBNvwbh+6s87\ntO0A2RluK/1IshCiGdM7fgCbDWPGH8FmoL/7umGPv3cnHE9Cf70cnZSIuepf1guH90FwKES1RXXt\nhe1P81GhEaiAVhg334PtiRcJeuBRq5ro2CF0XnbDxPPlEgCM//k96oq+F32vuuE2iIzGXPiSW6p7\n9KG90L0PxqPPQgt/K4a+Q6yfSmFM/SWqe5+f4+t/JbTwx3zlGXRacqPHJ8lCiGZImyZ63y70lu/w\n6zcEFd0O2nVCH0tq2BOlW1079X+WYb76R6t6JfMU+uhB6NQdpdRFd1f9r7T23731kkPRmafQG1eh\nrp6Aiois9f0qoBXGzD+Dj4/V8J6075JjqDE2hwNSjqFiO6MCg1E33WW1U8R2qjm+dh0xnnoZykox\nl73XaLFVkmQhRDOkV36C+dc/QcFpAiZNA0C17wInjjTYdBfaNCE9FTVklNUw27GbtX3r93DqJKpT\n99oP0rYDRLR2dnO9pHi+TwBToybe5vI+KjIa44kXwb+llez27brkOKqVfhLKSqGiWsyIuwnbM6/U\nnkw7dMX4/VyMBx5rnLjOIclCiGZGl5eh1/8X+g7BmP8xLQaPsF7o0BmKz1iD1BpCTiaUl0HP/hhz\n38d4eg6E29HfrgRAdb6i1kMopaxG6MQd6IL8eoeitbZGP/foiwqLqNO+qk0sxh/mQWg45r8/q/74\nh/fjWPgy+kxB/eJLPmqd6yIliRrjs0ehgoLrdd66cMvol0WLFrF9+3ZCQkKYN28eAPPnzyc11WpM\nKyoqIiAggLlz55KRkcHMmTOJiYkBoFu3bkyfPt0dYQrRPOzeAoWnMa6dhKqoGwerZKEBThyGyOg6\nH1aXnsV8Zz7GzfeiottCRWO5imr7cw+engPQGxJAKWdJozZqxLXob5ajt3yHGju5znEBcPIYpJ9E\nxd1Yr91Vq0DU2MnoZe9SdvgAhFRNOPrHdbBzE+bbpRiP/KnuU4WcOAI+vhDdrl7xuYNbksWYMWO4\n/vrrWbhwoXPbzJkznY8//PBDAgICnM+jo6OZO3euO0ITotkxv0+A0AjoPaDqC207gM2GPnGkxi6l\nF5WWAts3ojt1Q11/C7pyKorotj+/p9cA2JAA0e1QLQOqP855VLuOENsJ/cMaqGey0Fs3gDJQg0bU\na38ANWo8+otPKfx0MXrMDdClJ8rXmpdJHz0ILQPgp+3ohC9QE26+MIa0FMzXZ1lVctFtUT37o0aN\nR/n6oZOPQNsObhu9Xh9uqYbq1asXgYGB1b6mteaHH37gqqvq8eEUQtSJLiqEn7ajRoy54Nuv8vWD\nNu3RJw7X7+Cn86yflesspJ+0ps8IDv35HD37Wz87u9BecW5sI8ZavaLqsYaDTktGb1gF3Xujzoml\nrlRAK9S4yZRu22g1eFdUSemyUkg+irrmeqvb6/afZ63VOVmYHy9CFxeh138NudlW8kw+iv7kLczX\n/4wuKYbkIzV24/UWHm+z2LdvHyEhIbRp08a5LSMjg9/97nc899xz7NvXeD0QhGh2Mk+BNlGdqm8v\nUB06w/HD9Wrk1hXJorIbp04/aXWNPaeRVgWFoB58ok6NzABq8EjrmIk76xZTUiLmi4+Do9yaJPAS\nqSn3EPHmp9BrIPr7b63Fkk4cAUc5qnN3VI++VlI7a40r0V98gl73X/RXy6zBhf2GYIv/A7a/LEb9\naiYc+AnzsbuhsABivTtZeLzMs2HDhiqlirCwMBYtWkRQUBBHjhxh7ty5zJs3r0o1VaWEhAQSEhIA\nmD17Nna7vd5x+Pj4XNL+jUXiqhuJ6+JKDu4mHwjt2h3finjOja2oz0AKNqwirLQIn7Yd6nTsM2YZ\nhYA6lUJERARZmafw69mPkPN/70m3uHS8KtfMbifTHoVvymFC63Ad8/7xb8oCWhE+7z1s4bV3l3U1\nrtCb7yLvpacIOrofMyudAiB88AjKIyLJ++r/CM5Ow6dNO7I2rQE/P/R/PwetCbnuJvwr4//FbZyN\n7UDpjk0YoeG0nDAFo1X1NTCuxtWYnzGPJguHw8HmzZuZPXu2c5uvry++FfWAnTt3JioqirS0NLp0\n6XLB/nFxccTFxTmfZ2XVfySj3W6/pP0bi8RVNxLXxZlHrSqmPJsfqiKec2PTnXoCkLPmvxjXu3ZT\ndx47rWJMRXERWYl7MLPSORta/9/7/GumO3XnbOIuMjPS0f/9HL17C8oehfHgE9XurwvyMbf/gBp3\nI7mmgga6/na7ndPtu0KYnfwvPkMFBkNoBLlaoVu3BWWQv2UDVPSMMmb8EXPBLAgMpKBDdwrPjaNd\nZ+sfUFxcAsUllxRXfa51ZWei2ni0GmrPnj3ExMQQEfFzz4LTp09jmiYA6enppKWlERUV5akQhWha\nstMhoBUqoPpvsCoiEtp3qd+4hso2C0AnfGHNvdSl9u6xLuvSE3Ky0AlfoJd/BBlp6M3r0UVnqn27\n/nEdOByokWMbLoYKyrChrp0E+3db40Yq2mBUywBo39mqolr7Feqq8aheA1G33o+65X63LVTUGNxS\nsliwYAGJiYkUFBTw0EMPMW3aNMaOHXtBFRRAYmIiS5cuxWazYRgGv/nNb2psHBdC1I3OyoCI1hd9\njxo4HL3yn+i8HFRouOvHPp1nHTs7A/39N9bU2lf0u9SQf46ra09rDYcV/4TIaIy7HsJ87Xk4dhB6\nDbwwno2roENXa8K9RqCuuxkVE4v53TcYo8b/vP2KPuhvVkD7zqhpvwbAmDClUWJwJ7cki8ceq350\n4YwZMy7YNnz4cIYPv3DaYCFEA8hKh6i2F32LM1ns/BE1ZqLrxy7Ih3YdrYF9RWdQg0eibA24NGm7\njtacSWdLUON+AZ2vAKXQhw+gzksWOvOU1UPptl813PnPowwD+l+JrWJKEuf2K69BH0vC+NVM5/iS\npsDjvaGEEK7TR+s/qZ7WGrIzUPZaqnVj2kO4HQ7+VLcTnM6zuqa2iQVADb26XnHWRNlsVoJoGYC6\nahwqoBW0iUUf2Y/+aTvm+6+jD+8HsKb3BlS/oQ0ag0txduiK7amXXZp/6nLi8d5QQgjXaNPEXPCs\nNa33b56s+wEKT0PpWbDXUg2lFMR0qNOYBm06oOA0BIWiOre0qqS69qp7jLUw7vgNnClE+Vu9I1WX\nHuhtGzBT3oC8bPSGBNRtv0Lv322NQo9yrfFW1E6ShRCXi6x0a83qgz9ZpYSCfPDzc944a98/AwBV\nS5sFgGrTDn1gD9p0uDZ1RWEBaBOCQ1Gjr0fdeJdVTdPAVEz7qhs6XwHffQNFZzAefQ5zzZfoLz4B\n07Rml61lIj7hOqmGEsJNzP8sw/HXP1k3tPKyuh8gxZpsjrwcyEjD/MtTmG//1eXddeUEgbWULACr\nKqmsFLIzL35M08T87htr0kCA4BCUjw/Kv6XLcV0K1aWH9WDgcFTfwRh3TgeHA8pKnWtBiIYhJQsh\n3EBrjV71Lygusqa5PpQIDz5Rp2/f+pwlNPW/PrVKGtkZ6IxUVGsXqluyK5JFRO1d0VWbWGtSwdTk\ni08qmJSI/vBN9CBrhPWlTKdRL9HtUPfOcK57oSKjUZOmodd8CVf0qWVnURdSshDCDRypJ6wG4Dt+\ng5r6S2sJ05X/rNMxdPIxqydTYJA1hsC/JRgGeu1Xrh0gNRlaBbk2gV9FI7U+dfEV2JyTBe6qGJfh\n5mShlMK45jpUSNjP2yZNw3jlPWuuK9FgJFkI4QallWtOd++Dun4qasgo9Kp/1606KuWotd5B197W\nsYZejRo0Er0hAX324iN/9elc9NbvUQOGuXQq1SrQuvHXtlxn5ZrdDof1MyjEpeM3JqVUw3bZFYAk\nCyHqTJeXWRPI1UHZ3p0QEgZRMdbNbNhoOFtsVUe5cs7iIqvaqV1HVEX1ihox1hpvUHSmytrZ+uDe\nC1Z009+shPJy1MRbXQ+6TWytPaJ0+klrHQYAmw1qGBkuLn/SZiGEi3RJMeasR62bdpgd4y+LXfoG\nq7WmdO8Oq1RR2TunRz/w8UH/tM05bfdFVbRXqNhOcEU/VOs20LWndbwr+qL/uxw9eiLK1w/z8w/g\n7Flsz71mnb+4yJp6YugoVB26kqo2segf16K1rrlXUXoq9BkEh/eDzdYoPaCEd5C/rBAu0pvWWImi\nzyDIzYLMNNd2zDyFmZ0J3Xs7Nyn/ltCtN3rPNtfOXdkTql0nVIsWqH5DnTdwY/LtkJ+D/v5b5/mc\nvZPAmkL7bDFqxLWuxVspJhaKiyA7o/qYHA7IPIVq0w41dpL0PmriJFkI4QKrN9O/oUNXjCn3WBtP\nnnBt58pSwXnLiKq+QyAtGfOzxZi1NVInH4VWQVDd+tFX9LUmr9v6vbWOwuk8KCpElxRZsVe2O7Rp\nf+G+F1FZ4tE7N6GLizBX/9taPKlSdgY4yiGqLcbkOzDue7hOxxeXF0kWQrhi3044lWK1EbSJteYk\nOnncpV11TsU38/O6rKr+Q63eTKv+hV72LrpituVqj5FyzGqvqKY6SCmFat/FWqGusnssQE7FdNWn\nUqw5lapLNBehottBu07oLd+jv/gU/ek/MJ9/FHPjanR+LmRUrrEto6SbA0kWotnRJcWYi1/F/Or/\nXN9nxybwb4kaMgrl1wIi26BTXUsWZGdaN+vAoCqbVesYjDnvou74jTUNR271axFo0wEnj1ntFTWJ\nbgcF+VWXRK2oitJpKdaKdfVoT1BDR8GRA+i1X0LvgdDCH/3eAsynf4X57RfWm2qZmFA0DdLALZoN\nx99mW9+ylYKTx+H4YZjo2gI/OisdWsegKhbmom17l6uhdHYGtsho67znUaHhENvJGgCXllz99OEZ\naVBaCu1qThYqup11jIoJ9AB0TiYK4FQyqlvvGva8ODX0amvtCK0x7v4fiIiE5KOY//w7JO6AgFYQ\nGFyvY4vLi5QsRLOgTQfs3mLNp1RYAD37Q/pJZ71+rbLS4ZzZWlXbDpCRii4rrX3f7EwrWdSkcgBc\nDd1UdfIx65ztOtZ8jGjr273eu8PqymoYkJ2FLim2qqMqzlFXKjIaBo9EXTfVGh1t2FAdumLE/97q\nChzTXuZfaiakZCGah+xMKC9DTb0PY9R49O4tmPt2QfIx6Fb97Kg6PdWqyrmiL2RloPqds25BTAcw\nTTh1Ei5WPQSQk4mtR18cNbysgkKsKqqaBsClHLVu/jEXueHbo8DmY80sG93OqtbKybRKUlgTA9aX\n7aFnLow5NALjD6+C1vU+rri8SMlCNA8VN2IVXXHTbG+te1yljv88+otPMP82G/JzobysygR8qq3V\ns6i2Rm59tgQKT2OLrGU+puiaB8Dp5KPWHEgXmb5C2WzQuo31xB4F4ZHonEx0RbKob8niYlR4pEsz\n2IqmQZKFaBacN82K6hpCwq3pLE4cqXmf9FQoPmOtjQBVFw1qHWNV9xw7dPETVzQyGxerhqLim39N\n8zClHENdpL3CqeJ3U/YoVHik1WCelmKVSmo5vxC1kWQhmodTJyEoBFXRGKuUssYmXKRkUTnoTu/4\nwXp+bpuFjw/0HojetvGiXV4rB7RdtM0CrG/+hQXogvwqm3V2pnXT79T14vtzTqnJ3hoi7JCTZU37\nEdUWVTklhxD1JMlCNAs6LRnOq7e3xiYkVyxVmlP1/WcKoOiM9WRvRQ+j86pc1NCrIS8bkvbVfN6K\n9SBsrV0oWcAF7RbOUk0PF6YEqUgWqqIaCkc5HD2IGn9T7fsKUQu3NHAvWrSI7du3ExISwrx58wBY\nunQpq1atIjjY+qZ35513MmjQIACWL1/O6tWrMQyDBx54gAEDBrgjTNGUnUpBVay5UEm174J2ODBf\nfgLsURiz3rTGUIDVXbVSaSmEhP38WuX+/a9E+/mht3yH6l5D19TsDLDZMMLskJtbc3zn9IhS3c9Z\nh2H/Lmsm17Ydav0VVY9+6K69oEtP1InDVlfadh1RV42rdV8hauOWZDFmzBiuv/56Fi5cWGX7pEmT\nuPHGG6tsS0lJYePGjfz1r38lNzeXF154gddeew1DJigT9aQLTlvdZaPP6xHUbyjqtl+Bw4H+/AP0\nN8tRk++w9qlMFh26wvGkasc/KP+WqH5XordtQN/xm+onFczOhNCI2iccDLODX4sqJQutNXrfblSP\nfi51T1XhdmxPz7b2RUN4JMad011bFlWIWrjlDtyrVy8CA12bunjLli2MHDkSX19fWrduTXR0NElJ\nSY0coWjSzu8JVUH5+mJMmIIx8RYYPBL91f9DV06RUdFeoQaNsH7aa+jNNGiENXbjePWfUZ2TaQ1k\nq4UyDIhuV7VH1KmTkJ9jzVBbRyo0Atucd6qWUoS4BB79uv7111/z5JNPsmjRIgoLrQnKcnJyiIj4\neQ6b8PBwcnJyajqEELXSh/dbD9rWPJGe8Yu7oLQUvW+ntSHjlFUi6NLTel5DslAVN/Lz149wystG\nhdldivP8HlG6oq1E1SNZCNHQPDYob8KECdx6q7UQy5IlS/jwww+Jj4+v0zESEhJISEgAYPbs2djt\nrv2nrI6Pj88l7d9YJK66OT8ubZpkb/gWo9cAwrv3rHE/HRZGhp8fLXMzCbLbycnNgrbtCR00lJzo\ntgQNHkGL6n5fu53sjl0xDu8j7LzXtdZk5OfSsk07l65XYZcrOPPjOsJbBaBsNrJW/Qtbt16E9+zT\nqKOkL5e/pbdornF5LFmEhv68Vu+4ceOYM2cOYJUksrOzna/l5OQQHh5e7THi4uKIi4tzPs/Kqn4i\nNlfY7fZL2r+xSFx1c35ces82zPRUzJvurj3eqLYUJe3nbFYWjrRkVJ/B5Jwphhf+RgFQUMP+Ztfe\nlK/9D5mpJ6s0guszBVBWSnELf4LKy2s9vw6xPufZe3dZq91lpcN9D1f5/9AYLpe/pbdoanHFxLg2\na7DHqqFyz+kZsnnzZmJjrd4gQ4YMYePGjZSVlZGRkUFaWhpdu9bex1yI6phr/wPBoaiBw2t9r4pp\nD6nJ1nxK+bk/j4iubb+e/awR3pXVXZUqu+OGuDg1eGWPqGNJ6K+WQa+Brq2iJ4QbuKVksWDBAhIT\nEykoKOChhx5i2rRp7N27l2PHjqGUIjIykunTpwMQGxvLiBEjePzxxzEMg1//+tfSE0rUi9YaDvyE\nGnmta4PSYtrDj+vgwB7AWlbUJd17g82G3rO16s29Ilmo0OpLxheIbGMd58slUFiAceOdru0nhBu4\nJVk89thjF2wbO3Zsje+fOnUqU6dObcyQRHNQfAbOFoPdtakuVEx7NGD+Z5k1lUdP1xqWlX8AatBI\n9Lr/oidMQYVaJQnnQD8Xk4Xy8bESxqkU6NID1aWHS/sJ4Q7ylV00XbkVdf0u9kYipqK31JED0LM/\nyj/A5VOpm+8F04Fe8fHPG/Mqzh8S5vJxKmeWNWTUtfAykixE01Wx8pxydTlRexT4WTO7utLGcS4V\nGY0aOxm9cTW6Mknk50CroAtGfl/0OP2utKZEr+P5hWhskixEk6XrWLKwBsbFgjJQA4bV+XxqwHBr\nfYeKxYp0Xo7LVVCVjKvGYXvyJRl1LbyOJAvRdOVmWUuZ1qEaSF15Derq8daCRHVVUY3lXJs7L8ea\nCl2IJkBWyhNNV242BIdZDccuMq67ud6nU60CITTCWt8bID/H9R5VQng5l/4XFRYW8sUXX3D8+HFK\nSkqqvDZr1qxGCUyIS6VzssDV9oqG0rY9+uQJa42L/Nw6V0MJ4a1cShavvfYa5eXljBgxAj+/mpd2\nFMIbmGu+RHXtZVVDVa6M5yaqbQf0mv/A6TxwOCRZiCbDpWRx8OBB3n77bXx9ZbUt4d3MM4XoT95C\nDxxuTeLn7hHQMR2grBSSEgFQ0mYhmgiXGrjbt2/f6PPTCFFJa40+nmSNwHZ1n+NJ6JJiyo9WrIn9\n03YoLnJ7NZSqmNnW/GGNtUFKFqKJcKlk0adPH15++WXGjBlTZQJAuPhIbCHqZccmzL/9BeORP6Hb\nxGLOfxZjxv86b8Tn06fzMF9+EnX9rZRFV8znVFZq/XR1QF5DaRNr9cDavQU6dYf2Xdx7fiEaiUvJ\nYv/+/URERLBnz54LXpNkIS6VTkuGlgHOaTLMTda3cr1prbVCXeYp9P7dNSeLfbvANNF7t1Ne1M1a\nhrSsFEqKXR+Q10BUC39rRT6tMR55tk49sYTwZrV+krXWPPTQQ9jtdmy1LQ0pRB1prTH/+ix06ILt\n4f9FFxXCnq3g44Pe9SNUTrmRdqLmgyRWLFh04jClRQXQoSvKvyV66/fuL1kAxuN/hhYtUS1dny5E\nCG9Xa5uFUoonn3yyURdfEc1Y+klrDqUDe9AOB3r7D1Bejpr6SygttXoV+fqhUy9MFlpr61/iDmuq\nDq0xM9NR7Tujxk6G/ldCeO1LmjY0FRohiUI0OS41cHfs2JG0tLTGjkU0E9p04HjpCcx/f4beX1G1\nWVIMxw5ZVU+tY1DjfmHd6INCUFdeba0zcU6Dtz5TiPnUA5hvzYG8HNR1N4N/SwArWXTrhe3h/0VJ\naViIBuFShWrv3r15+eWXGT169AXL9kmbhaizPdusxJB5Crr2hFZBcKYAvepfcGAPauovUYaB8euZ\n4HBYpYoNq6AgD4Irpu44tNeaqG/bRgBUn8Hon7bDrs0Q29mDv5wQTZNLyeLAgQO0bt2affv2XfCa\nJAtRV+bqf1uzu54pgF2bUcNGo08eR2/5Dvz8UNdMAEB172PtoDUa4OQJZ7LQSYlg87GmBs9MQ9mj\nMK65Dt8WLSizR3nmFxOiCXMpWTz33HONHYdoJnRaCiTuRN10t1XllH4SruiLCgpBpxxDDb8W1Sqo\n6k4VazzotGTnIDudtA86dq0yl5PqN5TQsRO9cn1kIS53LrVZmKZZ4z8h6kJv+BZsNtQ116GunWRN\nB96jH2rgCKsHUdyNF+4UEg4BraCikVuXnoVjSahuvd0cvRDNl0slizvvrHkt4CVLljRYMKJp01qj\nt26AXgNRwaFw7Q2ovoNQkdEQGY3xxmfV9rpTSkGbWPSJI1Yj99FD4Ci35n8SQriFS8nizTffrPI8\nNzeXFStWMGTIkEYJSjRRxw5BdgbqRuvLhzIMaB3jfPli3bPVoBHoZe+hN66Gk8esjV17Nma0Qohz\nuFQNFRkZWeVf9+7defjhh1m5cmVjxycuI3rbBsz/937Vbft3WwPtwGrA9vGp3yp0cTdC9z7oD15H\nf7sS+g211o8QQrhFveciKCoq4vTp0y69d9GiRWzfvp2QkBDmzZsHwEcffcS2bdvw8fEhKiqK+Ph4\nWrVqRUZGBjNnziQmxvrG2a1bN6ZPn17fMIUbmev+C/t2oUdfj4qMRheetkZn978S48HH0Vu+h96D\nUAF1v8krw4bx68cx352PGjDMau8QQriNS8nijTfeqFJFcPbsWfbt28fVV1/t0knGjBnD9ddfz8KF\nC53b+vXrx1133YXNZuPjjz9m+fLl3HPPPQBER0czd+7cuvwewhukHANA/7gWNfkOOH4YtAk7N2HO\n+1/Iz8EY/0S9D6/C7diefKmBghVC1IVLySI6OrrK8xYtWjB+/Hj69evn0kl69epFRkZGlW39+/+8\nzkD37t3ZtGmTS8cS3kmfzoWQXqJWAAAgAElEQVSCfOvxpnXoSbejjydZL9qj4OhB1C/uQF3Rx4NR\nCiHqy6VkMWDAALp163bB9qSkJLp27XrJQaxevZqRI0c6n2dkZPC73/2Oli1bcscdd9CzpzRker2K\nUoUaNhr94zprhPbxw1Yvp4eeRu/8ETX5ds/GKISoN5eSxYsvvsgHH3xwwfaXXnqJ995775IC+Pzz\nz7HZbM4qrbCwMBYtWkRQUBBHjhxh7ty5zJs3j4CACydmS0hIICEhAYDZs2dfMBVJXfj4+FzS/o3l\nconrTE4mhUD4L2eQvWMTLbZ+z9mUo/h260XooGEwqO6N2g0Rl7fw1rjAe2OTuOqmseO6aLKoHHTn\nnN3znInc0tPTL3nK8rVr17Jt2zaeffZZZ5uIr6+vc/nWzp07ExUVRVpaGl26XLiITFxcHHFxcc7n\nlzJy1263e+XI38slLvPAXggNJ8/XHzX4KorXfgWlZykdNcGt8V8u18ubeGtsElfd1Deuys5Etblo\nsjh3MN4dd9xR5TXDMLj55pvP38VlO3fuZOXKlcyaNYsWLVo4t58+fZrAwEAMwyA9PZ20tDSiomSu\nH2+nU45Bu44AqGuuQ/+w2nrcQVaKE6IpuGiyePPNN9Fa8/zzzzNr1iy01iilUEoRHByMn5+fSydZ\nsGABiYmJFBQU8NBDDzFt2jSWL19OeXk5L7zwAvBzF9nExESWLl2KzWbDMAx+85vfEBgo/em9mS4v\nh7RkVO+B1oYuPSCmvTU9hyQLIZqEiyaLyEhr4ZhFixYBVrVUfn4+YWFhdTrJY489dsG2mmarHT58\nOMOHD6/T8YWHHTkAjnJnYlBKYUz9JXrfzgsnBRRCXJZcauA+c+YMb7/9Nps2bcLHx4ePPvqIrVu3\nkpSUdEH1lGh+9IYEaxLAvj9P/6L6D0X1H+rBqIQQDcml6T4WL15MQEAAixYtwqdiAfru3buzcePG\nRg1OeD9dXITe+j3qyqtRFSvVCSGaHpdKFnv27OGtt95yJgqA4OBg8vPzGy0wcXnQW76D0rOoq+Jq\nf7MQ4rLlUskiICCAgoKCKtuysrLq3HYhmh69Y5M1c2znKzwdihCiEbmULMaNG8e8efP46aef0Fpz\n8OBBFi5cyPjx4xs7PuHtUo6iOl9x0enFhRCXP5eqoW666Sb8/Px45513cDgc/O1vfyMuLo4bbrih\nseMTXkwXnIa8HOf4CiFE01VrsjBNk7Vr1zJ+/HhJDqKqikWIlCQLIZq8WquhDMPgww8/dE7BIUQl\nXTF5ILEdPRmGEMINXGqzGDx4MFu3bm3sWMTlJuUoBIWggqWjgxBNnUttFmVlZfz1r3+le/fuRERE\nVGnMfPjhhxstOOHddMpxaa8QoplwKVnExsYSGxvb2LGIy4h2lEPqCdSYiZ4ORQjhBi4li9tuu62x\n4xCXGUdaCpSVSslCiGbCpTYLIc7nSDsJgIpq6+FIhBDuIMlC1IsjI9V6YJe1RoRoDiRZiHpxZKSB\nrx8Eh3o6FCGEG0iyEPXiSE+DiNYyzYcQzYRLDdxaa1atWsWGDRsoKCjg1VdfJTExkby8PEaOHNnY\nMQov5MhMkyooIZoRl0oWS5YsYc2aNcTFxTkXBI+IiGDlypWNGpzwXo70NJS9tafDEEK4iUvJYt26\ndTz99NNcddVVzmqH1q1bk5GR0ajBCe+kiwrRZwqkZCFEM+JSsjBNE39//yrbSkpKLtgmmoks60uC\nipCShRDNhUvJYuDAgXz44YeUlZUBVhvGkiVLGDx4cKMGJ7xUdkWJUkoWQjQbLjVw33fffSxcuJD7\n77+f8vJy7rvvPvr161eneaEWLVrE9u3bCQkJYd68eQAUFhYyf/58MjMziYyMZObMmQQGBqK15r33\n3mPHjh20aNGC+Ph4OnfuXL/fUDQ4nZVuPYiQZCFEc+FSsggICOCpp54iLy+PrKws7HY7oaF1618/\nZswYrr/+ehYuXOjctmLFCvr27cuUKVNYsWIFK1as4J577mHHjh2cOnWK119/nUOHDvH222/z8ssv\n1+03E40nOwPlHwCBQZ6ORAjhJi63WZimSXBwMJ07dyY4OBjTNOt0ol69ehEYGFhl25YtWxg9ejQA\no0ePZsuWLQBs3bqVa665BqUU3bt358yZM+Tm5tbpfKLx6MxT2FpHyxgLIZoRl0oWd955Z7XbbTYb\nYWFhDBs2jGnTptW5wTs/P5+wMGsthNDQUPLz8wHIycnBbrc73xcREUFOTo7zvZUSEhJISEgAYPbs\n2VX2qSsfH59L2r+xeFtcWmsyjx3Cd9AIgr0orkredr0qeWtc4L2xSVx109hxuZQsHnjgAbZs2cKU\nKVOIiIggKyuLL774gkGDBhETE8OyZct4//33eeihh+odiFKqzt9U4+LiiIuLcz6vHANSH3a7/ZL2\nbyzeFpc+eRx9Og/fPgO9Kq5K3na9KnlrXOC9sUlcdVPfuGJiYlx6n0vJ4ssvv2TOnDkEBAQ4D96l\nSxeeeeYZ3njjDdq3b8/TTz9d5yBDQkLIzc0lLCyM3NxcgoODAQgPD6/yS2dnZxMeHl7n44uGp/fv\nAcCv72DOeDgWIYT7uNRmUVRUxNmzZ6tsO3v2LEVFRYBVhVRaWlrnkw8ZMoR169YB1sC/oUOHOrev\nX78erTUHDx4kICDggioo4Rn6wG6IaI2tdRtPhyKEcCOXShajR4/mxRdfZOLEidjtdrKzs/nPf/7j\nbJzetWtXrUWZBQsWkJiYSEFBAQ899BDTpk1jypQpzJ8/n9WrVzu7zoI1rmP79u08+uij+Pn5ER8f\nf4m/pmgI2jTh4F7UgCs9HYoQws1cShb33HMP0dHRbNy4kdzcXEJDQ7nuuuuc7QW9e/dm1qxZFz3G\nY489Vu32Z5999oJtSikefPBBV0IT7pRyFM4UQI9+no5ECOFmLiULwzCYMGECEyZMqPZ1Pz+/Bg1K\neCe9ZxsAqucAD0cihHA3l5IFQF5eHklJSRQUFKC1dm4fO3ZsowQmvI/esxU6dkOFSPuREM2NS8li\n8+bNvPHGG7Rp04bk5GRiY2NJTk6mR48ekiyaCV2QD0cOoH5R/ZgbIUTT5lKyWLJkCfHx8YwYMYIH\nHniAV155hTVr1pCcnNzY8QkvofdsA61R/YZ6OhQhhAe41HU2KyuLESNGVNk2evRo1q9f3yhBCe+i\ntUZv/R5Cw6G9TOgoRHPkUrIIDg4mLy8PgMjISA4ePEh6enqd54cSlx+tNXrJ27BnK2r0RJkPSohm\nyqVqqHHjxrF//36GDx/OpEmTmDVrFkopJk+e3NjxCU/7aTt61b9Q436BmjTN09EIITzEpWRx4403\nYhhWIWT06NH07t2bkpIS2rVr16jBCc/TKUcBUFPullKFEM1YrdVQpmly7733OlfJA2vCKkkUzUT6\nSQgJt9avEEI0W7UmC8MwiImJoaCgwB3xCC+j01MhyrVZKYUQTZdL1VCjRo1izpw5TJw4kYiIiCrV\nEX369Gm04IQXSE9FDRjm6SiEEB7mUrL45ptvAFi2bFmV7Uop3nzzzYaPSngFfaYQCvIhuq2nQxFC\neJhLyeLcdbNFM5KRCoCKkmQhRHPn0jgLgPLycvbt28fGjRsBKCkpoaSkpNECE56n009aD6TNQohm\nz6WSxYkTJ5gzZw6+vr5kZ2czcuRIEhMTWbdunXMNCtEEnToJhgH2KE9HIoTwMJdKFosXL+b2229n\nwYIF+PhY+aVXr17s37+/UYMTHpaeCvYolI+vpyMRQniYS8kiJSWFq6++uso2f3//ei2lKi4fOv0k\ntJYqKCGEi8kiMjKSI0eOVNmWlJREdHR0owQlPE+Xl0FaMqptB0+HIoTwAi61Wdx+++3Mnj2b8ePH\nU15ezvLly/n222/57W9/29jxCU85eQLKy6FDV09HIoTwAi6VLAYPHswf/vAHTp8+Ta9evcjMzOTJ\nJ5+kf//+jR2fcDN9PAmdn4s+ngSA6tDFwxEJIbyBSyWL06dP06lTJx588MEGPXlqairz5893Ps/I\nyGDatGmcOXOGVatWERwcDMCdd97JoEGDGvTc4kK6vAzz1T9Cj36o4DAIaAWRUtUohHAxWcTHx9O7\nd29GjRrF0KFD8ff3b5CTx8TEMHfuXMCasPC3v/0tV155JWvWrGHSpEnceOONDXIe4aIjB6GkGPZs\nRUe0hvZdZKZZIQTgYjXUokWLGDRoEN988w3Tp09nwYIFbN26FYfD0WCB7Nmzh+joaCIjIxvsmKJu\n9L5d1gOHAzLSpApKCOHkUskiODiY6667juuuu47MzEw2bNjAZ599xt/+9jfeeeedBglkw4YNXHXV\nVc7nX3/9NevXr6dz587cd999BAYGNsh5RM30/l3QsRs4yiH5qDRuCyGcXEoW58rPzycvL4+CggJa\ntWrVIEGUl5ezbds27rrrLgAmTJjArbfeCsCSJUv48MMPiY+Pv2C/hIQEEhISAJg9ezZ2u73eMfj4\n+FzS/o3FXXGZxWfIPHqQgCl3YwsNp+C914kYPBxbDedu7terrrw1LvDe2CSuumnsuFxKFikpKXz/\n/fds2LCB0tJSRowYwVNPPUXXrg3zzXPHjh106tSJ0NBQAOdPsJZ0nTNnTrX7xcXFERcX53yelZVV\n7xjsdvsl7d9Y3BWX3r0FHA5KOnSDK/pidOhGruELNZy7uV+vuvLWuMB7Y5O46qa+ccXEuDbw1qVk\n8ac//Ylhw4Yxffp0evfu7VxitaGcXwWVm5tLWFgYAJs3byY2NrZBz9cc6bRkzH/+HeOmu6FjN8xF\nL2GMuxHVx+plZq79CloFQdeeKMOANnLNhRA/cylZLF682DknVEMrKSlh9+7dTJ8+3bnt448/5tix\nYyiliIyMrPKaqDt9PAlz/nNwpgDz35+hRo6Dn7ajW7ZC9RmEPnIA9mxFTb0P5evn6XCFEF7IpQzg\n4+NDXl4eSUlJFBQUoLV2vjZ27NhLCsDf35933323yrZHHnnkko4pqtJf/R8ohbrmOvT6r9HZmdb2\n/bvRWmN+8QkEBqOuneThSIUQ3sqlZLF582beeOMN2rRpQ3JyMrGxsSQnJ9OjR49LThai8enUE1b1\n0o13oTckQPpJaNcJUo6iN6+HvTusUoV/S0+HKoTwUi41PixZsoT4+HheeeUV/P39eeWVV5g+fTqd\nOnVq7PjEJdLlZZCRioppjwoJQw0cAb5+GPc/ar3+yVvg64e65joPRyqE8GYuJYusrCxGjBhRZdvo\n0aNZv359owQlGlB6qjXIrqLBWt39EMYzr1gD7iKjoagQNWw0qlWQhwMVQngzl5JFcHAweXl5gDVd\n+cGDB0lPT8c0zUYNTlw6nXoCABXT3voZGIxq39l63KOf9VPaKoQQtXCpzWLcuHHs37+f4cOHM2nS\nJGbNmoVSismTJzd2fOJSpSaDMqBNuwteUhNvha69nMlDCCFq4lKymDJlivPx6NGj6d27NyUlJbRr\nd+ENSHgXnXoCIqOr7RKrIqNRMqusEMIF9Ro84Y1D3UUNUk9ARRWUEELUV8MOxRZeRZdV9oSS0dhC\niEsjyaKJ0eVlmKv+hS4phpRjYJrQrqOnwxJCXOYaZw4P4TF66wb0Z4tBayg6Y43cruj1JIQQ9SXJ\noonRm62xL3rLd1bC6NQdFRTi4aiEEJc7qYZqQnThaUjcAYFBcOQAHDuE6jvY02EJIZoAKVlc5szP\nFqMP7IGoGJSfPzgcGPfOwPzbbNAa1Xeop0MUQjQBUrK4jOjEnTjefNEqQQC6qBC99isoL4OjB9E/\nrLam9Rg4Ajp1h5BwiJX5u4QQl05KFpcJfeIw5qK/wNli9PKPUPfOqFjdrhzjgces5HAsCQKDUEph\n/GomnC22FjISQohLJMniMmG+NRdatUINGo7+7hv0VXHo7T9AaAR07IZSCjp1c75fRbf1YLRCiKZG\nksVlQOdkWYPr7piOGjkWvW8X5ht/hrNnUaPGS+lBCNHo5C5zOTh6EADVuTuqZQDGEy9Z7RFlpajB\nIz0cnBCiOZCShRfQJUXQoqVVlQTozFPoQ4kYI61VCPWRA+DjY61uh1XFZPx+rtU19oq+HotbCNF8\nSMnCw/TpXMwnfon+ce3P277+HP3eAqv6CdBHD0BsZ5Svr/M9qoW/JAohhNtIsvAwvXcnlJ6FXVt+\n3pa0z/q5fxfaUQ7HD6M6X+GpEIUQwjuqoWbMmIG/vz+GYWCz2Zg9ezaFhYXMnz+fzMxMIiMjmTlz\nJoGBgZ4OteEl7gBAH9iD1hqKz1jTigPs20V534FWMunU3YNBCiGaO69IFgDPPfccwcHBzucrVqyg\nb9++TJkyhRUrVrBixQruueceD0bY8LTW6MSd0KIlFORDWjLkZFpzOoXZ0ft2Ubp9EwBKkoUQwoO8\nthpqy5YtjB49GrBW59uyZUste1yGTh6D03mo8TcCFaWLpH1gGKgJUyA/l8JPF0OfQSAr2gkhPMhr\nShYvvfQSAOPHjycuLo78/HzCwsIACA0NJT8//4J9EhISSEhIAGD27NmXtIKfj4+P21cAPPPd1xQC\nEVPuImfTWnyPHsAsOI3u2I3QsRPJWvI2RkAg4TOfxxbuXasTeuJ6uULiqjtvjU3iqpvGjssrksUL\nL7xAeHg4+fn5vPjii8TExFR5XSnl7FZ6rri4OOLi4pzPs7Ky6h2D3W6/pP3rSp8pxFz5KXTqTq5W\n6G69OfvDagDU2MnkGr6oibcQPHw0uSbgxthc4e7r5SqJq+68NTaJq27qG9f599uaeEWyCA8PByAk\nJIShQ4eSlJRESEgIubm5hIWFkZubW6U9oynQS96GgjyMR/4EgJpytzUJYEEe6prrATCm/pIWdjsF\nXvjBFEI0Lx5vsygpKaG4uNj5ePfu3bRv354hQ4awbt06ANatW8fQoZfvVNvmd99grv/a+VxXzBCr\nrr8F1aELACo8EmPiLRjTfi3zOgkhvI7HSxb5+fm8+uqrADgcDkaNGsWAAQPo0qUL8+fPZ/Xq1c6u\ns5cjnXwU/fEi8PFFD7kKFRCI/no5tGyFmniLp8MTQgiXeDxZREVFMXfu3Au2BwUF8eyzz3ogooaj\nTQfmRwvBrwWUFKN/WAP9hqK3/4CaMAXlH+DpEIUQwiUeTxZNmf7q/+DoQdSDT6BX/9v6t2crGAo1\ndrKnwxNCCJdJsmgket8u9MpPUFeORl15DZgm+t35kJuNuuV+lJd1hRVCiIuRZNHAdOYpzE//AT9t\ng9YxqHv/x+r2O+waa03sXv1RoRGeDlMIIepEkkUD0scOYb7+Z3CUoybdjrr2Bme7hDJsqIopx4UQ\n4nIjyaIBme8uAF9fjN/9BRXdztPhCCFEg/H4OIumQpeXwamTqBFjJVEIIZocSRYNJSsdtAmtXRs6\nL4QQlxOphroEWmv0p2+hevQDm3UpVZQkCyFE0yPJ4lIcSkSv+Q86PQ3Ve6C1TZKFEKIJkmRxCcxv\nV1gPjh0EexQEBKICm9aEh0IIAdJmUW86PRV2bYbWbaDoDPqnrVKqEEI0WZIs6klv+BYMA+OeeGtD\nTpa0VwghmixJFvWkd26G7n3gir7QsmJCQOkJJYRooiRZ1IM+lQJpyaj+w1CGAR27WS+0buPZwIQQ\nopFIsqgHvfNHANSAYdbPTt2tn1INJYRooqQ3VB3oA3swV/8bjh+G9p1REZEAqOFjrEF5bTt6ND4h\nhGgskixcpMvKMN9/HQpOg+lAjZ/ifE21iUX95kkPRieEEI1LkoWLdMIXkJWOMfPP0LO/Ne24EEI0\nE5IsXKDzc9FfLoX+V6J6DfB0OEII4XbSwO0CvfwjKC/DuO1Xng5FCCE8wqMli6ysLBYuXEheXh5K\nKeLi4rjhhhtYunQpq1atIjjYmjrjzjvvZNCgQR6JUR8/jN64CjX+JuntJIRotjyaLGw2G/feey+d\nO3emuLiYZ555hn79+gEwadIkbrzxRk+Ghy4vx/zwTQgMRk263aOxCCGEJ3k0WYSFhREWFgZAy5Yt\nadu2LTk5OZ4MqQr9n6Vw4jDG/zyDCmjl6XCEEMJjvKbNIiMjg6NHj9K1a1cAvv76a5588kkWLVpE\nYWGh2+PR+3ahv1yKGj4GNWik288vhBDeRGmttaeDKCkp4bnnnmPq1KkMGzaMvLw8Z3vFkiVLyM3N\nJT4+/oL9EhISSEhIAGD27NmUlpbWOwYfHx/Ky8sBKDt+mNw/xmOE2wn/y1sYrQLrfdxLdW5c3kTi\nqhtvjQu8NzaJq27qG5efn59L7/N4sigvL2fOnDn079+fyZMnX/B6RkYGc+bMYd68ebUeKzU1td5x\n2O12Mk+eRH/yd/SmNdAqCOMPr6LsUfU+ZkOw2+1kZWV5NIbqSFx1461xgffGJnHVTX3jiolxreOO\nR6uhtNb8/e9/p23btlUSRW5urvPx5s2biY2NbbwYzp7F/HgRZUcPYb49D/3DatTYX2A8+5rHE4UQ\nQngLjzZwHzhwgPXr19O+fXueeuopwOomu2HDBo4dO4ZSisjISKZPn954QZw4jP5hDTnr/guAumM6\nxrgLSzhCCNGceTRZ9OjRg6VLl16w3Z1jKlS3XhivvEvA1u84U1YmiUIIIaoh030AqlUQrW65j2Iv\nrIcUQghv4DVdZ4UQQngvSRZCCCFqJclCCCFErSRZCCGEqJUkCyGEELWSZCGEEKJWkiyEEELUSpKF\nEEKIWnl8IkEhhBDeT0oWFZ555hlPh1AtiatuJK6689bYJK66aey4JFkIIYSolSQLIYQQtbI9//zz\nz3s6CG/RuXNnT4dQLYmrbiSuuvPW2CSuumnMuKSBWwghRK2kGkoIIUStmv16Fjt37uS9997DNE3G\njRvHlClTPBJHVlYWCxcuJC8vD6UUcXFx3HDDDSxdupRVq1YRHBwMWCsJunNxqEozZszA398fwzCw\n2WzMnj2bwsJC5s+fT2ZmJpGRkcycOZPAwEC3xZSamsr8+fOdzzMyMpg2bRpnzpxx+zVbtGgR27dv\nJyQkxLlefE3XR2vNe++9x44dO2jRogXx8fGNVn1QXVwfffQR27Ztw8fHh6ioKOLj42nVqhUZGRnM\nnDnTuSZzt27dGnWVyupiu9jnffny5axevRrDMHjggQcYMGCA2+KaP38+qampABQVFREQEMDcuXPd\nes1quke47XOmmzGHw6EffvhhferUKV1WVqaffPJJnZyc7JFYcnJy9OHDh7XWWhcVFelHH31UJycn\n6yVLluiVK1d6JKZzxcfH6/z8/CrbPvroI718+XKttdbLly/XH330kSdC01pbf8sHH3xQZ2RkeOSa\n7d27Vx8+fFg//vjjzm01XZ9t27bpl156SZumqQ8cOKB///vfuzWunTt36vLycmeMlXGlp6dXeV9j\nqy62mv52ycnJ+sknn9SlpaU6PT1dP/zww9rhcLgtrnN98MEHetmyZVpr916zmu4R7vqcNetqqKSk\nJKKjo4mKisLHx4eRI0eyZcsWj8QSFhbmzPotW7akbdu25OTkeCQWV23ZsoXRo0cDMHr0aI9dO4A9\ne/YQHR1NZGSkR87fq1evC0pVNV2frVu3cs0116CUonv37pw5c4bc3Fy3xdW/f39sNhsA3bt399jn\nrLrYarJlyxZGjhyJr68vrVu3Jjo6mqSkJLfHpbXmhx9+4KqrrmqUc19MTfcId33OmnU1VE5ODhER\nEc7nERERHDp0yIMRWTIyMjh69Chdu3Zl//79fP3116xfv57OnTtz3333ubWq51wvvfQSAOPHjycu\nLo78/HzCwsIACA0NJT8/3yNxAWzYsKHKf2BvuGY1XZ+cnBzsdrvzfREREeTk5Djf606rV69m5MiR\nzucZGRn87ne/o2XLltxxxx307NnT7TFV97fLycmhW7duzveEh4d7JMnt27ePkJAQ2rRp49zmiWt2\n7j3CXZ+zZp0svFFJSQnz5s3j/vvvJyAggAkTJnDrrbcCsGTJEj788EPi4+PdHtcLL7xAeHg4+fn5\nvPjii8462kpKKZRSbo8LoLy8nG3btnHXXXcBeM01O5cnr09NPv/8c2w2G1dffTVgfXNdtGgRQUFB\nHDlyhLlz5zJv3jwCAgLcFpM3/u3Odf6XEk9cs/PvEedqzM9Zs66GCg8PJzs72/k8Ozub8PBwj8VT\nXl7OvHnzuPrqqxk2bBhgfVMwDAPDMBg3bhyHDx/2SGyV1yUkJIShQ4eSlJRESEiIs1ibm5vrbJR0\ntx07dtCpUydCQ0MB77lmNV2f8PBwsrKynO/zxOdu7dq1bNu2jUcffdR5c/H19SUoKAiw+utHRUWR\nlpbm1rhq+tud/381JyfH7dfM4XCwefPmKiUxd1+z6u4R7vqcNetk0aVLF9LS0sjIyKC8vJyNGzcy\nZMgQj8Sitebvf/87bdu2ZfLkyc7t59Yxbt68mdjYWLfHVlJSQnFxsfPx7t27ad++PUOGDGHdunUA\nrFu3jqFDh7o9Nrjw2543XDOgxuszZMgQ1q9fj9aagwcPEhAQ4NYqqJ07d7Jy5UqefvppWrRo4dx+\n+vRpTNMEID09nbS0NKKiotwWF9T8txsyZAgbN26krKyMjIwM0tLS6Nq1q1tj27NnDzExMVWqrt15\nzWq6R7jrc9bsB+Vt376dDz74ANM0ufbaa5k6dapH4ti/fz/PPvss7du3d37Tu/POO9mwYQPHjh1D\nKUVkZCTTp093e912eno6r776KmB9uxo1ahRTp06loKCA+fPnk5WV5ZGus2Alr/j4eN58801nkfyN\nN95w+zVbsGABiYmJFBQUEBISwrRp0xg6dGi110drzTvvvMOuXbvw8/MjPj6eLl26uC2u5cuXU15e\n7vxbVXb33LRpE0uXLsVms2EYBrfddlujfnmqLra9e/fW+Lf7/PPPWbNmDYZhcP/99zNw4EC3xTV2\n7FgWLlxIt27dmDBhgvO97rxmNd0junXr5pbPWbNPFkIIIWrXrKuhhBBCuEaShRBCiFpJshBCCFEr\nSRZCCCFqJclCCCFErY8HrrYAAAQrSURBVCRZiGbp8ccfZ+/evR45d1ZWFvfee6+zf74QlwPpOiua\ntaVLl3Lq1CkeffTRRjvHjBkz+O1vf0u/fv0a7RxCNDYpWQhxCRwOh6dDEMItpGQhmqUZM2bwq1/9\nyjky3cfHh+joaObOnUtRUREffPABO3bsQCnFtddey7Rp0zAMg7Vr17Jq1Sq6dOnC+vXrmTBhAmPG\njOGtt97i+PHjKKXo378/v/71r2nVqhVvvPEG33//PT4+PhiGwa233sqIESN4+OGH+fTTT7HZbOTk\n5LB48WL2799PYGAgN910E3FxcYBV8klJScHPz4/Nmzdjt9uZMWOGcyTuihUr+OqrryguLiYsLIwH\nH3yQvn37euy6iqZLZp0VzZavry8333zzBdVQCxcuJCQkhNdff52zZ88ye/ZsIiIiGD9+PACHDh1i\n5MiRLF68GIfDQU5ODjfffDM9e/akuLiYefPmsWzZMu6//34eeeQR9u/fX6UaKiMjo0ocr732GrGx\nsbz11lukpqbywgsvEB0dTZ8+fQDYtm0bTzzxBPHx8Xz22We8++67vPTSS6SmpvL111/zl7/8hfDw\ncDIyMqQdRDQaqYYS4hx5eXns2LGD+++/H39/f0JCQpg0aRIbN250vicsLIyJEydis9nw8/MjOjqa\nfv364evrS3BwMJMmTSIxMdGl82VlZbF//37uvvtu/Pz86NixI+PGjXNODAfQo0cPBg0ahGEYXHPN\nNRw7dgwAwzAoKysjJSWF8vJy56JAQjQGKVkIcY6srCwcDkeVdZS11lVmGj13QRmwEsz777/Pvn37\nKCkpwTRNlydUzM3NJTAwkJYtW1Y5/rnTqoeEhDgf+/n5UVZWhsPhIDo6mvvvv59ly5aRkpJC//79\nue+++zw6zb5ouiRZiGbt/IViIiIi8PHx4Z133nEuPVqbTz/9FIB58+YRGBjI5s2beffdd13aNyws\njMLCQoqLi50JIysry+Ub/qhRoxg1ahRFRUX84x//4J///CePPPKIS/sKURdSDSWatZCQEDIzM511\n/WFhYfTv358PP/yQoqIiTNPk1KlTF61WKi4uxt/fn4CAAHJycv5/e3eIKiEQx3H8l8yGvYM3ELyF\nxawiYhEEyx7BIt5C2xY9gJewi8ViM+qGTW9hWdh54YXHe99PHSZ/GWaGv4ZheFm3bfvtnuLL5XKR\n4zjquk7HcWhZFo3j+Jxe98m6rpqmSed5yrIsWZb166bx4e8gFvjXPM+TJCVJouv1KknK81z3+11l\nWSqOYzVN83HQfRAEmudZYRiqqiq5rvuy7vu+breboihS3/dv+4ui0LZtyrJMdV0rCIJv/ck4z1Nt\n2ypJEqVpqn3fn6NlgZ/G01kAgBEnCwCAEbEAABgRCwCAEbEAABgRCwCAEbEAABgRCwCAEbEAABgR\nCwCA0QO0nHanufDRTwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAENCAYAAADnrmWtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXl8VOX1/z/PnezbZJns7BAICbJH\ndoMQUdFaXNFWKVi/qIhrRa1WkSoWF0SLoBU3tP4UaUvRaqtE2RfZQYEAYU0ISZjs22Qyc5/fH8/c\nWZJMcmeSmYyT8369eCW5c5czk/C5557nLIxzzkEQBEF0K6SuNoAgCILwPiT+BEEQ3RASf4IgiG4I\niT9BEEQ3hMSfIAiiG0LiTxAE0Q0h8ScIguiGkPgTBEF0Q0j8CYIguiEk/gRBEN2QgK42oC2Kiorc\nOk6n00Gv13eyNR2H7HIdX7WN7HINsst13LEtJSVF9b7k+RMEQXRDSPwJgiC6IST+BEEQ3RASf4Ig\niG4IiT9BEEQ3hMSfIAiiG0LiTxAE0Q0h8W8FeddGcENDV5tBEAThMUj8m8EvFYO/vwz84I9dbQpB\nEITHIPFvTpNRfDU1da0dBEEQHoTEvzkmk/gqm7vWDoIgCA9C4t8csyL+ctfaQRAE4UFI/JujeP5m\nEn+CIPwXEv/mKLF+TmEfgiD8FxL/5lDYhyCIbgCJf3Mo7EMQRDeAxL85Zsr2IQjC//Gq+MuyjCee\neAJLlizx5mVdgpso7EMQhP/jVfH/5ptvkJqa6s1Lug6JP0EQ3QCviX9ZWRn279+PqVOneuuS7mG2\nZPtQ2IcgCD/Ga+L/0Ucf4c477wRjzFuXdA/y/AmC6AYEuLKzXq9HeXk5Bg4c6NJF9u3bB61Wi379\n+uHIkSNO98vNzUVubi4AYMmSJdDpdC5dRyEgIMDtY+uCg1ELIDQ4CJFunsMTdnkSX7UL8F3byC7X\nILtcx9O2qRJ/vV6PN998E2fPngUAfPLJJ9i1axcOHjyI++67r93jjx8/jr179+LAgQMwGo1oaGjA\nX//6Vzz00EMO++Xk5CAnJ8fhuu6g0+ncPlaurgIANNTVodHNczijI3Z5El+1C/Bd28gu1yC7XMcd\n21JSUlTvqyrs8+6772LEiBFYvXo1AgLE/WLo0KE4fPiwqov85je/wTvvvIMVK1bgkUcewZAhQ1oI\nv89gzfOnmD9BEP6LKvHPz8/HjBkzIEm23cPCwlBfX+8xw7oMa3sHivkTBOG/qAr7aLVaFBcXOzxS\nFBYWuhWPyszMRGZmpsvHeQ3y/AmC6AaoEv9f/epXePnllzFjxgzIsoxt27Zh3bp1mDFjhqft8z7U\n24cgiG6AKvGfMmUKIiMjkZubi7i4OGzZsgUzZ87E5Zdf7mn7vI+J8vwJgvB/VKd6ZmVlISsry5O2\n+AaU508QRDdA1YLvBx98gOPHjztsO378OD766CNP2NS1UNiHIIhugCrx3759O/r37++wrV+/fti2\nbZtHjOpSLJ4/p7APQRB+jCrxZ4xBbuYJy7IMzrlHjOpKqKsnQRDdAVXin56ejs8//9x6A5BlGWvX\nrkV6erpHjesSKOxDEEQ3QNWC75w5c7BkyRLce++91pLjmJgYPPnkk562z/tYs31I/AmC8F9UiX9c\nXBxefvll5Ofno6ysDHFxcRgwYIBDxa/fYKYiL4Ig/B/VqZ6SJGHgwIEOsX9Zlv3vBqDE/Km9A0EQ\nfowq8T99+jTef/99nD9/Hkaj0eG1NWvWeMSwLoPaOxAE0Q1QJf4rVqzAqFGjcP/99yM4ONjTNnUt\ntOBLEEQ3QHU//zvuuMP3p3B1BtZUT/L8CYLwX1QF7LOysnDo0CFP2+IbULYPQRDdAFWef1NTE157\n7TWkp6cjOjra4bX58+d7xLAuw0yeP0EQ/o8q8e/Rowd69OjhaVt8A6rwJQiiG6BK/G+99VZP2+E7\nUJ4/QRDdANV5/iaTCUVFRaiurnbYPmTIkE43qkuhPH+CILoBqsQ/Ly8Pr7/+OpqamtDQ0IDQ0FAY\nDAbExcXhrbfe8rSN3oXy/AmC6AaoyvZZvXo1brjhBnz44YcIDQ3Fhx9+iJtvvhnTpk3ztH1ehctm\nm8dPMX+CIPwYVeJfVFSE6dOnO2ybMWMGvv76a48Y1WUoXj9AYR+CIPwaVeIfFhaGhoYGAEB0dDQK\nCwtRW1sLg8HgUeO8jr34m0n8CYLwX1TF/MeMGYMDBw5g4sSJuPLKK7Fo0SJoNBqMHTvW0/Z5F7Od\n+FOeP0EQfowq8Z89e7b1+xtuuAFpaWkwGAwYNmyYp+zqGhTPPyCAYv4EQfg1qlM97Rk8eHBn2+Eb\nKK0dgoJJ/AmC8Guciv/ixYvxzDPPAACee+45p03dFi1a5BnLugIl7BMYDBjqu9YWgiAID+JU/LOz\ns63fT5kyxSvGdDlK2CcoCKiv7VpbCIIgPIhT8Z84cSIAMa2rpKQEN910EwIDA71mWJegeP5BwbTg\nSxCEX9NuqqckSfjuu++g0Wi8YU/XYrIXf4r5EwThv6jK87/iiiuwYcMGT9vS9diLP+fgdAMgCMJP\nUZXtk5+fj//973/48ssvERcX57D4618LvpZsn8Ag8VWWAX8bUE8QBAGV4j916lRMnTrV07Z0Pfae\nP2CJ+7uVDUsQBOHTqFK2yZMne9gMH8Ei/iwoCByguD9BEH6Lare2srIS+fn5qKmpAefcut2f0kC5\nuTXPnyAIwv9QJf67d+/G8uXLkZycjIKCAvTs2RMFBQVIT0/3K/G3hn3sY/4EQRB+iCrxX7NmDebN\nm4dx48Zhzpw5eOWVV7Bx40YUFBR42j7vYt/eASDPnyAIv0VVKoter8e4ceMctmVnZ2PLli0eMarL\nMNtV+ALk+RME4beoEv+oqChUVlYCAOLj43HixAmUlJRA9jdxbJHt42fvjyAIwoLqVM+8vDyMHTsW\n1113HRYtWgTGGK6//npVFzEajVi4cCFMJhPMZjPGjh2L2267rUOGewT7xm4AzfElCMJvUSX+M2bM\nsH6fnZ2NzMxMGAwG9OjRQ9VFAgMDsXDhQoSEhMBkMuG5557D8OHDMXDgQPes9hTNPX8a5UgQhJ+i\nKuzz9ddfW8M+AKDT6VQLPwAwxhASEgIAMJvNMJvNTltEdykmE8CYGOYC0ChHgiD8FlWe/5EjR/DZ\nZ59h0KBBmDhxIsaMGYOwsDCXLiTLMp588kkUFxfj6quvRlpaWot9cnNzkZubCwBYsmQJdDqdS9dQ\nCAgIcOvYmqBA1AcEIio6BlUAYrRRCHDThs60y9P4ql2A79pGdrkG2eU6nraNcfuKrTaoq6vDrl27\nsG3bNuTn52PYsGGYNGkSxowZ49IF6+rq8Nprr2HOnDno1atXm/sWFRW5dG4FnU4HvV6val9eXQHI\nMlh0HOQv3gff+h2kOQ9DfnsJpOfeBOvZ1y0bOmqXN/FVuwDftY3scg2yy3XcsS0lJUX1vqq7loWH\nh2Pq1KlYuHAhli1bBoPBgNdff90lw5TzZGZm4uDBgy4f6wnkj1dA/uAN8YOpSYR8JEv7asr2IQjC\nT3Gpa1leXh62bduGH3/8EREREaozdqqrq6HRaBAeHg6j0YjDhw/j17/+tVsGdzqlFwFlVoHJBGgC\nbZ08qciLIAg/RZX4f/LJJ9i5cycYYxg3bhyeeeYZ9OnTR/VFKioqsGLFCsiyDM45xo0bh1GjRrlr\nc+dSWQZERovvTSaL56+IP3n+BEH4J6rEv7GxEQ8++CAGDx7s1kV69+6NV155xa1jPQk3NAAN9UCI\nZfHabAI0dmEfyvMnCMJPUSX+99xzj6ft6BqqKsRXYyMAgJuagEC7sA/l+RME4ad07zFVleXia5MQ\nfxgbRYEXef4EQfg53Vr8eWWZ+MZoFDMKrOJPMX+CIPybbi3+Vs8fEGmejRbxV7J/KNuHIAg/RbX4\nm0wmHDt2DDt27AAAGAwGGAwGjxnmSTjn4LLZUfyNjYCxEYw8f4IgugGqFnzPnz+Pl19+GYGBgSgr\nK8P48eNx9OhRbN68GY8++qinbex05HdeBgsMdBR3o7FlzJ/EnyAIP0WV579q1SrMnDkTb7zxBgIs\nTc8yMjKQl5fnUeM8RskF8IM/gutLbNuahOeP4GAq8iIIwu9RJf6FhYWYNGmSw7aQkBAYjUaPGOVx\njI1AowE4exIICLRsa+n5c/L8CYLwU1SJf3x8PE6fPu2wLT8/H0lJSR4xyuM0WtYqOAfiLe/BEvN3\nzPYhz58gCP9EVcx/5syZWLJkCa666iqYTCasW7cOGzZswL333utp+zyDpagLgBD/iwVAfa24GdCC\nL0EQ3QBVnv+oUaPw9NNPo7q6GhkZGbh06RIef/xxDBs2zNP2dTqcc5HSaVm7YAnJYnttjdiBirwI\ngugGqO7q2bdv319Mmwfj0UMwr14B6dE/gwU0e4umJtG2YdhY4NAeoK9llGSdnfhrqL0DQRD+jSrx\nX7NmTavbAwMDERsbi+HDhyM6OrpTDesITafygBM/C0HXxji+aIn3swEZYHMXAKXF4ABQWy1etw/7\n0BhHgiD8FFVhn4sXL2L9+vU4cuQIiouLceTIEaxfvx5nzpzBhg0b8OCDD/rMcBYAtoXaplaykZR4\nf3AImKQBgoLEzxbxZ8GU508QhP+jyvOXZRmPPPIILr/8cuu2PXv2YNu2bVi8eDE2bdqETz/9FMOH\nD/eYoS6hxOqbmlq+1mgR/6Bgx68OMX/K9iEIwr9R5fkfOnQIo0ePdtg2atQoq7d/xRVXoLS0tPOt\ncxfFY29qbPma0RL2CbaIfqD4yutaWfAlz58gCD9FlfgnJSXhu+++c9j23XffITExEYAY0xikhE98\nAGtxVpuef4j4Gmgp8qppJeZPnj9BEH6KqrDPvffei6VLl2L9+vWIjY1FeXk5JEnCH/7wBwBAUVER\nZs6c6VFDXaLNmL+lwCtYiD+TJFHlW9da2Ic8f4Ig/BNV4t+vXz+8+eabOHHiBCorKxEdHY2BAwc6\n9PnJyMjwqKEuYfX8WxH/5jF/5fs6e8+f8vwJgvBvVOf5BwQE+JbAtwE3O/f8udLaIdhe/INEhS8A\nBAWLpwGA8vwJgvBbVIl/fX091q5di6NHj6KmpkZUyVp4++23PWac21g8f240gjV/zdgs5g8AgXbr\nFcoTgUZDnj9BEH6LqgXf9957D2fOnMEtt9yC2tpa3H333dDpdLjuuus8bZ97uBDzB2ATfMZsNwIm\nUcyfIAi/RZX4Hz58GH/4wx+QlZUFSZKQlZWFRx99FFu3bvW0fe6hiLZJRZ4/YBP8oGAwZnlW0Ggo\n7EMQhN+iSvw55wgLCwMg+vjX19cjOjoaxcXFHjXOXawx/9bmDRhFUzemzOkFWhZ8ASLjh8I+BEH4\nKapi/r1798bRo0dx2WWXIT09He+99x5CQkKQnJzsafvco81sH4NjvB+wtXhwEH8NhX0IgvBbVHn+\n9957L+Lj4wEAc+bMQVBQEOrq6jB//nyPGuc2chvtHYwGR5EHHMI+ViSJirwIgvBbVHn+1dXVSEtL\nAwBotVrcd999AMQ0L1+Et9XeobHRcbEXAAsMFp09yfMnCKKboMrzf/HFF1vdvnjx4k41ptNoo7Eb\nV4a026P8bN+igjx/giD8mDY9f1nJl+fc+k+hpKQEGvtFU1/CGvZpzfNvJebvNOxDnj9BEP5Jm+J/\nxx13WL+//fbbHV6TJAk33nijZ6zqIG02djM2AqHhjtucib8Lw1y4sRE4egBs+FgXrSUIgvA+bYr/\nW2+9Bc45nn/+eSxatMi6nTGGqKgon+rk6YDyxOJsmEt0rOM2y/tg9uLvYp4/37sN/MM3Ib30Llh8\nkssmEwRBeJM2xV/J8Fm5cqVXjOk02ujtg0YDWHDzVM9W8vyZZKsXUENVhfhaVwOQ+BME4eOoyvap\nra3Fl19+iXPnzsFgMDi8Zv9E4DO0lerZaszfIvr2NwWNi9k+NVXia0O9+mMIgiC6CFXi/+abb8Jk\nMmHcuHG+G+qxwxrzN7Y2yauxZZ5/q0VeLmb7KAPgDQ3qjyEIgugiVIn/iRMn8N577yFQmXrl6zhZ\n8OWcC/FvnurZ6oJv654/NzUB1VVgsTrH7ZZJYLyhrmUnUYIgCB9DVZ5/r169UFZW5mlbOg/FYzc1\ni/k3GQHOWxZ5ueD5803fQH5+fsv1AGvYhzx/giB8H1We/5AhQ/DSSy9h8uTJiI6OdnhtypQpHjGs\nIzht7NZ8fq+Cs8ZurcX8Sy6KuL6hHgiPtG1Xwj4Nde4bThAE4SVUiX9eXh7i4uLw008/tXhNjfjr\n9XqsWLEClZWVYIwhJycH06dPd91atThr7Kb08m++bhHYmvg7CftUV4pvGpyIv4EWfAmC8H1Uif/C\nhQs7dBGNRoO77roL/fr1Q0NDA5566ikMHToUPXr06NB5neKsn7+yAOwk1ZM19/xbmwdQbUnptMvq\n4cZGkUUEUNiHIIhfBKpi/vZwziHLsvWfGmJiYtCvXz8AQGhoKFJTU1FeXu7qpdUjOwv7CIFukeff\nsy/YtbcAg4fZtjlr7FbVUvxhWewV23077MP37wRX5hUTBNFtUeX5l5eX4/3338exY8dQV+cobmvW\nrHHpgqWlpThz5gwGDBjQ4rXc3Fzk5uYCAJYsWQKdTtdiH1X2KqJtNiEuJgZMowFvbIRRYqgEoI1P\nQFDzc899zOHHipAQyMYGxDXbr7SmGhxAVGAAgi2vNVWVQbmVBcomxDixOyAgwO331BnI1VW49PZf\nEHn3wwj71UyfsastfNU2sss1yC7X8bRtqsT/3XffRXBwMJ577jksXLgQixYtwtq1azFixAiXLmYw\nGLB06VLMnj3bOhnMnpycHOTk5Fh/1uv1Lp1fgdll6eiLL4IFh8C85Ang9HEAQFWDAaydc5vNZsBo\nxKWfDwHxSZYbiAHcEtOvKi2GZDkHLzgnDgoMgrGqyqndOp3O7ffUGfDSiwCA2uKLqFdsLy1C4H/W\noPHQHrAb74I0+dous681uvozcwbZ5Rpkl+u4Y1tKSorqfVWFfU6cOIH7778fffr0AWMMffr0wf33\n34///Oc/qi9kMpmwdOlSTJo0CWPGjFF9nFvYh2uajCK/v/AckJACDBwCJKtYa2ASUK4XaZ3frRPb\nlMVewDHmX2tJ89Ql+nbYRylAq7OFqfjOjWjctUksjp892TV2EQThdVSJvyRJ1vbN4eHhqK6uRnBw\nsOq4Pecc77zzDlJTU3H99de7b61KHHLwm5qEUDc2gE2aBs2Cl8DCIto/iUYSGTxmM/j278UNRIn3\nA44xfyXTJyHZtyt8reJvF/OvqQKL1AKJqeC11a0fRxCE36Eq7DNgwAAcOHAAl19+OYYNG4Zly5Yh\nKCgI/fv3V3WR48ePY8uWLejVqxcWLFgAQLSLHjlypPuWt4V9cVZTI6AscMbEqT4FkzSwTi8ouQCc\nOeHo+RuaLfhKElisDvzkEbfN9jiNQvx5XY11E6+thiZSC3NklK1QjSAIv0eV+D/44IPWQS6zZ8/G\nV199hYaGBlx33XWqLpKeno4vvvjCfStdRZYBTQBgNgnPv0LEzZq3ZGgTyfJQNDQLOHYIfOcPQGpv\nsY0xx/BOTRUQEQWERgANDeCcgzHfa/LAlaZ8duKP2hpIUdGQI6PB9ce7xjCCILyOKvE3m82IiooC\nAAQFBeHmm2/2qFEdRpZFLn99rYj5l1sWTWJcF382chwQEgq+eyvY5Egh/DFxDvn8vLYaiNQCYWFi\nBoCx5Zxgn0B5Wqm1F/9qSD16i5sXef4E0W1QJf7z5s1DZmYmJkyYgMsvvxwhIT4obHZw2WwTf6MR\nqCgToq2Nbf9gBUmscbD0YeBBIcDuLeCHfhQiGRYJ7uD5V4vtIZYMpoY63xT/xlZi/rU1kCK1QIQW\nMDSANxnBAn2/cytBEB1DlfivXLkSO3fuxIYNG/Dee+9h5MiRmDhxIkaMGOGbc3zNZpv4mowi7BMV\nAxag6u0Keg8AqivB4uKBkBBwJgEXzonQT2io48JubRVYah8gVBH/BiC61bN2LYrNjQ2iO6kmAKit\nFgu+EVrxWk0VEBvfdTYSBOEVVKlhVFQUrr76alx99dW4dOkStm/fjs8//xxvv/023n//fU/b6DpK\n2AcAjEbwCr1Li70AIF05HbhS9B9i4ZFA3zRRJ6CNAQICgUq7Lqd1tUBEJFhomFgk9tV0T/sbVl2t\naGthNkGKigYLjxK211ST+BNEN8Dl9g5VVVWorKxETU0NwsPD2z+gC+B24s+bmkTYx5XF3lZgmaKg\njUVFg4WEOaZ6NtSLofBK2MdLzd34xUKYn3sAXG2svtFuClttjTVFVYrSijULAKipbOVAgiD8DVWe\nf2FhIbZt24bt27fDaDRi3LhxWLBgQastGnwC2S7s09QIlOvBMoZ36JQscyT4V58DUTGiO6jFi+ZN\nTaIBXEioY9jHC/Dzp4CLBUDxBZt4t4WD518DGEVsX4qMBsJEh1JeU03DaAiiG6BK/J999lmMGTMG\nc+fORWZmJiTJ5QcG7yLLYMEhIoxRXSkWOl3J9GmNvmnA8DFgmcPBjx22hXYULz80zCr+XpvmpdhQ\nry7MxA0NYuGbcyH+AWIyG4vSijRVgDJ+CKKboEr8V61ahQBXFku7GG422zp3WvrZuBrzbw6TNNA8\n8Iw4/9l8wGQSXr8S/gmxib/Xevpbrs0batXdbAwNQHQcUKEXhV4a8TuVoqKBgGDxM4k/QXQLnCr6\nDz/8oOoEvjjJy37Bl5cUAQBYRz1/e0LtUjotQs/CwkToBwDqW4o/v1gIU10VEK4iPKMWxfNvUHmz\nMTQAcfEi+6muxprOKkVpwRoaAaryJYhug1Px37p1q/V7zjmOHz+O6OhoxMXFoaysDJWVlUhPT/dR\n8TfbpnKdOyVCHfFJnXd++4VdO8+fSRpx02nF85fXrEJ1kxFY8JfOs0NZW1AZ9kGjAYjrKTz8uhrR\nvE6SRK+jhkYgQkv9fQiim+BU/O2nd33wwQfIyspyaOfwzTffoLi42LPWuYssAxoNEBAg4v0jxoJF\nu1Dg1Q62lE478VeeBkLDWm/uVlMFs6Ghc9cCrJ6/SvE3NICFhIKHR4hsH8aA8EhbK4oorWP/IoIg\n/BZVK7dbt27Ftdc69nm/5pprHJ4OfAUuy2JBU9JYZ/NK13RyOwpr2Kfe2t/f+jQQoQUvuQAAkP++\nEvKXn4ntdbXqUzJVwpUbj1rP39Ag7AyPBK+rBa+tEZXJFliE1tahlCAIv0aV+EdHR2Pv3r0O2/bu\n3Wvt9+NTKL38JUmI9KDLwPoN6txr2Im/NfQSKuL9bPQE4MQR8IM/gm/+H/jRA+L1uhrwhnpwk6nz\n7HAh5s85F+IfHCoGz9dZ8vwj7X6HUVqK+RNEN0FVCs+cOXOwdOlSfPnll4iLi4Ner0dhYSEee+yx\n9g/2Ntwm/tK8p4FODPdYCVFSOuttAhwqCt7YhBzwrz6D/N5Ssb2mWgi+EgqqrxG1Ap2Bku2jxvM3\nGsVnExICREQC+hJxo0xKte0TEUX9fQiim6BK/IcOHYq33noLBw4cQHl5OUaOHImRI0ciMjLS0/a5\njp3nz3qrmzfgMvYpnYZ6sYCq5MxHxwLDLgf27xT71FY7xuRrO1/8VcX8laZuIaFg4RHgZ04Cshls\nwGDbPkoIqK5GpIQSBOG3qE7ej4yMxBVXXOFJWzoHZYqX5MGGcyHNwj6hoQ79+6Wrfg05/xhY+lDw\n3VscQyn27ZQ7iisLvsqTR3AoEBMPVFmmsIXb3cCVVFVfnkZGEESnoLqf/7fffoujR4+ipsZRvBYt\nWuQRw9zGLuzjKVhgIBAYJBZaDfW2m4Hy+oAMaJZ+DHnj18DuLbZCM8BxkEoH4Jy3muopb/waMDZC\nuvomxwMsgs5CQoHptwIpvYC8Q2BZk2x222cxEQTh16hSyNWrVyM3NxcZGRk4ffo0xowZg6qqKmRm\nZnraPteRPS/+AICoaKCqXMT9m4m/FYtXrRSaAei8PPpGg7jRSZLjMPnN/wPftqHl/oo3HxICFhgI\nKWsipLseAOvZ17aP/RONG3B9ici2IgjC51GlkD/++COefvppTJ8+HRqNBtOnT8eCBQtw5IgPzqv1\nlvjH6MAry4VQhrUu/kyJoZfaxL8jnr/5nSWQv/9K/KAIdIxOTCtrahKD64svAJXlLQ9utAv7OKMD\n7Sl4dQXkP90HHN7d8rWGejFghyAIn0GVQhqNRsTFiQXAoKAgNDY2IjU1FWfPnvWkbe5hFX/PDplh\nMaJHTmthHysW8bf3/N2N+fNGA7B/J/iG9ZaQjyXUo7SqbqgDLhWLucWGBlv9gXK81fN3Yitgjflz\nd7qS1lQDZjN4RZnDZm5qgvz0/4Fv+db1cxIE4TFUiX9qaipOnToFAOjXrx/Wrl2Lf/7zn4iN9UAa\nZUdRPEyPe/5xYk5AQ73o798aVs9fxPwlbQxQVwP523WQP37LuhvnHPIP/wG3GxDDS4psXj4gWjdz\nDpSVAmdPWj1/pgxeqa8T+yhUVjjaYrBl+zilI43pjI2O11HQl4obXvEF189JEITHUKWQs2fPtrZx\n/t3vfoczZ85g3759mDt3rkeNcwuvhX3igCbLiMhQJ4IaYcmkqdADoWGQtDHgtTXge7eJf5yL1y9d\nBP/sXfBdm6yH8o1fg3++SnTfBMAvnLO9tnebzfOPSxBfG+rBHcTf0QO3pXq2MVtYuTG0EfPnZjPk\n7d+3LFZzJv6XLC1AqHKYIHwKVdk+9kNbkpOT8eyzz3rMoA7jJfFnMTqRGWMyOQ2lsKBg0eit0QCE\nRYhZubXVwkNvNAiPODIKKLKItl1fHV54VnxTVioWji+cExlGgy4T4t/b8jtRPP+GWnFeSQJkGbyy\n3LGPkKH9mD8LsGQxteX5nzwC/tGbQEAA2Jhs23Yn4s8viaceXkPiTxC+hI9PZXEDL8X8HYqgQtuI\noyuhn/AISJFa4MJZ2zhFy0IwLzovfraIP+dc7AcAZZfEtgvngOSeon1EuV7MEwbEgHkAqK8Dv1gI\n9B0ofq5qtuhraAACAtsfYh8a1vYksvpa8fUnx3YfTj1/Jc2VPH+C8Cn8UPxFzJ95I+yjoEb8wyIg\nRUY5pmUqIRFLuIYrnn9VuXVvZ6zWAAAgAElEQVRhmJeVim0XzoOl9rb2KeJ5h8V2i+fP64Xnz/oO\nFN69JeOHGxpgfulxseDaVrxfISSsTc9fWQzmRw44ZPDwxkbr9Rz2t4Z9qGcQQfgSfij+3srzjxH9\n8IG2M2iUCtpwS9jHHotXbPX8lUrgQlt8H2WlojagqhxI7Q0kpohZBRfOiesrQ2oKzwnvO7mH6Gek\nZN0UnAHOnAD6DgK74Tftv6/QMFu30NZQbgy11cDZfNt2ivkTxC8KEn83YQEBgDZafN+G56/k+rPw\nSBH2AQBtrEjRvHRReM8XC8V2JeyjhHy0scLzvyBuDiy1lxgYoxRmhYYKb55J4If3iH169gOiY8Et\nYR9eLM4t3Xk/pCunt//GQkLbjvkrNwYmgf+0z7ZdEf9Gm/hzWRbirwkAjEaRrkoQhE+gSiE558jN\nzcWiRYvw+OOPAwCOHj2KHTt2eNQ4t1DEn3k45g/Y4v5thVMim4V9ACClJxCfLEIiZZdE1pA2RnQA\nlc1A4Vlx7p59hedfeEYcl9oHAMB69bNcN0z0FAoNEwvDqb2BPmmiuZxS6FVSJIbaKGsD7dFezN9Q\nLxaF+wywhZ6A1j3/yjLA1GS7WbXSLprX14n211QZTBBeRZX4r1mzBhs3bkROTg70ej0AIC4uDuvX\nr/eocW6hxKE1XnioUeL+YeHO94loGfZhKb3AEpJF2McS8mGDhop2DbU14IXngB59wHQJQNkl8OM/\nAXEJorAMAHpZupXaTw8DwKZcJ24GFvHnnIvBMvHJ4olBBSwkrO1GcQ0NQGgYmC7RcVG5NfG3hHyY\nsgjdLPTDa6ogv/Y05BWLwTd+o8o+giA6B1UKuXnzZjz55JOYMGGCtXtlQkICSktLPWqcW3gr5g+7\nofBtxfyt2T52YR+L54+aKnBL1g4GDRFfK8rEwm1qbyA2QbSDOHYILH2o7bpW8bfcdMLCgbBwsDGT\nxc/RscLjrrMUVyXa9exvj9DQtrt6KhXNkVrHauXWwj5Kpo8yTKdZuqe88i/Cvt4DwP/5kW3tw476\nDV9C/nadevsJglCFKoWUZRkhzYqDDAZDi20+gTXs4wXPX2mtoCbmHxaBwH6DwCZNAxs2BixBDJTn\n3/8HSEgBswg0P3lEtGjo0QfQWQq4DA2AnfgjpacI5Sge/7Qbwe6cBxZs+X1oLU8I5ZeAS8VgSS6I\nvyXbx1qA1gzeUC+uGxEFNNTZir1a8/xLigCNxjpXwb6pHa+vA/KPgl1zM6SHngUCg8C//sLxWpyj\nbs374P9c7VjARhBEh1GlkCNGjMDHH3+MpqYmAOI/5Zo1azBq1CiPGucWshf6+VtgE3LAfv8YWFS0\n853iEsXX2Hiw4GBIs+aDaWOE5w8AISGQ7n9KdAkFwI8dEufu0cfWugEAS7/M9n1AIFjWFWCWpwVp\n7GRI9q2ZLdPLeN5P4kbiiviHhomZCE3G1l9vqBdrHMoTjSLoivibTOAmy9/J6TwRolKG19jH/AvE\nOgbrOxAsKgbom+bYAwkAigogl10CuAz535+qfw8EQbSLKvGfNWsWKioqMHv2bNTX12PWrFm4dOkS\nfvvb33raPtdRPH8vxPxZRBSksZPb3qdvGqQ/rwDrm+b4Qo8+YDfNgvTky2A9+ljFH8d/BjQaIdhK\n64akVLBmk7Wkux9p2bNfoVd/ICIK/L9rhQ2JKerfVIhjfx958/8gb/zatiBrEJ4/i3QUf66IP2Ad\nBYkzJ8DSMkRYSpKA2mrwJiO4LIOfF72i0FssXjNdohgtCYDv3wl+cBf4kf3itQk5wP4dtoVvgiA6\njKr2DmFhYViwYAEqKyuh1+uh0+kQHd2Gt9uVeDPsoxKW3LPlNkkCu/YW24awcBHKaWwAUnuDBQSC\nR0UDoeFgGSNcu15wMFjODeD//rvYkNhD/cFKn6KGBvDgMPA174mW0ft3Qnp4oa2RnTPPHxChn6Lz\ngMkElpYp1okiooCqCsjP3Ac2forIToqOE14/AOgSrUPu5X99LEJWCcnQ9OgDPuO34NtzwY//DNbD\nbv4AQRBuo0r8ZYugRkVFISoqyrpN8sKiqst4q71DJ8MYAyKjgQq9eBKAuEFIf3zFrXm67Mrp4N/+\nS9wEI9TPWmYhlmlehnog74II/4wYCxzYBZw5KYQ91Bb24TXVoodQc8//5FHxfVqG+BqpFbUItdXg\nm/8HhEUA9jOWlfBY8QWRBcVl4MI5BP9qJgzaWHE9pd8RQRAdRpX433HHHa1u12g0iImJwZgxY3Db\nbbf5xgIw91JLZ08QJcRfyecHWn9qUAMLiwCbeQ9QUeYwX7hdlAyihnrwn/YAwSGQpt8K+cAukdpp\nn+0D2Hn+RhGuMpuBRgP4iSPiCUapcI6IElXJyjG11WBjbDOhmS4RHAA/ekAIf+YI4MgBBI+egEbG\ngB59HDqbuoK89gOgz0BIWRPdOp4g/BFV4j9nzhzs2bMHM2bMQFxcHPR6Pb788kuMHDkSKSkpWLt2\nLT766CPcd999nra3fbwY8+90LHF/xfPvKNKEHNcPCrW1deaH9wKDh1vXHri+RIh7aJitbYV92CdC\nK24Q9bXAqTywcVdaT8siosQTRcYIERKqLAPrbesWq2Q2cUvDOOnm2cAd9yIocyig14Ol9gbf+h24\nbFZdswCI5AS+6RuwoXqAxJ8grKgS/6+//hovv/wywizjClNSUtC/f3889dRTWL58OXr16oUnn3zS\n6fErV67E/v37odVqsXTp0s6x3Anc7MUK306GRWqFQHaS+LuFZcGX5x8TIahf3S6EXqOxDWQJCRPt\nLULDHcU/Sog/v3BOrF30sRN3ywIxGzEG6DcQ/Ou1jmGfiCjR/vr0CRGqSkwRLbEVevQR17hUIvob\nqaWhTrSWaKW6mCC6M6rc4/r6ejQ2Njpsa2xsRH29yAiJjo6G0egkNRDA5MmT8fTTT3fATBfw1iQv\nT9BvENBL9ObpMiy1A3xHLiBJYEOzRIfUyGhbKqZS1xAZZUvfNDbaMpYssXmmS7SdVysWdtnQLLDp\nt0F6+lWHDCbGmHjC4DIQn+go/LB7GnI17q+0uSDxJwgHVHn+2dnZePHFF3HttddCp9OhrKwM33zz\nDbKzxTCPQ4cOISXFuTeWkZHhvWpg7r0K385Gyr4GyL6ma41QUj1ra4BR40VNAiDEu0R4/tZGdhFR\ntsItYyNYVLSI2ysCbSf+LPtasH6DbLULfZqlvir7F50HWlvnSO4lmskVngUbNV79++lE8ec1VUDp\nRbD+6a4fW1EG+d1XIP3fAjClOJAguhBV4n/nnXciKSkJO3bsQEVFBaKjo3H11VcjJ0fElDMzM7Fo\n0SKPGqoaL7Z38EdYYKBIOTWZIE253vaCNgY4Z2nhHGITf1ToRTWwvedfXCjCRHYzD1ikVsT727q2\nZdG31dTY4GAgIdnW8VQl1rnItTXgstyhOQ/8m3+Ab/0W0vI1rh977BCQfwz82CGwCVPdtoEgOgtV\n4i9JEqZNm4Zp06a1+npQUFCnGJObm4vc3FwAwJIlS6DTue4hNYSFoRpArE4HjRvHe5KAgAC33pOn\naW5XaVgENLE6xI7LtmYKVScmQ2ncEJ2cjECdDlW6BBgvnIUuWotSzhEen4hay41Dk5gCXUJiK1dz\nTl2vvqgFEDkwA6EWe+xtq+ybBtP50y59hnVNjagFAC4jLiQIUlvV2O1QUVUGY6MBcWGhLv8uayou\noR5AaFkxIj34N/BL+RvzFXzVLsDztqkSfwCorKxEfn4+ampqHPq+TJkypdOMycnJsT5NALB2EHUF\nuVo83pdXVoEx1W/PK+h0Orfek6dpYddtv4eckIyyMtsQeNlu9m+lwQim10MODAKvqoS+SISD6ppM\nYoqYqQbm2HiX3yuPFn/otbEJqLMca2+bHKkF1xfj0qVLqtNX5Qu2nkBlZ0+DpfRyySZ7zJZZy2Vn\nTyM+c6hL78+cfwwAUJ+fh0YP/g38Yv7GfARftQtwz7a2wu/NUaWOu3fvxvLly5GcnIyCggL07NkT\nBQUFSE9P71Tx7xQo7NNhJPvB7ApK7B+wLfhGRInuoUo8XRlYX1fjuNirlozhkF58x3k7ihidqCeo\nr7WlmrYDt2873YG4P+dcVCUDQE2l6yewDOSBm7UKBNHZqO7nP2/ePLzyyisICQnBK6+8grlz56Jv\nX3Wl9m+88Qb+9Kc/oaioCPfddx9++OGHDhndJiT+HoFp7TKQlJi/UuhlGTKPoGDbYBulL5Er12Cs\nzT5E1nkG5S54QxVlthtXRxZ962ttHUurXTsPr68VxXvRsUB1pW1WM0F0Iao8f71ej3Hjxjlsy87O\nxty5czFr1qx2j3/kkUfcs84dvNjVs1uhxMoDAsSiMGyFW7xciD8LCgZXxN8dz789lPkJFXrbdLD2\nqCoX+1ZVgNdUwYVaZ0f0tmw1l2sGlIE9oyeB564X3n8H1h4IojNQ5R5HRUWhslJ4K/Hx8Thx4gRK\nSkqsPX98CvL8PYNSe2A/uEZp7qaEQ+w8f7fCPu1hEX9eUdbOjgIuy0BVhRiMw1jHPP+yEtv3LoZ9\neKEI9SjtLFzNWCIIT6DK8586dSry8vIwduxYXHfddVi0aBEYY7j++uvbP9jbkPh7BqX7pv3gGkvO\nPlcG0NuHfTwh/toYUf1boTLsU1st2lHExos1go7E/BXPXxPgctgHRefE59J7gAiVdaBBHefctV5N\nBOEEVeJ/ww03WDt4ZmdnIzMzEwaDAT16uNAq2FuQ+HsEFhgoOnHai782BggKsolZcDBYcCh4UJBH\nwhpMoxFPIGpj/pYCLxYdCx6pBa+pAjc0ABpb6Eo1ZaVCwKNiXLqJ8IO7wPfvFE3uGAN69gU/d8q1\nayvn2rcd8icrIS1ZJdpqE0QHaFchZVnGXXfdZZ3iBYgUJJ8UfuAX29L5F4E2xiHswyRJTCS7ZJnV\nGxQMNjEH7Kbfec47jYmzFW61h7KfNlZ43DVVkF9+Evyzv7l8WV5WKhaxo6JVx/x53mHIK14CwiIg\nzbwHAMAGXQYUngWvrnDdhp/2ibnMFy+4fCxBNKdd8ZckCSkpKaipqWlvV9/gl9zbx8dhU38FNvEq\nx43xyYBS9xEUDDZwCKSpv/KcDTE61WEf600iOk70ITpzUgivyrALN5ttP+hLRCgrSguozNbhJ48C\njIk+Rn0HCvszRZUzP3pI1TkczmepsOYlJP5Ex1GlkBMnTsTLL7+MTZs24aeffsLPP/9s/edzyDLA\nGMVFPYCUfQ0kuzbNAMASkm0/NGvG5hFidEC53umAeQcKz4mis5g4sMho21xiS3ZSW/Cf9kF+5DeQ\nN//PmuPP4hJEmwq1nn/BaSAhxTFE07OfWCg/ekDsYzJB/n9/E08WbZ2rsdGaNYTSojb3JQg1qIr5\nf/fddwCAtWvXOmxnjOGtt97qfKs6giyT1+9NEr0t/nGij1B9HRAe0eau/Fw+0LsfmCSBKzUJgEj7\nbDKCBbbeloSf+Bny238BZLMYY3mpWOT4J6SIReS6GsenAmcUnAFr1sCOSRJYxnDwowfFTeXCWfCN\nXwO6RLBpM9o41ylbSLP5oHuCcANV4r9ixQpP29F5yLJoKkZ4BRafDKsP7kRMO/V6sTpxvQp9m+LP\nzWYhvtnXig2K+A8eBhw7JBaNnRSUyd/9GwiPhPTIIshLnxHjMIePBZuYA77je4DzduP+vL5WhIqu\nuLrlixkjgN1bRAiqtFhsa0fQ+dmT4pvU3rbW2gTRAVS7yCaTCceOHcOOHTsAAAaDAQaDwWOGuY2L\nk56IDpJgEdCgoA51zFSNfaFXM+QN68EvWnr5XDwvwjyWgTJs8DCwrEmQcm4Qr7cVZim5APQbBJba\nC9KDz4HdOQ/S/U+BBYeIsA8AuaqdBVtlpkErxWhsYCYAgJ85YV0st4/jy9tzYX7ktzA/cTfk3VvE\nxjP5YuD9wCFAyQV1Ya92kH/cDPNbL3bKuYhfHqr+t54/fx4PP/ww/va3v+Htt98GABw9etT6vU9B\nYR/vEhMHBAR6J+QDiJuNJgB873aHzbymCvyL9yH/c7X42ZJOySzTwlhSKqS5C6yzApzF2LnZDFwq\nsa5lsL5pkLKvsd3YIkUKa3viz8+fFt/07NfyxbgE8XldLBAhJcDB8+c/bgYCA4HwSPBPVoAXnQc/\ndUzMQEhMFSEoVwvNGg0wr3gJXOkxBID/71/Aod0URuqmqFLJVatWYebMmXjjjTcQECAiRRkZGcjL\ny/OocW5B4u9VRLpnktfEn0VGgeXcAL7je/AzJ20vKCMmD+8VFcBn80VefkKz0E6MThSKNVv05SeP\ngh89KLabTYD9QrY9UW17/lyWxRjLU3lAVLRtGI79e5AkILmnEHVF/CvLwA0N4E1NwKljYKMmQJr3\nR0CWIS96CCjXQxo7GUxZYyl2UbCPHgQO7gLft03YeeE8UHhGfJ932LVzEX6BKpUsLCzEpEmTHLaF\nhIS0Obqxy+Ay5fh7m6RUMc/XS7DrbgOioiH/4wPrNmvYhMvg2zaIkEqv/i1CUSwgQBSKNfP85TXv\nQf74LaBUhGGcNphrJ+zDd26E/PyD4Hu3tdl/iKX0BIosnr9SFV16ETh7EjAawQZdBhafBHbHXCC5\nJ6THF4sJZompju+3GXJdDeSP3gSvc0zN5kcPiq9nLemiu7cIJykiCvCw+PO8w6hZ/QtaN+wmqBL/\n+Ph4nD592mFbfn4+kpKSPGJUhzCbRSUo4TWk234P6fePee16LDQMbNI04OQx8EbLulPxBTGBbNBl\n4F/+P+Bcviioao24ePAym+fPm4zCCy4rBT95RGx05vlbqpyb7Kp0eU015J0bwTkH37MFiEsAu2Mu\npFvvdv4mknuJIrQKvViEhhB0fvwn0YfIsi4gTbwKmueXW9cJEBcvWkw4CdUYfz4Avv178J/3O2zn\nltRSnD8l7Ny9GRg8DGzIKPATP4PX14JbngQ6G751A+r//Sm4od4j5yfcQ5X4z5w5E0uWLMEXX3wB\nk8mEdevW4fXXX8ftt9/uaftch8I+XofpEltd2PToNfsMEE95loVVXnIBiE+GNONOsMuvALvnD2DT\nb2392NgER8///GnRAwgA37VJhLDsW1jbHytJQMZwGPfvtC6U8g3/Bv9gmYjV5x0GGz0B0pTrRUM5\nZ/YrQ2U4B8scKb4vuQB+4mcgtQ+Yk3kFTNIAPfrYblLNkJX3ZTc3gOtLxFNFQgpQVQHs3wnoS8Au\nzwbSh4rK5+cfgvziH2wzmVUir/0A8kdvtrmPtZGdktlE+ASqVHLUqFF4+umnUV1djYyMDFy6dAmP\nP/44hg0b5mn7XIfEv3vQSyzkWhdWiy8ASalgAwZD+r/HIY3JFiGe1oiLByrLRKjn+69saZSSJG4K\nCcltFgmyy0ZDLtfbbjw/7xNfP3lLPHmOGOf0WCsptjnFLLUXEKsDP3FExPsHDWnzUDb8cuDMCfBW\nQk/mS6L7KLcXf0vIh11zEwBA/tdqIDAIbMRYsHTL01F1hVjryD/avu128IO7wfdsBTeZWn/d1GRb\nj3FSnMYvFkLe/j3k7bkeyTzi509D/udq0eWVsKIqz7+6uhp9+/bFPffc42l7Og6XKdWzOxCjAyIi\nRRjDbAYuFYONGKPu2LgEwGwGz/1SNKYbOES0gNAlAPnHWi4SN4MNGSXmGBzeI9YACs4APfqK0FF0\nHGBp5dCuDUFBYjJZfLKI5R87BISGgU3MafNQNnwM+Pr/B35oN1izOgKz3uJd24v/gV1AjA7s8ivA\nP1kJlF4EGzUBLDRMXG/2w2ApvSC/8hT4iSNgw8e2bz8AbmwUqaqci8+gb1rLnYoviJsKAF5S1GKe\nApfNkF/9o7VqmiX1APqnq7q+KhuLL0Be9hxQWw027kqgA2M8/Q1VLvK8efPwl7/8BVu3bvXN3H57\nzGZa8O0GMMaAXv3Bz58SxVRmE5CortkgGzgESO4JdtMsIb4/7wf6poFZRIc5i/crx2tjENA/Hfzn\nfdZYuvS7+UDvAWCTrlJV78AkCUjqKcZeRkWL3j/aGEiPvwTWo50QWmofIC4B/OCPACwZRqdE5p1s\n8fxRVgpuqBd1Dz/vA5s0DSw4xPrEwexGdUoTpoL1TQP6DRJPH2opLrT2deKnWn9isD6BMGZrAAiA\nH/xRZDqdzQdqqsBu+p3Y3omLz9xkgrz8z4DR4GiL8rrZjMaDu7ttnYMq8V+5ciVGjhyJ7777DnPn\nzsUbb7yBvXv3wqymxN3bUNin28B69RezcS0xZZaUqu645B7Q/HkFpGtvsS62sr4DwfpZPM52xB8A\ngi+fBOQfA1/3d9HttPcAaP70OqQbfqPe/iEjgfShYnzljDsh/eU9sF6t1AU0P44xsBFjgWOHhMDv\n3Ah5yRPgZ07ArC+xDdm5cB58w3oR4pk8XRzbP108MQ0Z1fK8AzOB86dVL8xypddQQCC4ZUB9Cy6c\nBTQaBKZlgJdYCtouFkBe+ZLoafTzftGLa9JVQI++4MdaNrxzN1zDD+wUTzmzHxGa0KyhH9+ei8pF\nj4jMJx+BV1eI6nAvoHqS19VXX40XXngBS5cuRZ8+ffD5559j7ty5nrbPZTgn8e829OoPmE2Qt+WK\nn9uY/+sMadqNACxPAxnDhYc8NKvd48Jn/EZkHFWWgQ0Z6VYjQenGu6CZ/ydxfcZcmjHARk8ETE3g\nuzaD7xQzsfnJo5DL9eKmAhGW4jt/AJswFSxS3BDYzbMhPfN6q9diaZliEd2ZkDfnwnkxG2HY5UB+\nXqseNC88ByT1gKZnX2vMn//3H+KJ4ed9wvY+aWARUWCDhwKn8kSo5h8fgjfUg585CfnB28RCuIvw\n778C4pOsKbItPH/lc/vqc4deTZxzyHu2iWZ6Xoav/wzyM/eJeg8P47JKVlVVobKyEjU1NQgP915u\nt2pkmVI9uwmst8VL/mkvMCADTPF4XTnHkJGQXlsN1j8dLCQU0qz5rRZmtTguKBjSrPki//7m2S5f\nt8P0GyTCXv/7J3D8JwCWNQjOgbRMIDgE/Ju1os32NTfb7A4Ldz5is386oAmA/OVn4MUt6wh4kxF8\n7zarJ86Lzosaj/TLgKpyyC8/Cfm9pY4HXTgLltoHAck9xPD6wrPgP24Gy5okenDpS6zZTmzwMMDU\nBPnVP4J/uw78+y9FXyWjUSzYthOe4Yf2QH7/dXCTSRQAnsoDm3K9aKbXo4+D589Li4D8YwjMGC6y\nrH7cZDtR3mHwd18B//tKu/fe1KJ2orPhdbXgu34QC/GuDhtyA9VFXp9//jkefPBBvPrqqwCABQsW\n4K9//atHjXMLmYq8ug3xyaLvzsMLIS1Y7PZp1Ii902MHXWbt9+NNGGNgU66zpaym9AIs8XqmSxA/\nMwnS/y0Ai0tQd87gELA5DwMlFyAvfED0/bEXzP98AflvrwCWtQYUnQdL6QU2eLgQ8uIL4D9utmZg\n8VN5ooFer77QJIv1GPm9pYAkgd16N9jI8eK6licVpGWK81RXAvFJ4BvWi9BNYipw+jhweG8Lm+Xd\nWyB/9q74/oevwHdtAv/qM1GwFxYBNsGyeJ7a27oOAgB85yaAMWgfXShuol98AF4sxpHyI6JGgu/a\nCHnH9+L7NasgL3pYXTdXN+HbNogCvynXeewa9qgS/2effRaVlZWYO3cu3n77bcyePRsDBgzwtG3u\nIZsp7NNNYIyJvjtDRnXLDC+WNUnE79MyxBoAt8TGY+Ih3XgXpHufsAmrSqQx2ZD+vBJs2o1A/jHh\nScsyePkl8A3/BgDIO38Q4zD1JUBKT7DEFEhvfApp8d+AoCDwTd+Al+tFW+z4JLCJV0Fj6amEC+fA\nZtwFFhMHNuO3ohbDkiXEQkLBxk8Fu+ZmSPf8QbTt5oD00LNAQjLkf3wgMowscLMZ/J+rwX/4D3jB\nGeDEz0BgkHjiuXAW0j2PiYwmQHj+gAhVAeB7tgLpQ6HRJUK69wlAkiC/8Tx4TTX4kQOiyC4tA3zt\nB6Ltxp5toiDv2CFw2Qxe13ZcnnMOrnLcKG9qAv95P/gP/wEGXdb+gn8noSrVc9WqVdaePj6PLIv+\n7V1tB0F4GBYUDOnxl0R7iPOnbX/zsTqwZPfHrDJtDNjNv4Oc3BP8wzeAg7sg/7hZFKRlTQLfv0MU\nw8FWrKYMrGFjJoP/uElkIhmNkB59ASw8EgER4cIpG5ABdpXorMoSUsBuvMvh2tKs+TY7siYBIaFg\nCSmQfnsf5GULwf+5WrS8AIDDe6w9muRP3wZMJrB7/gD+zVqwsVeCXTbadmJLwR0vPCvmS5dcALvS\nsgiekAzpwecgL1kA+dOVQOFZsJtmgfXqD/mNheCfrwIsi7B89xZg71bw3VvB7rwfTBsLXlsNyS57\nCrAU/v1jNaRFbzn8Lri+BPIHy0Qx4sAhItV1+Z9Fmm9AIKTZD7n7a3MZVYoeEBCAyspK5Ofno6am\nxiH2NmXKFI8Z5xYU9iG6EUoVMbcsOLNIrUjp7Ixzj8kG/8/nkN99DTCbxGzmoVmiqOvTt0VtQ6bj\nkwW78jrwbblAcjyk2Q+JAjYIr1567AUxyF7l/09p7gLbeTNGgE39Ffj3X0GO1IJdfSPkjV+Leo+4\neLFIHRQMNnJcCyEGIOoqQkKBsyetN0mWMcJ2/r5pYFdcA77pG/Fz5gjx/uISwLfnAsEhlve+BTCZ\nAG0M+IdvWs/FdYnWVGFergf/8jPRZ2rfdrDrZ1qvw7d+B5w8Cnn5C5Du/6PoQXXsENitc8Cyr+20\n350aVIn/7t27sXz5ciQnJ6OgoAA9e/ZEQUEB0tPTfVP8vbBYQhA+RYwOiNRCE5/YaU+9TKMBu+EO\n8I/+Cvbb+yBZ0kUx6DKguhLSo4taiBXr2RfSX94VsweaJV447bWk1p6bfycWjdd/Cr7+U7Ftxp2i\n9XX+MREycTJQiDEGNnK88NwvFQOx8WKx2n6fX90OvmujGErUo69YKJ40DfzffwcbmiWG+ezZCiT1\ngPSn18F3bwELDYP893otZU4AAA6xSURBVLch//cf0Mz/E/j5U5DXfih0KClVrFlYxJ/LsmgB0ncg\nUF0pis8AYOR4sKtmeH30rCrxX7NmDebNm4dx48Zhzpw5eOWVV7Bx40YUFBR42j7Xkc1gkpd6yxOE\nj8AYA7viaoTExKKhE88rjb0SfOR4MLuW3dLDCwGNxqkHr3aB2VVYYBDY3AXgWZNES47knmCXTwLq\n6sDXfSzCRG0dP22GmMR2/CeR0ttMbFlUtGhQaGqyFuqxiVeBb/0ObOJV4uYy5XqROhscIlJ9AbCi\nAvCvPoP55adEe4yAQLDb7gaMRvB/fCgypwz1QKNBzIKe8VtRJX7sEKAvBbvi6i6ZOa5K/PV6PcaN\nc+xXkp2djblz52LWrFkeMcxtqMiL6KZIM+5EuE6HBr26hUa1sGazGpx5196CjRgrFrgVIqMgLf2k\n3fGtLLW3KG77eR9YxvDW9xnu2CKEaWOgWfKe7ec7WtY2sanXg+euF+sIt94NNiEHLDwCvPQi+D8+\nhPzio0L4JUmEpoaPFYvb7dysPI0q8Y+KikJlZSWio6MRHx+PEydOIDIyErIvNkqimD9BdDucNvFr\nhjTjt5DNphZrFR26dngkpD+vAELDHcJgLCFZ9I2qqQKbfC34oT1g/QaCKfMbuhhVn9jUqVORl5eH\nsWPH4rrrrsOiRYvAGMP111/vaftchzx/giCcwHoPgOaxFzr/vNFxrW6XHl9sC+lM8S29VCX+M2bM\nsH6fnZ2NzMxMGAwG9OjhfjqZx5BpmAtBEL5BV8Ty1eJW8r5Op+tsOzoPCvsQBEG0i//FRyjsQxAE\n0S7+p5Ik/gRBEO3ifypJMX+CIIh28UPxp5g/QRBEe/ip+Pvf2yIIguhM/E8luaxqhipBEER3xmt9\nmg8ePIgPP/wQsixj6tSpDrUDnYost1vmTRAE0d3xiossyzLef/99PP3001i2bBm2b9+OwsJCz1zM\nbKaYP0EQRDt4Rfzz8/ORlJSExMREBAQEYPz48dizZ49nLkZhH4IgiHbxikqWl5cjLs7W+yIuLg7l\n5eWeuRgt+BIEQbSLT81mzM3NRW5uLgBgyZIlbrWRqBqbjeD+6Yj0wRYUAQEBPtkaw1ftAnzXNrLL\nNcgu1/G0bV4R/9jYWJSVlVl/LisrQ2xsbIv9cnJykJOTY/1Z705f8jsfgFanc+9YD6Mju1zGV20j\nu1yD7HIdd2xLSUlRva9X4iP9+/fHxYsXUVpaCpPJhB07dmD06NHtH0gQBEF4BK94/hqNBnfffTcW\nL14MWZZx5ZVXomfPnt64NEEQBNEKXov5jxw5EiNHdt70HIIgCMJ9KC2GIAiiG0LiTxAE0Q0h8ScI\nguiGkPgTBEF0Q0j8CYIguiGMc8672giCIAjCu/il5//UU091tQmtQna5jq/aRna5BtnlOp62zS/F\nnyAIgmgbEn+CIIhuiOb5559/vquN8AT9+vXrahNahexyHV+1jexyDbLLdTxpGy34EgRBdEMo7EMQ\nBNEN8alhLh3Fa0Pi20Gv12PFihWorKwEYww5OTmYPn06vvjiC3z//feIiooCANxxxx1d0uzugQce\nQEhICCRJgkajwZIlS1BbW4tly5bh0qVLiI+Px6OPPoqIiAiv2VRUVIRly5ZZfy4tLcVtt92Guro6\nr39mK1euxP79+6HVarF06VIAcPr5cM7x4Ycf4sCBAwgODsa8efM8+qjemm2ffPIJ9u3bh4CAACQm\nJmLevHkIDw9HaWkpHn30UWuP97S0NMydO9drdrX1975u3Tr88MMPkCQJc+bMwfDhw71m17Jly1BU\nVAQAqK+vR1hYGF599VWvfl7ONMKrf2fcTzCbzXz+/Pm8uLiYNzU18ccff5wXFBR0iS3l5eX81KlT\nnHPO6+vr+UMPPcQLCgr4mjVr+Pr167vEJnvmzZvHq6qqHLZ98sknfN26dZxzztetW8c/+eSTrjCN\ncy5+l/fccw8vLS3tks/syJEj/NSpU/yxxx6zbnP2+ezbt48vXryYy7LMjx8/zv/4xz963baDBw9y\nk8lktVOxraSkxGE/b9vl7HdXUFDAH3/8cW40GnlJSQmfP38+N5vNXrPLntWrV/O1a9dyzr37eTnT\nCG/+nflN2MerQ+LbISYmxnpXDg0NRWpqqudmFncSe/bsQXZ2NgAgOzu7yz47APjpp5+QlJSE+Pj4\nLrl+RkZGi6ceZ5/P3r17ccUVV4AxhoEDB6Kurg4VFRVetW3YsGHQaDQAgIEDB3bJ31prdjljz549\nGD9+PAIDA5GQkICkpCTk5+d73S7OOXbu3IkJEyZ45Npt4UwjvPl35jdhn9aGxJ88ebILLRKUlpbi\nzJkzGDBgAPLy8vDtt99iy5Yt6NevH2bNmuXV0Io9ixcvBgBcddVVyMnJQVVVFWJiYgAA0dHRqKqq\n6hK7AGD79u0O/yF94TNz9vmUl5c7zFmNi4tDeXm5dV9v88MPP2D8+PHWn0tLS/HEE08gNDQUt99+\nOwYPHuxVe1r73ZWXlyMtLc26T2xsbJfcsI4dOwatVovk5GTrtq74vOw1wpt/Z34j/r6IwWDA0qVL\nMXv2bISFhWHatGm45ZZbAABr1qzBxx9/jHnz5nndrhdeeAGxsbGoqqrCiy++2GLuJ2MMjDGv2wUA\nJpMJ+/btw29+8xsA8JnPzJ6u/Hza4l//+hc0Gg0mTZoEQHiXK1euRGRkJE6fPo1XX30VS5cuRVhY\nmFfs8cXfnT3NnYyu+Lyaa4Q9nv4785uwj9oh8d7CZDJh6dKlmDRpEsaMGQNA3MklSYIkSZg6dSpO\nnTrVJbYpn4tWq0VWVhby8/Oh1Wqtj5EVFRXWRTpvc+DAAfTt2xfR0dEAfOczc/b5xMbGOgzZ7qq/\nu02bNmHfvn146KGHrIIRGBiIyMhIACJfPDExERcvXvSaTc5+d83/r5aXl3v9MzObzdi9e7fDU5K3\nP6/WNMKbf2d+I/6+NCSec4533nkHqampuP76663b7WN0u3fv7pI5xgaDAQ0NDdbvDx8+jF69emH0\n6NHYvHkzAGDz5s3Iysryum1AS2/MFz4zAE4/n9GjR2PLli3gnOPEiRMICwvzesjn4MGDWL9+PZ58\n8kkEBwdbt1dXV0OWZQBASUkJLl68iMTERK/Z5ex3N3r0aOzYsQNNTU0oLS3FxYsXMWDAAK/ZBYh1\npZSUFIdQsTc/L2ca4c2/M78q8tq/fz9Wr15tHRJ/0003dYkdeXl5eO6559CrVy+rF3bHHXdg+/bt\nOHv2LBhjiI+Px9y5c70uFCUlJXjttdcACO9n4sSJuOmmm1BTU4Nly5ZBr9d3SaonIG5G8+bNw1tv\nvWV9BF6+fLnXP7M33ngDR48eRU1NDbRaLW677TZkZWW1+vlwzvH+++/j0KFDCAoKwrx589C/f3+v\n2rZu3TqYTCbr70tJUdy1axe++OILaDQaSJKEW2+91WMOUWt2HTlyxOnv7l//+hc2btwISZIwe/Zs\njBgxwmt2TZkyBStWrEBaWhqmTZtm3debn5czjUhLS/Pa35lfiT9BEAShDr8J+xAEQRDqIfEnCILo\nhpD4EwRBdENI/AmCILohJP4EQRDdEBJ/4hfPY489hiNHjnTJtfV6Pe666y5rfjhB/FKgVE/Cb/ji\niy9QXFyMhx56yGPXeOCBB3Dvvfdi6NChHrsGQXgD8vwJwoLZbO5qEwjCa5DnT/zieeCBB3D33Xdb\nK5cDAgKQlJSEV199FfX19Vi9ejUOHDgAxhiuvPJK3HbbbZAkCZs2bcL333+P/v37Y8uWLZg2bRom\nT56Mv/3tbzh37hwYYxg2bBh+//vfIzw8HMuXL8e2bdsQEBAASZJwyy23YNy4cZg/fz4+++wzaDQa\nlJeXY9WqVcjLy0NERAR+/etfIycnB4B4MiksLERQUBB2794NnU6HBx54wFqp+e9//xv//e9/0dDQ\ngJiYGNxzzz247LLLuuxzJfwb6upJ+AWBgYG48cYbW4R9VqxYAa1Wi7/+9a9obGzEkiVLEBcXh6uu\nugoAcPLkSYwfPx6rVq2C2WxGeXk5brzxRgwePBgNDQ1YunQp1q5di9mzZ+P/t3fHLq3rYRjHv1QN\nVYqx6tBFcNNBLDgIQnFxki4unQStFBHEIujgHyDSRQVHBYsIVUFcdHJycxDERbSbCiVIW1REWjFt\nPcPhhtN7wNs7yDk0z2cKpL+k05PwJnnfeDxOOp2uKvtks9mq/7GxsUFXVxebm5tYlsXy8jKBQIC+\nvj4ALi8vWVxcZHZ2loODA5LJJCsrK1iWxenpKYlEgvb2drLZrJ4jyLdS2Ufq1svLC1dXV0SjUbxe\nL6ZpEg6HOT8/d37j9/sZHR2loaEBwzAIBAL09/fT1NREa2sr4XCYm5ubms6Xz+dJp9OMj49jGAbd\n3d2MjIw4jboAent7GRgYwOPxMDw8zP39PQAejwfbtslkMpRKJWfIich30Z2/1K18Pk+5XK6aw/r5\n+VnVyfHXARnw84Kxs7PD7e0t7+/vVCqVmhvcPT8/4/P5aG5urjr+r22oTdN0tg3DwLZtyuUygUCA\naDTK4eEhmUyGYDDIxMTEH21LLvVN4S9149+DLzo6OmhsbGR7e9sZc/hf9vf3AVhbW8Pn83FxcUEy\nmaxprd/v5+3tjWKx6FwA8vl8zQEeCoUIhUIUCgW2trZIpVLE4/Ga1or8Xyr7SN0wTZNcLufUyv1+\nP8FgkN3dXQqFApVKhcfHxy/LOMViEa/XS0tLC09PT5ycnFTtb2tr+63O/4/Ozk56enrY29vj4+OD\nh4cHzs7OnMlaX7Esi+vra2zbxjAMDMP4K6eFSf1Q+EvdGBoaAiAWi7G0tATA3NwcpVKJhYUFpqam\nWF9f/3LwdSQS4e7ujsnJSRKJBIODg1X7x8bGODo6IhqNcnx8/Nv6+fl5crkcMzMzrK6uEolEavom\nwLZtUqkUsViM6elpXl9fnVGWIt9Br3qKiLiQ7vxFRFxI4S8i4kIKfxERF1L4i4i4kMJfRMSFFP4i\nIi6k8BcRcSGFv4iICyn8RURc6AfHq3L4J6IQSgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "util.plot_curve(loss_list, \"loss\")\n", + "util.plot_curve(avg_return_list, \"average return\")\n", + "util.plot_curve(avg_advantage_variance_list, \"average advantage variance\")" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -477,10 +1030,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, + "execution_count": 12, + "metadata": {}, "outputs": [], "source": [ "# set the hyperparameter for generalized advantage estimation (GAE)\n", @@ -522,120 +1073,120 @@ " (You're encouraged to try other \\lambda=[0,1])\n", " Sample solution should be only 1 line. (you can use `util.discount` in policy_gradient/util.py)\n", " \"\"\"\n", + " \n", " # YOUR CODE HERE >>>>>>>>\n", + " a = util.discount(a, self.discount_rate * LAMBDA)\n", " # <<<<<<<\n", + " \n", " p[\"returns\"] = target_v\n", " p[\"baselines\"] = b\n", " p[\"advantages\"] = (a - a.mean()) / (a.std() + 1e-8) # normalize\n", + " p[\"advantage_variance\"] = np.var(a) # My additional code for plotting advantage variance.\n", "\n", " obs = np.concatenate([ p[\"observations\"] for p in paths ])\n", " actions = np.concatenate([ p[\"actions\"] for p in paths ])\n", " rewards = np.concatenate([ p[\"rewards\"] for p in paths ])\n", " advantages = np.concatenate([ p[\"advantages\"] for p in paths ])\n", + " advantage_variances = np.array([ p[\"advantage_variance\"] for p in paths ])\n", "\n", " return dict(\n", " observations=obs,\n", " actions=actions,\n", " rewards=rewards,\n", " advantages=advantages,\n", + " advantage_variances=advantage_variances\n", " )" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iteration 1: Average Return = 25.12\n", - "Iteration 2: Average Return = 31.17\n", - "Iteration 3: Average Return = 30.07\n", - "Iteration 4: Average Return = 31.98\n", - "Iteration 5: Average Return = 36.77\n", - "Iteration 6: Average Return = 36.22\n", - "Iteration 7: Average Return = 43.52\n", - "Iteration 8: Average Return = 45.12\n", - "Iteration 9: Average Return = 50.86\n", - "Iteration 10: Average Return = 58.81\n", - "Iteration 11: Average Return = 58.87\n", - "Iteration 12: Average Return = 65.66\n", - "Iteration 13: Average Return = 69.72\n", - "Iteration 14: Average Return = 76.32\n", - "Iteration 15: Average Return = 77.74\n", - "Iteration 16: Average Return = 78.17\n", - "Iteration 17: Average Return = 94.97\n", - "Iteration 18: Average Return = 89.34\n", - "Iteration 19: Average Return = 98.15\n", - "Iteration 20: Average Return = 103.35\n", - "Iteration 21: Average Return = 106.54\n", - "Iteration 22: Average Return = 109.03\n", - "Iteration 23: Average Return = 113.63\n", - "Iteration 24: Average Return = 119.11\n", - "Iteration 25: Average Return = 115.67\n", - "Iteration 26: Average Return = 126.51\n", - "Iteration 27: Average Return = 131.33\n", - "Iteration 28: Average Return = 138.83\n", - "Iteration 29: Average Return = 143.7\n", - "Iteration 30: Average Return = 146.15\n", - "Iteration 31: Average Return = 146.41\n", - "Iteration 32: Average Return = 157.34\n", - "Iteration 33: Average Return = 160.51\n", - "Iteration 34: Average Return = 159.67\n", - "Iteration 35: Average Return = 169.42\n", - "Iteration 36: Average Return = 170.71\n", - "Iteration 37: Average Return = 174.41\n", - "Iteration 38: Average Return = 172.93\n", - "Iteration 39: Average Return = 173.29\n", - "Iteration 40: Average Return = 177.32\n", - "Iteration 41: Average Return = 177.14\n", - "Iteration 42: Average Return = 179.85\n", - "Iteration 43: Average Return = 181.82\n", - "Iteration 44: Average Return = 182.0\n", - "Iteration 45: Average Return = 181.89\n", - "Iteration 46: Average Return = 183.19\n", - "Iteration 47: Average Return = 183.87\n", - "Iteration 48: Average Return = 183.26\n", - "Iteration 49: Average Return = 183.27\n", - "Iteration 50: Average Return = 189.11\n", - "Iteration 51: Average Return = 181.45\n", - "Iteration 52: Average Return = 186.91\n", - "Iteration 53: Average Return = 188.84\n", - "Iteration 54: Average Return = 189.76\n", - "Iteration 55: Average Return = 189.51\n", - "Iteration 56: Average Return = 186.36\n", - "Iteration 57: Average Return = 190.55\n", - "Iteration 58: Average Return = 189.35\n", - "Iteration 59: Average Return = 189.84\n", - "Iteration 60: Average Return = 187.14\n", - "Iteration 61: Average Return = 191.82\n", - "Iteration 62: Average Return = 189.32\n", - "Iteration 63: Average Return = 190.74\n", - "Iteration 64: Average Return = 188.13\n", - "Iteration 65: Average Return = 190.99\n", - "Iteration 66: Average Return = 189.23\n", - "Iteration 67: Average Return = 186.98\n", - "Iteration 68: Average Return = 188.0\n", - "Iteration 69: Average Return = 191.68\n", - "Iteration 70: Average Return = 188.03\n", - "Iteration 71: Average Return = 193.07\n", - "Iteration 72: Average Return = 191.96\n", - "Iteration 73: Average Return = 189.53\n", - "Iteration 74: Average Return = 186.71\n", - "Iteration 75: Average Return = 190.05\n", - "Iteration 76: Average Return = 191.1\n", - "Iteration 77: Average Return = 193.49\n", - "Iteration 78: Average Return = 188.66\n", - "Iteration 79: Average Return = 191.49\n", - "Iteration 80: Average Return = 191.68\n", - "Iteration 81: Average Return = 193.19\n", - "Iteration 82: Average Return = 193.87\n", - "Iteration 83: Average Return = 195.04\n", - "Solve at 83 iterations, which equals 8300 episodes.\n" + "Iteration 1: Average Return = 29.49 | Average Advantage Variance: 28.872314758080293\n", + "Iteration 2: Average Return = 28.15 | Average Advantage Variance: 17.206342272832206\n", + "Iteration 3: Average Return = 27.0 | Average Advantage Variance: 12.806761327170523\n", + "Iteration 4: Average Return = 32.44 | Average Advantage Variance: 15.634516310988477\n", + "Iteration 5: Average Return = 34.46 | Average Advantage Variance: 20.01783041624987\n", + "Iteration 6: Average Return = 37.53 | Average Advantage Variance: 21.310244541815788\n", + "Iteration 7: Average Return = 38.8 | Average Advantage Variance: 17.76565792390446\n", + "Iteration 8: Average Return = 39.93 | Average Advantage Variance: 15.314962409840621\n", + "Iteration 9: Average Return = 44.31 | Average Advantage Variance: 17.46989303925956\n", + "Iteration 10: Average Return = 45.95 | Average Advantage Variance: 18.05843269318995\n", + "Iteration 11: Average Return = 53.0 | Average Advantage Variance: 17.74426220546417\n", + "Iteration 12: Average Return = 49.09 | Average Advantage Variance: 17.77919372061017\n", + "Iteration 13: Average Return = 48.67 | Average Advantage Variance: 14.776962417246967\n", + "Iteration 14: Average Return = 51.81 | Average Advantage Variance: 16.624198766364483\n", + "Iteration 15: Average Return = 51.97 | Average Advantage Variance: 20.04153164829221\n", + "Iteration 16: Average Return = 55.87 | Average Advantage Variance: 16.99985568064695\n", + "Iteration 17: Average Return = 53.47 | Average Advantage Variance: 19.72599719148008\n", + "Iteration 18: Average Return = 59.72 | Average Advantage Variance: 18.541893356444373\n", + "Iteration 19: Average Return = 63.67 | Average Advantage Variance: 17.050739084979295\n", + "Iteration 20: Average Return = 62.25 | Average Advantage Variance: 18.525438021561047\n", + "Iteration 21: Average Return = 66.61 | Average Advantage Variance: 19.28726074839487\n", + "Iteration 22: Average Return = 67.15 | Average Advantage Variance: 16.995452302811504\n", + "Iteration 23: Average Return = 66.98 | Average Advantage Variance: 24.757588333026966\n", + "Iteration 24: Average Return = 75.21 | Average Advantage Variance: 21.18360901150257\n", + "Iteration 25: Average Return = 70.0 | Average Advantage Variance: 21.301149461514694\n", + "Iteration 26: Average Return = 78.46 | Average Advantage Variance: 21.083082111278358\n", + "Iteration 27: Average Return = 96.7 | Average Advantage Variance: 26.353424788591227\n", + "Iteration 28: Average Return = 106.67 | Average Advantage Variance: 23.45533547478895\n", + "Iteration 29: Average Return = 101.16 | Average Advantage Variance: 29.264826073389617\n", + "Iteration 30: Average Return = 111.55 | Average Advantage Variance: 25.26743835870217\n", + "Iteration 31: Average Return = 115.91 | Average Advantage Variance: 31.85680625022796\n", + "Iteration 32: Average Return = 106.96 | Average Advantage Variance: 29.697064970832113\n", + "Iteration 33: Average Return = 119.25 | Average Advantage Variance: 34.714631945688765\n", + "Iteration 34: Average Return = 122.91 | Average Advantage Variance: 33.015112018018606\n", + "Iteration 35: Average Return = 119.12 | Average Advantage Variance: 36.70001894715965\n", + "Iteration 36: Average Return = 122.18 | Average Advantage Variance: 34.20717346138999\n", + "Iteration 37: Average Return = 136.47 | Average Advantage Variance: 34.733309609755715\n", + "Iteration 38: Average Return = 148.06 | Average Advantage Variance: 45.63779978755172\n", + "Iteration 39: Average Return = 150.39 | Average Advantage Variance: 49.24559131405508\n", + "Iteration 40: Average Return = 168.61 | Average Advantage Variance: 53.92765050703035\n", + "Iteration 41: Average Return = 159.2 | Average Advantage Variance: 55.81794386758404\n", + "Iteration 42: Average Return = 171.04 | Average Advantage Variance: 54.15680404395147\n", + "Iteration 43: Average Return = 170.13 | Average Advantage Variance: 61.198726682168115\n", + "Iteration 44: Average Return = 174.43 | Average Advantage Variance: 60.44522026528535\n", + "Iteration 45: Average Return = 169.38 | Average Advantage Variance: 63.872520021851244\n", + "Iteration 46: Average Return = 171.79 | Average Advantage Variance: 57.386026778772724\n", + "Iteration 47: Average Return = 168.56 | Average Advantage Variance: 62.52909614121163\n", + "Iteration 48: Average Return = 169.69 | Average Advantage Variance: 57.47088074792233\n", + "Iteration 49: Average Return = 168.36 | Average Advantage Variance: 60.72087431389055\n", + "Iteration 50: Average Return = 173.03 | Average Advantage Variance: 60.50950786907882\n", + "Iteration 51: Average Return = 172.58 | Average Advantage Variance: 63.92214355041393\n", + "Iteration 52: Average Return = 174.79 | Average Advantage Variance: 60.302795102723294\n", + "Iteration 53: Average Return = 178.41 | Average Advantage Variance: 67.4880031611061\n", + "Iteration 54: Average Return = 179.11 | Average Advantage Variance: 65.14119879633813\n", + "Iteration 55: Average Return = 175.09 | Average Advantage Variance: 65.21367449204124\n", + "Iteration 56: Average Return = 187.05 | Average Advantage Variance: 73.73217940642836\n", + "Iteration 57: Average Return = 181.6 | Average Advantage Variance: 70.44494600063697\n", + "Iteration 58: Average Return = 187.24 | Average Advantage Variance: 72.95514521207176\n", + "Iteration 59: Average Return = 186.1 | Average Advantage Variance: 71.36845834080641\n", + "Iteration 60: Average Return = 189.91 | Average Advantage Variance: 75.63274457559298\n", + "Iteration 61: Average Return = 187.05 | Average Advantage Variance: 73.7363350680365\n", + "Iteration 62: Average Return = 193.08 | Average Advantage Variance: 75.65042479520744\n", + "Iteration 63: Average Return = 193.68 | Average Advantage Variance: 77.58774989364953\n", + "Iteration 64: Average Return = 192.46 | Average Advantage Variance: 78.38194452881292\n", + "Iteration 65: Average Return = 191.46 | Average Advantage Variance: 74.49769174551977\n", + "Iteration 66: Average Return = 193.4 | Average Advantage Variance: 78.11108175525416\n", + "Iteration 67: Average Return = 194.03 | Average Advantage Variance: 78.69696023540335\n", + "Iteration 68: Average Return = 190.83 | Average Advantage Variance: 77.73340440641361\n", + "Iteration 69: Average Return = 190.9 | Average Advantage Variance: 75.55597520611458\n", + "Iteration 70: Average Return = 188.12 | Average Advantage Variance: 76.05893721294234\n", + "Iteration 71: Average Return = 190.92 | Average Advantage Variance: 74.98688264769811\n", + "Iteration 72: Average Return = 189.91 | Average Advantage Variance: 76.61094076669389\n", + "Iteration 73: Average Return = 189.28 | Average Advantage Variance: 72.69853971132002\n", + "Iteration 74: Average Return = 193.92 | Average Advantage Variance: 75.77114829746014\n", + "Iteration 75: Average Return = 186.94 | Average Advantage Variance: 73.99467465586848\n", + "Iteration 76: Average Return = 192.47 | Average Advantage Variance: 77.88797558969196\n", + "Iteration 77: Average Return = 196.41 | Average Advantage Variance: 79.98087979834315\n", + "Solve at 77 iterations, which equals 7700 episodes.\n" ] } ], @@ -653,19 +1204,29 @@ " discount_rate)\n", "\n", "# Train the policy optimizer\n", - "loss_list, avg_return_list = po.train()" + "loss_list, avg_return_list, avg_advantage_variance_list = po.train()" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmYSQhMk2CRACYQubQELUoGDVIEbrbgRs\nUdGi1kqrULH+WtGithTEBeNeqKVq3RVpqlbbGpFQRTQqCUvYN8EAWWYSMtkgM+f3x00GYrZJMpmZ\nJO/neXySuXPvnXeOw7w5u9Jaa4QQQggPMvk6ACGEEN2PJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQ\nQnicJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQQnicJBchhBAeF+jrAHypoKCgXdfFxMRQXFzs4Wi6\nHykn90g5uU/Kyj2dWU5xcXFunSc1FyGEEB4nyUUIIYTHSXIRQgjhcZJchBBCeJwkFyGEEB4nyUUI\nIYTHSXIRQgjhcZJc2si55gOqP8vydRhCCOHXJLm0kV73H6r/97GvwxBCdGPOf72N873XfR1Gh0hy\naStzOM7yY76OQgjRTWmt0Z+8j/74n+jaE74Op90kubRVnzCc5WW+jkII0V0dPgjlZVBdBbu3+Tqa\ndpPk0kbKHIaW5CJEl6VrqtElhb4Oo1l65xbjF6XQW77xbTAdIMmlrfqE4bQfQ2vt60iEEG2ktcb5\nl8dw/vEu9PEaX4fTtJ1bIdICoxPRmyW59Bx9wsDhMKqsQvQA+lgp+tv16FKrr0PpuI0bYFMOVNrR\neTm+jqYRrTV651bUqPGoxDOh4Dt0SVHb7lFVia7xfeLs0Uvut4s5zPhpPwYhob6NRYh20tYiqKxA\nDRra+rnvvY7O/rfxIHYQakwSavR4GDUeFR7ZOfHVnkB/+wUqbrBbMbp1z+oqnG+9AAOHQEU5+su1\nMPFcj9zbYwoPQ5nVKNtR49DvvIje8g0q9RK3Ltda4/zTfIoq7DBpCir1EtSA+E4OummSXNpI9QlD\nA1SUQ99YX4cjRJtphwNnxoNQUojptw+jho5s+fxtm2DEWFTy2ejtm9BfrEGv/dB4ckA8anQi6vKf\noCItHY+tphr9v/+g//tPsBWjh40i4L7HO3xfAP3Bm2AtxvS7e9AbN6A/+QBdUY7qE+aR+3tCfX+L\nGjUeYgdCdD+j38XN5ELBQSg8TMDwUdSu/Qj9yfswJgnTbfd02h8CzZHk0laumku5b+MQop30+k/g\nyCEICcX5/MOY7l+Giohq+lxrERQWoKZciumiq+HH16Bra+HAbvTOreidW9CffYw+uBfTPUtQge5/\npejaE+jPssBWDOVlxkCZ3fnGv61R41Ejx6G/ykaXFKGi+3bsPX9/AJ31HupHaagRYyEoGP3fTPTX\nn7tdK/CKnVsgLAJiB6KUQiWeif7iU/SJE6hevVq9XG/LBSDydw9jtVcY/2/+8Qp63X9QV/y0s6Nv\nQPpc2qpPOAC6QpKL6Hp0TQ36vdchYQyme5ZARTnOPz+MPtH0fAq9fTMAakyS65gKDEQljMF06XQC\nfv0g6pb5sGc7+t2X2xbLV/9Dv/Zn9L/fRW/KgaIjqNFJmO59lID/W4K66jrjvI3r2/lu615Ha5yv\n/RmCQ1HTZxsH44fBgHj0hrUtX1tpR3/7hZFQf/jcke9xvrAMnfdVh+I7NU69cwuMGodSCgA1PgVq\nqmHXVvfukZ8L/eII6DcAFR6J6bJrIWEMeuMGj8TYFn5Tc8nNzeXFF1/E6XRy4YUXkp6e3uD5EydO\n8Oyzz7J3717CwsK466676NevHwD/+Mc/WLNmDSaTiZtvvpnk5OTOC1RqLqIL05+8B6VWTLf9H2rw\ncEw3/xrnikfRry+Hm+50fam5bN9kfOYHDmn2nqaJ5+LctRWd9U/0yLGoMya7F8vXn0F0P0xL/oIy\nNf47V/WPg0HD0N+sh7Sr2/Q+G7zOF2tgVz7qpjtRYcYfh0op1Nmp6MxX0SWFqOh+ja9zOnAufwS2\n5UHfWNTVN6AmngcOB/qjVeiP3oHaWvQ3n2O6436jA74jio+CtRj142knj41JhMBAo99lbMvfa7q2\nFnZuQU2+oMFxdfok9KqXmn2fncUvai5Op5OVK1dy3333kZGRweeff86hQ4canLNmzRr69OnDM888\nw+WXX85rr70GwKFDh1i/fj1PPPEE999/PytXrsTpdHZesKFm42eFzNIXXYu2H0P/+12YcBZq1DgA\nVMq5qMt+YjSfrF/T8Hyt0Ts2w+jEJr/8T6WuvQWGjsT50lPowsOtx1JRDvkbUSk/avHe6sxzYPc2\ntK3EjXfY1OvY0ategoQxqB+lNbz32anGOV9mN33th+/AtjxU2tXQOwT912U4F83H+cd56PffQJ1x\nDqZFz8PAwUbtb8eWdsXoer2dRu1EjRp/MsbewTDKzSHJ+3ZCTTXqtIZJSJ0+ybj/xi86FF9b+UVy\n2b17N7GxsfTv35/AwEDOOecccnIaDhP8+uuvmTJlCgCTJk1iy5YtaK3JycnhnHPOoVevXvTr14/Y\n2Fh2797dabGqgACjA1BqLqKL0R++A9XVmK65qcFxdfX1MHQk+t+rGs7fKjoC1iLU6CRao3r1wnT7\nb0EpnCseaXUOif72C3A4jJpAS/c980fG+e38YtSZr4C9HNP1cxolMRXTH0acht6wttG8Nb1jC/q9\nN1FnpaJ+cgumhRmon/8GjteABtOvHzI6yWMHYbrrDxDTH+czi9D7droXV2UFzpUZ6O2bTh7ctcWY\n6hA3uGGciWfCkUPooiMt3zM/F5QJRic2vL5fHAwc4vWmMb9oFrNarURHR7seR0dHs2vXrmbPCQgI\nIDQ0lPLycqxWKyNHnhztYrFYsFqbHo+flZVFVpaxovHSpUuJiYlpV7zF4RH0qj1ORDuv7ykCAwPb\nXcY9SUfKSWvduCmrCY7CwxR/+iHBUy8jYsIZjZ6vunomx55aRHjBfnpPmAhA5befUw5YJp9PoDvx\nxcRQc9dDlD78W3q9sZyIu//YbGy2vC9xxA4k+oyzW44/Jobi+GGY8r7C8pPZbSqrE7u3Yc3+NyGX\nzSD8jLOaPKfywisoX/EYkXYbvYaNAsBZaqVk5RMEDBiE5a7fYwrpY5x8+XTjvyZidPzpWWz3/RLn\nU38g6uHlBMYPazG2isz/Yt/wKfqrdYTdMo+Qy2ZQsnsbgeNPJ7Jfw6ar2vPSKHnrr4Tu3ESf08Y3\nc0ew7t6KHjGG6CFDG5WT/ZypVLz7MpZeAZiaGbzhaX6RXLwlLS2NtLSTVePi4uJ23Uf1CaO6pJgT\n7by+p4iJiWl3Gfck7S0n5wdvoj/9EHX19ahzL0KZApo8T9eewPnYfRAQyPGLr2nytfToCWAOpzTz\nDQIGGl+Mzm++gAgLtt59UO7GN2w06pqbqFn9MkWW/piunNn4tcrLcG7+BnXJdEpKWm/uciafjeOD\ntyjas4u+CSPdKivtdOB89mEIj6Tm4mnNXqPHTICAAKxLF8CgYaioaPT+XVBehmnuQqwVVVDhzoRp\nhb7rD+ilv6XkD/MxLXis+RF4DgfO99+CEadBnzDK/5pB+cYv4WgBzimXNopVB4XA6ETsq16mMnly\nk0OndWUFzp1bUZfMoLi4uNFnSo9JAqeT4jUfYTrvYjfeT/Pi4uLcOs8vmsUsFkuDD1lJSQkWi6XZ\ncxwOB5WVlYSFhTW61mq1NrrW00xhEcY8FyHcoLfloXfne/aee7aj33sTtEa/8jzOJf+H3ruj6XPf\nXgl7d2C6eR7K0vSQXtUrCHXeRZD3FbqkyOhv2b4JNSbRrZpRg3tdMg01+QL0e6/jzPmscTzfrAen\nE5Xi3gRGdea5xvtsQ9OYXvdfOLAbde0tqNA+zd/bHG70F8X0h8MHjaHR+3ejrr8d1Urto9G9Yvpj\nmrsQysuMJrKa6qZPzN0A1iJMP56G6Vf3oa6YCd8YI+JO7W9x3VcpTDN/DhUV6PfeaPqeO7cYZTp2\nQtPPxw835sx4sWnML5JLQkIChw8fprCwkNraWtavX09KSkqDc84880zWrl0LwIYNGxg3zhiul5KS\nwvr16zlx4gSFhYUcPnyYESNGdGq8prBwSS7Cbc6Xn8H54lMeW49O11Tj/FsGWGIwLV5h9AWUWXE+\n/H84//Yk2nryL1bnF58atZuLr3H1XzRHpV4KaPS6/xgr8x4rbdR+7w6lFOrGO43+jBefRO9r2MSt\nv/7MmCDo7sz7uHiIHWQkJTfoygr0P14xBiKcdX6r55suvJKA+X8k4I/PYXrmTUzPvtXuv+7VkBGY\nfvFb+G4vzhceRzsdjc5xZr1nTMBOSkGZTJiuvh7THfehLryy2TJRg4ahUn+MXvsh+vvvGj2vt+VB\nUG8YPqbp65UyOva35aKrK9v13trKL5JLQEAAt9xyC4sXL2b+/PlMnjyZ+Ph43nrrLb7++msApk6d\nit1uZ+7cuXzwwQfccMMNAMTHxzN58mTuvvtuFi9ezK233oqplZEtHaWk5iLcpG0lUFJoLOtxcK9n\n7rnqJSg6gunmu1AhoZjOTsW06HnUj6ehc9bhXDgH5z9eMSY5vvqc8SU77aZW76ui+0HSRGOG/JZv\njWNjWu/Mb/JevXph+uUCCI/EmfGAqwajS63GcNmU89yuESmljFFjO7ZQ8/Xn6NwvcW5Ya3yhNkF/\n+i+otGO69pa217qUQgW2PlmxxXtMmIi67hdGLfD1FehTRq/qfbtg9zbUhVc2aMZUyZMwzbyt2aZN\nAHXVDRAcgvOtFxoPQMjPNebHtDDRUp0+yRg6vfnbDrw79/lNn8sZZ5zBGWc07Gj86U9PzigNCgri\n7rvvbvLaadOmMW3atCaf6wymsAioqkTX1rZpRrLoefQp+3HonM9QgxM6dr8t36LXfoi6ON1Y36uO\nCg5FzZiNnnIp+h+voj98xxgdFmnB9It7UAHNf2mdyjTlMpx5X6H/9TZE90N1YIkjFR6J6Z7Fxl/w\nf3kU57Zc6DsAtEa1cU0vlXIu+l9vU7r4/1zHNBh/8SdPOnmsuhL98T8haSJqSMfKuiNMF1yG01pk\nDP2uroLZ81CBvdBZ70FIKOpHF7b5niosHHXVDeg3/wJ5X0Ld+9bWYjhyyGjWbMmI04zZ/xu/8Mqa\navLN2A6msAjjl8pyCPfOyAvRRe3ZZjRXJIxB5/wPPe2mNv81XU8fs+F8+WljPa/0WU2eo2L6o277\nDfqiq9CfvI+aeiWqLZ/RscnQbwAUHnbNj+gIFdMf0/89jH7/DfRHq0BrGDgE9YPhtq3eZ9BQTPc9\nTkRIMGU1xyEoGOdfHsX52gpMo5NQdYvI6k8/gopyTF5e6qQpatpNEBJqLL9yrBTTdbejv/kMdcEV\nqOD2LXqrUi9BZ3+E882/ogoOGkOXjxhzAlubZKlMAcb6cDn/c3s5mY7wi2axrsZUN8tX5rqI1ujd\n22DYKGPCXkkh7G/fHCxdZsP5+O+N5p5b70b1CmrxfDV0pHHesJYXpWx0nclU1/eCMTvcA1RgIKZr\nbsQ0/4/QLw419fL23WfYKILGn4EaMgI1YBCmG++AMis681WgbtHLjzNh3OmoumHFvqSUwnTZtaib\nfw07t+D8013g1O1+/1BXlrN+CdVVRtJ69XmjNhQVA3HNr6Lgun7SBagLLoMTnb8kv9Rc2kHV11wk\nuYgW6OoqOLgXdckMVPIkdMDz6K//1+YvfF1agnPZ78FWgmneQ53e3KNSLwWnA3XGOZ6972kTCFi8\n3HP3Gz4aNeUy9Kf/Qk+agt6VbwwhvqLx8GdfMp1zITo8EufyR1BnTO5QUyMYI8oCnnzNmKhaaYcK\nO5jDW11Fwbh2nGt1hs4myaUdXM1i0qkvWrJvpzE8dMRpqD5mGJuM/voz9IybXU1j2umg9tB+CDY3\neQttLTYSS5kN068fQo0c2+lhq969UZc0MVnQD6lrbkRv3IDz5WeMPZbGJKFGnObrsBpR48/E9PBf\noXdvz90zqLfR5BoZ3frJPiDNYu1Q3yym7bK+mGie3rMNlIKE0QDGUifWYqibj6Jra3GueIySudfj\nfO+NxiOADh/C+dgCOGbDNP8PXkksXY0KCcV0/e3w/QEjAftZreVUKizcSAg9hNRc2qF+ZVUq7b4N\nRPg1vXsbxA1G1S12qpLPRgf2Quf8D4Yk4PzLY7BxA71GjePE+29AVQVcewvKZELv2Izz+SUQEIjp\n7j+1uSmtJ1GnT0Kdd7Gxs+bo5pdHEd4lyaUdVHAoBARKn4tolnY6YO8O1MSTk/hUSCiMPwP9zefG\nvui5G1AzbyPq2p9R9PwjRsdsVQV6xFj0q3+GfgMwzV3Y4Tb6nsB0052+DkH8gCSXdlBKGXtcSJ+L\naE7Bd1BVacwtOIVKORed+6WRWK77BaapVxgjtH76cwg1o99/Az7/xNia9pf3umo9QnQ1klzaq0+Y\n9LmIZtVPnvxh57KacJaxodbZUzCdsr2uUgp11XU4o6Kh6DDqqus7PFNcCF+S5NJeUnMRLdm9DSKi\njAURT6GCQwj47dJmL+voirVC+AsZLdZesmGYaIHevQ0STmv3bHwhujpJLu2kzLIysmiaLjUWq/TH\n+RZCeIskl/aqq7l4ahl10Y00098iRE8iyaW9zGHgqIUad3apEz2J3pUPQUHGBk1C9FCSXNqrfoio\n9LuIH9A7NsOIsbIdg+jRJLm0kzLXzdKvkFn64iR9rBS+P4Bqxw6OQnQnklzaq0+Y8bNC5rqIk/SO\nLUD7d3AUoruQ5NJeZiO5aGkWE6fasQmCQ2DICF9HIoRPSXJpL3N9zUWSizhJ79gMI8e5va2wEN2V\nz3sc7XY7GRkZFBUV0bdvX+bPn4/Z3Hg9pbVr17J69WoApk2bxpQpUwB44403WLduHXa7nVdeecV7\ngYfWJRepufRIeucWY1fFSMvJY6UlcOR7Y4VeIXo4n9dcMjMzSUxM5OmnnyYxMZHMzMxG59jtdlat\nWsWSJUtYsmQJq1atwm43OtLPPPNMlixZ4u2wjZFAIaFSc+mBnOs/wfnYfThfeLzBcb19MwBqtPS3\nCOHz5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNzARg1ahRRUVFejdmlT5ix+53o\nMfTGDeiXn4HwSNi5xdWBD8COzRDaB+KH+iw+IfyFz5NLWVmZKzlERkZSVlbW6Byr1Up09MmtPC0W\nC1ar1WsxNqtPGFpqLj2G3paH8y+PwpARmB4yEozzX2+dfH77Jhg1HmWS/hYhvNLnsmjRIkpLSxsd\nnzmz4ZakSqlOXegvKyuLrKwsAJYuXUpMTEy77hMYGEhMTAy2KAtOeznR7bxPd1dfTt3BiV352J5f\nQmDcYKL+8DSmsHAqpt2I/aVnCC8qICC6L8XFRwm7+jpC2/ieu1M5dTYpK/f4Qzl5JbksXLiw2eci\nIiKw2WxERUVhs9kIDw9vdI7FYiE/P9/12Gq1MnZs2/cTT0tLIy0tzfW4uLi4zfcAiImJobi4GGdQ\nMLrsu3bfp7urL6euTjudOJ/+E4Sacc59AGvNcagpRqecB+/+HdtrK1w7TlYMGk5lG99zdyknb5Cy\nck9nllNcXJxb5/m8WSwlJYXs7GwAsrOzmThxYqNzkpOTycvLw263Y7fbycvLIzk52duhNtZH9nTp\nETZ9BYf2o66+ocHoMNU7GHVxOmzdaGxRbA6HuME+DFQI/+Hz5JKens6mTZuYN28emzdvJj09HYA9\ne/awfPlyAMxmM9OnT2fBggUsWLCAGTNmuIYrv/rqq8yZM4fjx48zZ84c3n77be8Fbw6Dygq0w+G9\n1xRepbXG+cHb0DcWdXZqo+fVlEuNPzIO7UONTkSZfP5PSgi/4PN5LmFhYTzwwAONjickJJCQkOB6\nPHXqVKZOndrovFmzZjFr1qxOjbFZfeqa8CrtEBbhmxiER2it0Z99bCSIfgNOPrHlWziwG3XTnU1O\njFTBoaiLrkZnvgpjZD0xIer5PLl0aeZTJlJKcunS9Nefo//+LDrCguk3f0INGFRXa3kTLH1Rky9o\n9lp14ZVw/DjqrPO9GLEQ/k3q8B2gZPHKbkGfOI5+9yUYEA/aiXPZ/ejDB2FbHuzdgbp0OiqwV7PX\nq+AQTNfMQoU2XllCiJ5Kai4dYZYlYLoD/fE/oaQQ0z2Ljbkrj9+P8/H7ISIKIi2oH6W1fhMhRANS\nc+mIPvUrI0vNpavSpVb0h6vg9ElGf8uAeEz3LAGl4OA+1CXTUb2CfB2mEF2O1Fw6IjzS+FkuyaWr\n0pmvQu0JTDNudh1TAwZhumcJ+su1sgilEO0kyaUDVO9g6B0MxxqvPiD8nz6wB73+E9RF6Q1HiAEq\ndiDq6ht8FJkQXZ80i3VUWIQkly7K+d7r0CcMdflPfB2KEN2OJJeOCo9El0ty6Wq00wm7tqJSfoQK\n7ePrcITodiS5dJTUXLqmwsNQVSnbEQvRSSS5dJAKj4TyxtsECP+m9+8CQA0d6dtAhOimJLl0VHgk\nlB9DO2V9sS7lwG4ICjImTgohPE6SS0eFRYJ2ykTKLkbv3wXxw5tcL0wI0XGSXDrKNddFmsa6Cu1w\nwHd7kSYxITqPJJcOUvXJRTr1u47DB+F4DQyVznwhOoskl44KN1ZD1pJcugx9YDcgnflCdCZJLh3l\nahaT5NJl7N8FIaHQz73tWoUQbSfJpaNCzRAQIM1iXYjevxsGJ8iukUJ0IvnX1UFKKZlI2YXo2hPG\nlsTS3yJEp5Lk4gnhkehjMlqsS/j+ANTWwhDpbxGiM0ly8YTwSKm5dBF6f31nvtRchOhMPl9y3263\nk5GRQVFREX379mX+/PmYzY23i127di2rV68GYNq0aUyZMoWamhqeeOIJjh49islk4swzz+SGG7y/\nTLoKi0AXHPT664p22L/L2EE0pr+vIxGiW/N5zSUzM5PExESefvppEhMTyczMbHSO3W5n1apVLFmy\nhCVLlrBq1SrsdjsAV155JU8++SSPPvooO3bsYOPGjd5+C66ai9ba+68t2kTv3w1DRhh9ZUKITuPz\n5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNz6d27N+PHjwcgMDCQYcOGUVJS4tX4\nAWMJmNoTxiq7wm/pmhooOICS/hYhOp3Pk0tZWRlRUVEAREZGUlbWuGPcarUSHR3temyxWLBarQ3O\nqaio4JtvviExMbFzA26KLAHTNRzaB04napj0twjR2bzS57Jo0SJKSxt3eM+cObPBY6VUu5orHA4H\nTz31FJdeein9+zfflp6VlUVWVhYAS5cuJSYmps2vBUYt6dRra+IHUwpEKE1QO+/ZHf2wnHytckMB\n5YDl9LMJiPafuPytnPyZlJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlshIeHNzrHYrGQn5/vemy1\nWhk7dqzr8YoVK4iNjeXyyy9vMY60tDTS0tJcj4uLi9vyNlxiYmIaXKudRkIsO3gA1W9gu+7ZHf2w\nnDqDzvsKfXAvpitmtnquc2suRFiwOkF1clxt4Y1y6i6krNzTmeUUF+feyhY+bxZLSUkhOzsbgOzs\nbCZOnNjonOTkZPLy8rDb7djtdvLy8khOTgbgzTffpLKyktmzZ3sz7IbqmsVku2Pv0xvWoj9c5dZ+\nOnrfLhg2SjrzhfACnw9FTk9PJyMjgzVr1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjN\nZkpKSli9ejUDBw7kd7/7HQCXXHIJF154oXffRJixeKXMdfE+XV4GJ45DSRH0jW3+vAo7HP0edc5U\nL0YnRM/l8+QSFhbGAw880Oh4QkICCQkJrsdTp05l6tSGXwzR0dG8/fbbnR5ja1RAgDF3QpKL99mP\nGT+PHGoxuXCgblvjYaO8EJQQwufNYt1GWKTxV7Twrrrkog8favE0vc9ILgyRkWJCeIMkF0+RJWC8\nTmvdsObS0rn7dkLsIFRoHy9EJoSQ5OIhKjwSZPFK76qqAIfRkd9SzUVrDft2oobJ5EkhvEWSi6eE\nR8qGYd5WX2vpHdxyzcVWbNQqpb9FCK+R5OIpYRFQVYk+cdzXkfQc5XXJJWEM2I+h6x//UF1/ixoq\nyUUIb5Hk4in1S8BI05j31NVc1Ii6CbXN1F70vp0QGAiDhnopMCGEJBcPUa7kIk1j3qLrk8tII7no\nw01ve6D374L44ahevbwWmxA9nSQXT5GJlN5XP/R7yAjoFdRkzUU7HbB/N2qodOYL4U2SXDxFloDx\nPvsxCOwFwSHQfyD6yPeNzzn8PdRUSWe+EF4mycVTwqRZzOvsxyAswlhNe8AgaKJZTO/bASDDkIXw\nMkkuHqJ694beIbKnixfp8mPGsjsAsYOgpBB9vKbhSft2QUgf6OfeSq5CCM+Q5OJJ4RFSc/GmupoL\nAAMGgdZQWNDgFL1/JwwdgTLJR10Ib5J/cZ4UHomW5OI95WUos7H/jxowCGg4U18fr4FD+2WxSiF8\nQJKLJ4VFSrOYN9nLoS650C8OlIJTk0tejrGtccIYHwUoRM8lycWDlCxe6TW6ttZYWyysruYS1Bui\n+7mGI2uHA/3e6zAgHsaf4ctQheiR3E4uW7ZsobCwEACbzcazzz7L888/T2mpfJm6hEcay5A4Wt8V\nUXRQ/bpi5lO2xR4Q72oW0xvWwpFDmNJnoUwB3o9PiB7O7eSycuVKTHWdon//+99xOBwopVixYkWn\nBdflREQZncrWIl9H0v3Vz86v79AHVOxAOPo9+sRx9PtvGJMrT5/kqwiF6NHc3onSarUSExODw+Eg\nLy+P559/nsDAQG6//fbOjK9LUSPHogG9fROqpV0RRcfV922dWnOJHQQnjqMzX4WSQkw33oFSyjfx\nCdHDuV1zCQkJobS0lPz8fAYNGkRwcDAAtbW1nRZclxM3GCKj0Vu/9XUk3Z62lxu/mE+puQyIN577\n+J8wajyMTfZFaEII2lBzueSSS1iwYAG1tbXMnj0bgO3btzNw4MAOBWC328nIyKCoqIi+ffsyf/58\nzGZzo/PWrl3L6tWrAZg2bRpTpkwBYPHixZSWluJwOBgzZgw///nPXc133qaUQo1LRm/cgHY4UAHS\n1t9p7HWKgB70AAAgAElEQVQ1l7Cwk8dijeHIaI3pmllSaxHCh9xOLunp6Zx11lmYTCZiY40mH4vF\nwpw5czoUQGZmJomJiaSnp5OZmUlmZiazZs1qcI7dbmfVqlUsXboUgHvvvZeUlBTMZjPz588nNDQU\nrTXLli3jiy++4Ec/+lGHYuqQcWfC55/A/l3GPiOic9Tv3RJ6MrmosHCIjIb4YSeX4RdC+ESb/sSP\ni4tzJZYtW7ZQWlrK4MGDOxRATk4OqampAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQUgNDQU\nAIfDQW1trc//WlVjJ4AyobdI01insh+DUDMqsOHfR6bfLcX0i3t8FJQQop7byeXBBx9k+/btgFHb\neOqpp3jqqadcTVXtVVZWRlRUFACRkZGUlTWehGi1WomOjnY9tlgsWK1W1+PFixdz2223ERISwqRJ\nvh0dpPqEwdAR0u/S2ezHGnbm11Ex/VHBoT4ISAhxKrebxQ4ePMioUcYyGp988gkPPvggwcHBLFy4\nkGnTprV47aJFi5qcDzNz5swGj5VS7ap53H///Rw/fpynn36aLVu2kJSU1OR5WVlZZGVlAbB06VJi\nYmLa/FoAgYGBLV5rn3guFatewtI7CFNY4y/AnqK1cuoIW00V2hKNpZPu702dWU7djZSVe/yhnNxO\nLlprAI4cOQLAoEFG52lFRUWr1y5cuLDZ5yIiIrDZbERFRWGz2QgPb/xlbLFYyM/Pdz22Wq2MHduw\nTT0oKIiJEyeSk5PTbHJJS0sjLS3N9bi4uLjV2JsSExPT4rV62GhwOin+bA2miee26zW6g9bKqSMc\n1mKI7tdp9/emziyn7kbKyj2dWU5xce6tMO52s9jo0aP529/+xiuvvMLEiRMBI9GEnTpapx1SUlLI\nzs4GIDs723XvUyUnJ5OXl4fdbsdut5OXl0dycjLV1dXYbDbA6HP59ttvOzx6zSOGjTKWeZemsc5j\nP+ZatFII4X/crrnccccdvP/++4SHh3PVVVcBUFBQwGWXXdahANLT08nIyGDNmjWuocgAe/bs4eOP\nP2bOnDmYzWamT5/OggULAJgxYwZms5nS0lIeffRRTpw4gdaacePGcdFFF3UoHk9QAQEwdgJ660a0\n1j4fZNDdaK0bLrcvhPA7Ste3d/VABQUFrZ/UBHeqnM7//Rf992cxPfQMauCQdr1OV9dZVXNdVYlz\n3kzUjJsx/fgaj9/f26Spx31SVu7xh2Yxt2sutbW1rF69mnXr1rn6SM4//3ymTZtGYKDbt+kx1LjT\njaVgtn7bY5NLp6lftLIHD5YQwt+5nRVeffVV9uzZw2233Ubfvn0pKiri3XffpbKy0jVjX5ykLH2N\nVXq35sLFXf+va79St66Y9LkI4b/c7tDfsGEDv/3tb5kwYQJxcXFMmDCBe+65hy+++KIz4+vSVMIY\nOLjX12F0P66ai/S5COGv3E4uPbhrpv3iBkN5GVp2p/QoXd7EXi5CCL/idrPY5MmTeeSRR5gxY4ar\ns+jdd9/1+Yx4f6YGxKMBDh+Uv7I9qamNwoQQfsXt5DJr1izeffddVq5cic1mw2KxcM455zBjxozO\njK9ri6tbAr7gIGrUeB8H043Yj0FgIASH+DoSIUQzWkwuW7ZsafB43LhxjBs3rsHcje3btzN+vHxx\nNikqBnqHGDUX4TnlZWAOl/lDQvixFpPLn//85yaP1/+jrk8yzz77rOcj6waUUhAXjy74ztehdCva\nfqzBJmFCCP/TYnJ57rnnvBVHt6Xi4mX5fU+zH5M5LkL4Od9s2diTDBgMZTZ0RbmvI+k+ymVdMSH8\nnSSXTqbqOvWl38WDmtnLRQjhPyS5dLYBJ0eMiY7TtbVQaZfkIoSfk+TS2Sx9Iai31Fw8pbKueVHm\nDQnh1yS5dDJlMhlrjMmIMc+Q2flCdAmSXLxAxcWDNIt5Rt3sfCWjxYTwa5JcvGHAYCgtQVe2viW0\naJn+/oDxS4TFt4EIIVokycULZMSYZ2inA/3J+zB0JMT6wXbWQohmSXLxhvoRY5JcOmbjBig8jOmS\n6bL0ixB+TpKLN8T0g6Agqbl0gNYa50fvQr84OP1sX4cjhGiFJBcvUKYAiB3U7UeM6Zrqzrv59k1w\nYDfqx+lGeQoh/JrbS+53FrvdTkZGBkVFRfTt25f58+djNpsbnbd27VpWr14NwLRp05gyZUqD5x95\n5BEKCwtZtmyZN8JuMzUgHr0r39dhdBq9exvOR34HY5IwXXQ1jD/To/d3/ns1hEeiJk/16H2FEJ3D\n5zWXzMxMEhMTefrpp0lMTCQzM7PROXa7nVWrVrFkyRKWLFnCqlWrsNvtrue//PJLgoODvRl22w2I\nB2sRurrS15F0Cl1QN4rr+wM4n1mE88E7qP4syzP3/m4v5G9EpV2F6hXkkXsKITqXz5NLTk4Oqamp\nAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQWgurqaDz74gOnTp3s17rZScYONXw5/79tAOktZ\nKQCmh/+K+vlvoFcQZRkPob/b0+Fb6/+shuAQVOolHb6XEMI7fJ5cysrKiIqKAiAyMpKyssb7zVut\nVqKjo12PLRYLVqsVgDfffJMrr7ySoCA//4u2Lrnow9203+WYDcxhqN69MZ2diumexZjCInC++me0\n09nu2+rv9qJzPkOdfwkqtHFzqRDCP3mlz2XRokWUlpY2Oj5z5swGj5VSbRpiun//fo4ePcrs2bMp\nLCxs9fysrCyysoymmqVLlxITE+P2a50qMDCwzdfqqCgKAwMJOWYjrJ2v689KqyqpjYo5pVxiOH7r\nXdieeJA+uV8QevHVbb6ndjiwPvoXCI8getbtmLrprPz2fJ56Kikr9/hDOXkluSxcuLDZ5yIiIrDZ\nbERFRWGz2QgPb/wFYrFYyM8/2RlutVoZO3YsO3fuZO/evdxxxx04HA7Kysp46KGHeOihh5p8rbS0\nNNLS0lyPi4uL2/V+YmJi2ndthIWq7w9S087X9WeO4qNgDm9QLtHnpsEH71D+8nNUjByPauNik85P\n/4XelY/6+W+w1hyHmu5XbtCBz1MPJGXlns4sp7i4OLfO83mzWEpKCtnZ2QBkZ2czceLERuckJyeT\nl5eH3W7HbreTl5dHcnIyF198MStWrOC5557jj3/8I3Fxcc0mFr8QaUGXlvg6is5RZkNFRDU4pJTC\ndMMcqKlCv/tym26nS0vQq/8OY5NRZ53vyUiFEF7g8+SSnp7Opk2bmDdvHps3byY9PR2APXv2sHz5\ncgDMZjPTp09nwYIFLFiwgBkzZjQ5XNnvRVqgGyYXrbXR5xIe1eg5FTcYdVE6+vMs9G73h2I733wB\namsx3TBHZuML0QX5fJ5LWFgYDzzwQKPjCQkJJCQkuB5PnTqVqVObn+PQr18/v53jUk9FRqO3bPR1\nGJ5XXQXHj0NEZJNPqyt+aiSXNf9CjRjb6u30phz4Zj0qfRaqn3tVcCGEf/F5zaVHiYo2moiqutlc\nlzKb8bOJmguA6h0MI8eiD+xu9Vb68EGcLz4FA+JRP77Gk1EKIbxIkos3RdYNp+5uTWN1yeWHfS6n\nUoMToPBwi9sO6OKjOJ94AEwmTHfejwrs5fFQhRDeIcnFi1R9crF1r+Sij7VccwFQQ+qaOA/ubfoe\nZTacGQ/A8WpM8/8gzWFCdHGSXLwpytjgqtuNGKtvFmumzwWAwUZy0Qcaz9jXlXacTz4IpVZM8x5E\nDRrWGVEKIbxIkos3ddOaC8dsEBAILcygV+GREBUDTSWXj/8J33+H6Vf3oRLGdGakQggvkeTiRSqo\nt/EFXGr1dSieVVZqrFhsauXjNCShybXG9NaNMGwkatzpnRSgEMLbJLl4W1R0t2sW08dsEN5Ck1gd\nNTgBjn7fYGVoXWGH/btRY5M7M0QhhJdJcvG2SEv3axYrs0ELI8XqqcEJoDUc3H/y4PZNoJ2osVJr\nEaI7keTiZSoyuvs1ix0rbXEYssuQ+k79k/NddH4uBIfAsFGdFZ0QwgckuXhbVDQcK0U7HL6OxCO0\n0wHHytyruURajPNO6XfR23JhdCIq0OeLRQghPEiSi7dFRoN2nhy+29XZjxnvp4U5Lg0MTnANR9ZF\nR6DoCOo06W8RoruR5OJlqrvN0i+tn53feoc+1E2mPHwIXVNjNImBdOYL0Q1JcvG2uomU3Sa5uDE7\n/1RGp74TDu0zkktUDMQO7MQAhRC+IMnF2+pqLtrWPTr1dVndDqPudOjDyU79/btg+ybU2AmypL4Q\n3ZAkF28zhxuz2btdzcW9ZjGiYsAcjv7ff6HSDtLfIkS3JMnFy5TJ1L02DSuzQXCIsay+G5RSRu3l\n+wPG49MmdGZ0QggfkeTiC5EWdHeZSHms1P2RYnVU3SKWxA8z1hwTQnQ7klx8IdLSbSZS6jJby6sh\nN0ENGWH8lFFiQnRbklx8wJilX2LsPd/VHbOh2lhzYdQ4GDQUdVZq58QkhPA5mRbtC1HRUFMNVZUQ\n2sfX0XRMWSmMs7TpEhUWQcCDT3dSQEIIf+Dz5GK328nIyKCoqIi+ffsyf/58zObG+4KsXbuW1atX\nAzBt2jSmTJkCwEMPPYTNZiMoKAiA3//+90RERHgt/nY5dSJlF04u+ngNVFW4P1JMCNFj+Dy5ZGZm\nkpiYSHp6OpmZmWRmZjJr1qwG59jtdlatWsXSpUsBuPfee0lJSXEloXnz5pGQkOD12NtLRUajwUgu\ncYN9HU77uXagbGOzmBCi2/N5n0tOTg6pqUbbe2pqKjk5OY3Oyc3NJSkpCbPZjNlsJikpidzcXG+H\n6jn12x139YmUx4wJlG3ucxFCdHs+r7mUlZURFWV8OUVGRlJWVtboHKvVSnR0tOuxxWLBaj35xfz8\n889jMpk4++yzmT59erMzvrOyssjKygJg6dKlxMTEtCvmwMDAdl8LoMPCKARCj1dh7sB9fK16t4My\nIHLIUHo18T46Wk49hZST+6Ss3OMP5eSV5LJo0SJKS0sbHZ85c2aDx0qpNi8FMm/ePCwWC1VVVSxb\ntox169a5akI/lJaWRlpamutxcXFxm16rXkxMTLuvdQk1U1lwkOq6++hvv0Dv2orppz/v2H29yHnI\nmAhZ6lSoJsrDI+XUA0g5uU/Kyj2dWU5xcXFuneeV5LJw4cJmn4uIiMBmsxEVFYXNZiM8PLzRORaL\nhfz8fNdjq9XK2LFjXc8BhISEcO6557J79+5mk4tfiYp2TaTU1mKcLz0FVZXoK2eiQhsPaPBLZaWg\nFIT5+QAKIYTX+bzPJSUlhezsbACys7OZOHFio3OSk5PJy8vDbrdjt9vJy8sjOTkZh8PBsWPHAKit\nreWbb74hPj7eq/G3W91ESq01zlefN4YlAxzY0/J1/uSYDczhqIAAX0cihPAzPu9zSU9PJyMjgzVr\n1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjNZqqrq1m8eDEOhwOn00liYmKDZi9/piKj\n0Yf2o79cC5u/Rl32E/SHb6O/2+PR9bZ0dRX68yzUlMs8ngSM2fnSmS+EaMznySUsLIwHHnig0fGE\nhIQGw4unTp3K1KlTG5wTHBzMI4880ukxdor67Y7f/CskjEFdfR16w6cer7noT95HZ76KGhAPnl5u\npR3rigkhegafN4v1WJHRoDXUVGH62VyUKQCGJKAP7PbYS2iHA73u38bvhw+1/fq9O3C+8Dj6xImm\nTyizub0DpRCiZ5Hk4iMquq/x88rrjFoFdQs6Fh5GV1Z45kU25YC1bsTI4e/afLn+ap3xX87/Gj/n\ndBp9LhFtW/pFCNEzSHLxldOSMd25EHXJNNchVbdLI995pmnMufZDY3OuYaPaV3Opi0Nn/bPRIpv6\n68+gthY1dKQnQhVCdDOSXHxEBQSgJkw0msPq1S1Frz3Q76KPfA/5uajzf4waOAQOH2zb9U4nfLfP\nWDfs4D7YueWU5xzo9980lq45fVKHYxVCdD+SXPyICosASwx4oN9Fr/0QAgJR518MA+KhvAxdfsz9\nGxQehpoq1BU/BXM4zo//efLeX/0PjhzCdNX1xs6aQgjxA/LN4G8Gj+hwzUXXVKPXr0GdeQ4qPMrV\np9OW2os+uBcAlXAaKvUS2JSDLiwwBgm8/yYMGia1FiFEsyS5+Bk1JAEKCzrUqa+/zIaqCtSUy4wD\ncUZy0Ufa0DR2YA8EBkJcvHEfUwA6631jXk5hAaarr5NaixCiWfLt4GfqtwCmruYAoEsKcdx/O3p3\nfjNXNaTXfgiDhsKI04wDUTEQ1BsK2lBz+W4PxA1BBfZCRVpQZ52HXv8J+r03YHACTDjb7XsJIXoe\nSS7+pm7E2KnzXXTmq8YQ5c3ftHq5riiHg/tQZ6W6FgFVJhMMiHd7xJjWGg7uPTl6DVBpVxu7Z5YU\nGn0tbVxgVAjRs/h8hr5oSIVHGjWNun4X/d0e9Ia1rt9bdbTAuM+AQQ3vO2AQeseWpq5ozFoM9nKI\nH37y+sHDYfwZUF0NSSnu3UcI0WNJcvFHQxJcnfrOd1+GPmEwahzs3obWusVag65LLvT/wbLYA+Jh\nw1p0VSUqJLTl1z9ovLYaPLzBYdMdvwdafn0hhABpFvNLakgCHP0e/c16Y67K5T9BjUmC8jKwtbJH\nQ2EBKBPExDa8Z/2IsSOtN43pA3uNewwa1vAegYGowF5tei9CiJ5Jkosfqu/Ud/79GYjuZ6xoXN/R\n31rT2NECiO6L6vWDJFCXXLQbw5H1d3sgdiCqd+82xy6EECDJxT/Vd6RXVqDSZxmJYtAwUKZW58Do\nwsPQr4md4vrGGkOL3Rkx9l3DznwhhGgrSS5+SIVHQXQ/GDwcddb5xrHevWHAoBaTi9Yajn6P6j+g\n8T0DAqD/QHQrzWL6mA1KSxp05gshRFtJh76fMv36QQgJbTBRUQ1JQOfnNn9ReSlUV0H/gU0+rWIH\ntT7i7Lu9rtcSQoj2kpqLn1ID4lGR0Q0PDhkBZTZ0aUnTFx09bFzbVLMYGP0uxYXo4zXNvq6uSy7E\nD2v2HCGEaI0kly5EDa6rTRzY2+TzurB+GHLjZjHAWAZGO11zYZq8x3d7oG8sKtTckVCFED2cJJeu\nJH4YKNX8bpVHCyAgAKL7N/l0/cTKFkeMfbcXBkt/ixCiY3ze52K328nIyKCoqIi+ffsyf/58zObG\nfzWvXbuW1atXAzBt2jSmTJkCQG1tLStXriQ/Px+lFDNnzmTSpO65Wq8KDjE65ZvpN9FHCyC6v9F5\n35T+A435K80kF11ZAUVHUD9K81TIQogeyufJJTMzk8TERNLT08nMzCQzM5NZs2Y1OMdut7Nq1SqW\nLl0KwL333ktKSgpms5nVq1cTERHBU089hdPpxG63++JteI0aktD8Mi6FBY1n5p96ba8g6Nu/+ZrL\n/p3GebK7pBCig3zeLJaTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnONUVOffvop6enp\nAJhMJsLDw70XvC8MGQGlJcaQ4VNoraHwMKqF5AIYnfrNzHXRu/KNmk3CaE9FK4TooXxecykrKyMq\nKgqAyMhIysrKGp1jtVqJjj45cspisWC1WqmoMPY8eeutt8jPz6d///7ccsstREZGeid4H1CDE9Bg\ndOonnnnyiVIrHK9pegLlqdfHD0dv+hpdYUf1adj8qHflQ/wwVHAra48JIUQrvJJcFi1aRGlpaaPj\nM2fObPBYKdWmRREdDgclJSWMHj2an/3sZ3zwwQe88sorzJ07t8nzs7KyyMrKAmDp0qXExMS04V2c\nFBgY2O5rO8oZOpEiIKS4AHPMj13Hjx/5DhsQMXIMvVuI7fjk87F98CZhBfsJnjzFdVzX1lK4bych\nF11FuIfemy/LqSuRcnKflJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlsTTZrWSwW8vNPbpRltVoZ\nO3YsYWFh9O7dm7POOguASZMmsWbNmmZfKy0tjbS0k53VxcWtLALZjJiYmHZf6xH9B1KxbTPVp8Tg\n3GmUz7EQM6qF2LQlFnqHcOzLddhHjj95fN9OOF5DzaBhHntvPi+nLkLKyX1SVu7pzHKKi2ul6b2O\nz/tcUlJSyM7OBiA7O5uJEyc2Oic5OZm8vDzsdjt2u528vDySk5NRSnHmmWe6Es+WLVsYNGhQo+u7\nGzV4uGu/F5ejhyGwl7EXTEvXBgbC6PGNZvrrXXXJu373SiGE6ACfJ5f09HQ2bdrEvHnz2Lx5s6tz\nfs+ePSxfvhwAs9nM9OnTWbBgAQsWLGDGjBmu4co33HAD77zzDvfccw/r1q3jpptu8tl78ZqhI8Fa\n1GDUly4sMCY/urGvvRqbDEVH0EVHTl6/O9+4/oerAgghRDv4vEM/LCyMBx54oNHxhIQEEhJOrm81\ndepUpk6d2ui8vn378oc//KFTY/Q3avIF6PfeQP/zddSc3xkHj7Y8DLnB9WOT0YDelofqG2uMNNu9\nDTX+jM4LWgjRo/i85iLaToVFoC66Cv3N58Y2yE4HFB1ufk2xH4odBJHRUN80drTA2IhsxNjOC1oI\n0aNIcumi1EXpEGrGmfmased9ba37NReljNrL9k1opwO9a6txfOS4zgxZCNGDSHLpolRoH9Sl02Hz\n1+j1nxjH3EwuAIxNhopyYy2x3dvAHAaxTS/VL4QQbSXJpQtTF1wBEVHoD98xDrjbLAao05IAo99F\n786HEWPbNMdICCFaIsmlC1O9e6Mu/yk4HBDUGyIt7l8bHgWDhqK/zDaWjZH+FiGEB0ly6eLUeRcZ\nWyLHDmpzzUONTYbvDxi/y/wWIYQH+XwosugYFdgL0/w/Gh36bb32tGT0fzOhVxDItsZCCA+S5NIN\ntKkj/1Qjx0FgIAwbhQrs5dmghBA9miSXHkz17o2a+QtU31hfhyKE6GYkufRwptRLfB2CEKIbkg59\nIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nNJaa18H\nIYQQonuRmks73Hvvvb4OoUuQcnKPlJP7pKzc4w/lJMlFCCGEx0lyEUII4XGSXNohLS3N1yF0CVJO\n7pFycp+UlXv8oZykQ18IIYTHSc1FCCGEx8l+Lm2Qm5vLiy++iNPp5MILLyQ9Pd3XIfmN4uJinnvu\nOUpLS1FKkZaWxmWXXYbdbicjI4OioiL69u3L/PnzMZvNvg7X55xOJ/feey8Wi4V7772XwsJCnnzy\nScrLyxk+fDhz584lMLBn//OsqKhg+fLlHDx4EKUUv/zlL4mLi5PP0w988MEHrFmzBqUU8fHx/OpX\nv6K0tNTnnyepubjJ6XSycuVK7rvvPjIyMvj88885dOiQr8PyGwEBAdx4441kZGSwePFi/vOf/3Do\n0CEyMzNJTEzk6aefJjExkczMTF+H6hc+/PBDBg4c6Hr86quvcvnll/PMM8/Qp08f1qxZ48Po/MOL\nL75IcnIyTz75JI899hgDBw6Uz9MPWK1WPvroI5YuXcqyZctwOp2sX7/eLz5PklzctHv3bmJjY+nf\nvz+BgYGcc8455OTk+DosvxEVFcXw4cMBCAkJYeDAgVitVnJyckhNTQUgNTVVygwoKSnh22+/5cIL\nLwRAa83WrVuZNGkSAFOmTOnx5VRZWcm2bduYOnUqAIGBgfTp00c+T01wOp0cP34ch8PB8ePHiYyM\n9IvPU8+ud7eB1WolOjra9Tg6Oppdu3b5MCL/VVhYyL59+xgxYgRlZWVERUUBEBkZSVlZmY+j872X\nXnqJWbNmUVVVBUB5eTmhoaEEBAQAYLFYsFqtvgzR5woLCwkPD+f555/nwIEDDB8+nNmzZ8vn6Qcs\nFgtXXnklv/zlLwkKCmLChAkMHz7cLz5PUnMRHlVdXc2yZcuYPXs2oaGhDZ5TSqGU8lFk/uGbb74h\nIiLCVcsTTXM4HOzbt4+LL76YRx99lN69ezdqApPPE9jtdnJycnjuuedYsWIF1dXV5Obm+josQGou\nbrNYLJSUlLgel5SUYLFYfBiR/6mtrWXZsmWcd955nH322QBERERgs9mIiorCZrMRHh7u4yh9a8eO\nHXz99dds3LiR48ePU1VVxUsvvURlZSUOh4OAgACsVmuP/2xFR0cTHR3NyJEjAZg0aRKZmZnyefqB\nzZs3069fP1c5nH322ezYscMvPk9Sc3FTQkIChw8fprCwkNraWtavX09KSoqvw/IbWmuWL1/OwIED\nueKKK1zHU1JSyM7OBiA7O5uJEyf6KkS/cP3117N8+XKee+457rrrLsaPH8+8efMYN24cGzZsAGDt\n2rU9/rMVGRlJdHQ0BQUFgPElOmjQIPk8/UBMTAy7du2ipqYGrbWrnPzh8ySTKNvg22+/5eWXX8bp\ndHLBBRcwbdo0X4fkN7Zv384DDzzA4MGDXU0V1113HSNHjiQjI4Pi4mIZOvoDW7du5f333+fee+/l\n6NGjPPnkk9jtdoYNG8bcuXPp1auXr0P0qf3797N8+XJqa2vp168fv/rVr9Bay+fpB95++23Wr19P\nQEAAQ4cOZc6cOVitVp9/niS5CCGE8DhpFhNCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFx\nklyEcMPdd9/N1q1bffLaxcXF3HjjjTidTp+8vhDtIUORhWiDt99+myNHjjBv3rxOe4077riD22+/\nnaSkpE57DSE6m9RchPAih8Ph6xCE8AqpuQjhhjvuuINbbrmFxx9/HDCWgI+NjeWxxx6jsrKSl19+\nmY0bN6KU4oILLuAnP/kJJpOJtWvX8sknn5CQkMC6deu4+OKLmTJlCitWrODAgQMopZgwYQK33nor\nffr04ZlnnuGzzz4jMDAQk8nEjBkzmDx5MnfeeSdvvPGGa62oF154ge3bt2M2m7n66qtde6a//fbb\nHDp0iKCgIL766itiYmK44447SEhIACAzM5OPPvqIqqoqoqKi+PnPf05iYqLPylV0X7JwpRBu6tWr\nF33NSBIAAAMxSURBVNdcc02jZrHnnnuOiIgInn76aWpqali6dCnR0dFcdNFFAOzatYtzzjmHF154\nAYfDgdVq5ZprruG0006jqqqKZcuW8c477zB79mzmzp3L9u3bGzSLFRYWNojjqaeeIj4+nhUrVlBQ\nUMCiRYuIjY1l/PjxgLHy8m9+8xt+9atf8eabb/K3v/2NxYsXU1BQwH/+8x8efvhhLBYLhYWF0o8j\nOo00iwnRAaWlpWzcuJHZs2cTHBxMREQEl19+OevXr3edExUVxaWXXkpAQABBQUHExsaSlJREr169\nCA8P5/LLLyc/P9+t1ysuLmb79u3ccMMNBAUFMXToUC688ELXYo4AY8aM4YwzzsBkMnH++eezf/9+\nAEwmEydOnODQoUOu9bpiY2M9Wh5C1JOaixAdUFxcjMPh4Be/+IXrmNa6wcZyMTExDa4pLS3lpZde\nYtu2bVRXV+N0Ot1efNFms2E2mwkJCWlw/z179rgeR0REuH4PCgrixIkTOBwOYmNjmT17Nu+88w6H\nDh1iwoQJ3HTTTT1+eX/ROSS5CNEGP9ycKjo6msDAQFauXOna+a81b7zxBgDLli3DbDbz1Vdf8be/\n/c2ta6OiorDb7VRVVbkSTHFxsdsJ4txzz+Xcc8+lsrKSv/zlL7z22mvMnTvXrWuFaAtpFhOiDSIi\nIigqKnL1VURFRTFhwgT+/ve/U1lZidPp5MiRIy02c1VVVREcHExoaChWq5X333+/wfORkZGN+lnq\nxcTEMHr0aF5//XWOHz/OgQMH+PTTTznvvPNajb2goIAtW7Zw4sQJgoKCCAoK6vE7OYrOI8lFiDaY\nPHkyALfeeiu/+93vALjzzjupra3l7rvv5uabb+aJJ57AZrM1e49rr72Wffv28bOf/YyHH36Ys846\nq8Hz6enpvPvuu8yePZv33nuv0fW//vWvKSoq4vbbb+fxxx/n2muvdWtOzIkTJ3jttde49dZbue22\n2zh27BjXX399W96+EG6TochCCCE8TmouQgghPE6SixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPE6S\nixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPO7/AdYWXsNU6TlEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xlg1PWd+P/nexJyMbkmCQlJOAMo\ngcSooQJagxitvbYIrEuVbqm131KtbnW7q2zr8VsWxFqKd3W7Vltta1vEdNtua4kIVkGNQqKIXIEA\nCbknCZmcZOb9++OTmSRMjpnJZGYCr8c/ZGY+x2uSMK+8r9dbaa01QgghhB+Zgh2AEEKI848kFyGE\nEH4nyUUIIYTfSXIRQgjhd5JchBBC+J0kFyGEEH4nyUUIIYTfSXIRQgjhd5JchBBC+J0kFyGEEH4X\nHuwAgun06dM+nZecnExDQ4Ofo/EfiW90JL7RkfhGJ9TjS09P9+g4abkIIYTwO0kuQggh/E6SixBC\nCL+T5CKEEMLvJLkIIYTwO0kuQggh/E6SixBCCL+T5CKEECFKNzei9+4Odhg+keQihBBjRNvOoE8d\n9/384v/F8dNN6HabH6MKjJBZoV9aWsoLL7yAw+Hg2muvZdmyZQNeP3v2LE899RTHjh0jNjaW733v\ne0yaNAmA1157jR07dmAymfjGN75BXl5eMN6CEEK46OpTOB57CFpbMD3+G9SECT5co9L4oroSsi72\nb4BjLCRaLg6Hg+eff57/+I//YMuWLbzzzjtUVlYOOGbHjh1MnDiRJ598ki9+8Yv86le/AqCyspLd\nu3fzk5/8hB/84Ac8//zzOByOYLwNIYQAQB/+BMeme6GpEc52Q121bxeqMT4HdfWpIe6zH8fzP0H3\n9Pga6pgJieRy9OhR0tLSSE1NJTw8nMWLF1NSUjLgmA8++IAlS5YAsHDhQvbv34/WmpKSEhYvXsyE\nCROYNGkSaWlpHD16NAjvQgghQH/wNo4tD0BcPKZv/5vxZG3l8CcNdp2zZ6G+1nhQPfj5+r230O/u\nRL9T7Gu4YyYkkovVaiUpKcn1OCkpCavVOuQxYWFhxMTE0Nra6nauxWJxO1cIIQLB8e5OHP/9KEyf\nheneR2DepQDomirvL1ZfDdrohRmy5VJpjOfoP72C7u7yLegxEjJjLoFQXFxMcbGR4Tdt2kRycrJP\n1wkPD/f53ECQ+EZH4hud8Rzf2cMH6Hx7O+Ez5jBh1lzC0qegwsI8uq69oZbGXz/LhLm5JD7wGCoy\nEoB6SzIRTQ3Ee/g9ccbXeWQ/LUDY5EyoO+0Ws3Y4qD99krDZ2fQcOUDMezuZeOMtHt0jEEIiuVgs\nFhobG12PGxsbsVgsgx6TlJSE3W6nvb2d2NhYt3OtVqvbuU6FhYUUFha6Hvta1jrUS2JLfKMj8Y3O\neI1P287gePjfoblfz0dkNMzOxrT0izDvMpRp8M4erTWOJ9aD3Y599R00trZCaysAjpTJdJ4o56yH\n3xNnfI7DB4zzcxeg/1ZEfVWVK2EB6LrT6M4O7IuvhchobFt/QfvlV6JizJ5+K3wyrkruZ2VlUV1d\nTV1dHT09PezevZv8/PwBx1x++eXs3LkTgHfffZd58+ahlCI/P5/du3dz9uxZ6urqqK6uZtasWUF4\nF0KI8UprjeOlp6H1DKYfbMb00FOob/wLavE1UFmB44n/xPHQnTjeen3Q7ie9+w3Yvxe14uuolLQB\nr6m0DKitQmvtXVC1VZCQhJo+G7R2H7eprDCunzkd042rod2Gfr1o6PfY04NutqJ7zxtrIdFyCQsL\n49Zbb2XDhg04HA6uueYapkyZwm9/+1uysrLIz89n6dKlPPXUU9x5552YzWa+973vATBlyhQWLVrE\nPffcg8lk4pvf/CamIf66EEIEl26sg4Y61EXzgx3KAPqdYti7B7VyDWr6bABUxlRYfC36ptvQH7yN\n3v4H9EtPo//wK9Q/3Iy66jpUWBi6qRH92+dhzjzUki+4XzwtA9rboLUF4hI8j6mmCiZnwuSpxuPq\nStTUrL7XT1WAMkH6VFREJGrBZ9Fv/C/62i+i4hLRVSfQu/6K/rQUzrRAv7Uypmde9WlqtDdCIrkA\nXHbZZVx22WUDnvunf/on19cRERHcc889g567fPlyli9fPqbxCSFGT//5d+g9OzBt/uWYd98MGcM5\nLQhdexr9ys/g4lzUdcvcjlfh4aiFS9BXFMDh/Tj+8Cv0y8+g3/gjphVrcOz6C9jPYvr6nYN2m6nU\nTDRATZXHyUVrDTWVqIVLIHUymExweuCgvq6sgNR0VITRVaa+cgv6w3dwvPAEdLbD0U8hPNzozpub\nB7HxEBuHik0A5VEYoxIyyUUIcf7T9TXQ04Peuwd11XUBv7/jD7+ivvh/0bOyUXNzURfn4nj5pxAW\njukb3xtyTAVAKQUX5WD6t4eh9D0cr/4Cx1Prjdf+6ZuoSUOMRaRlAKBrq1Bz5nkWaEsTdLRDaiYq\nfAKkTEbXnDNjrPI4asacvvhS01FXXYd+63VIzUD94zdQi65FxcZ5dk8/k+QihAgcaz0A+v23IMDJ\nRVedRP9lK+EzZtPTUIv+/Qs42zCmb/87yuLZbC6lFFy6EFNOPvrvf4P6atTSLw19QlIKhE8wWi6e\nqjWOVZONxMTkKQPWuuiOdmiodfseqlXfQl39OZiaZcQZRJJchBABoR0OI7lERMDBj9DNVlTC4DM7\n/X5vrXH8+qcQFUPi/T/B2t2DtjagD5aBBpV/ldfXVOHhqGsGGWM59zhTGKSmo2s9Ty6usi9pmcY1\nJmeiPy5B9/SgwsOhqsJ4PnPGwHtNiIBpoTGhSUa+hRCBcaYZenpQV10PWqM/+HvAbq3f2wmHP0Et\n/xqm3nEPZUnGtPhaTFdeO/YBpGZ413KpqYSISEjoXSCePgXsdmNhJb2D+QBTpvs1TH+S5CKECIzG\nOgBU9qUwNQv93lsBua1ut6F//wLMmGMktiBQaRlQX43uOTswtmYruux9t+N1bRWkZbjGgNTkKcYL\nzpX6lRUQMxESQ3exqiQXIURAaGvvIsKkFNQVV0PFEXTt6bG/7x9+bVQmvmXtsAP2Yyo1AxyOvlph\nztiKXsbx1H+hzy1sWV2J6u0SA1zdY7p3xpiuPA6ZM4I+rjIcSS5CiMCwGi0Xkiah8j8LShkD+2NI\nH/0U/eb/oQo+jwriWITqnTHWfyGk7ulBl75nfP3um33Pd3UZY1P9kouKjIKkSVBdaYxdVZ1AZU4P\nSOy+kuQixAVE9/QYH17B0FgH0RNR0THGzKw589Hv7/Jq5brj9W3YN34fbTsz7HG6vgbH81tw/Ggd\nxCWglq0ebfSj45yO3H/c5fB+aGuFmIno3TuMpAH0VJ8yVuQ7E5LT5ExjOnJDDXR1giSX84t9/fdo\n2fJQsMMQwif618/iePj7wbl3Y70xLbeXuqLAGOQ+ecyz86tPoV97GY4fxvHcjwbdw0SfacLx8jM4\n7v8O+sN3UNd9BdODT6AmBmfBppOKMRsLKPslF713N0REolasMRLvEaOWmL3qhHFO/24xesddaiqh\nd2fLc2eKhRpJLl5TONrG35ajQmjbGfSeN6HqBLq1JfABWOuNrp1e6rLFEBaOfn/XiKdqrXH86lmI\njEL9463GVOZX/ntAq0eXH8Txn3ej3y5GffZzmDY+h+kfvxG0RYRu0jJc05G1w47e9y4qJ99IspHR\n6D1vANBTeQKUgnMXZU6eAt3d6NL3XWVfQpkkF29FRaM7O4IdhRBe07t3gHO2UkUQNtRrrEdZ+rVc\nJpph/mXoD94Z8VT93k449DFqxT9jun4Z6nPLjbpZb/7ZSDy7/orj0f+AiAhMP9xsDN4nJI143UBS\n/acjH/3UmJp9+WJUZBQq/0r0B7vRXZ1Gy8WSMqACMhhrXQB06buQOtnt9VAjycVbkVHG6lghxhGt\ntVEWJHOGMZB+4khg79/eBh1tA7rFANSc+WCtR7cOPYai223o3/18wFRitfxrcMln0L/9HxxPb0C/\n/AzMvQTTD34Sut1FaRlgO4Nua0Xv3QPhE1A5lwOgFi+Frg70vj30VJ10H28Bo+UC0NkRuu+xH0ku\nXlLSchHj0aGPobYKdd1XIDUDHeiWS2/ZFyyTBjytMqcZX/SuOB+Mfu1lsLViWv2dvnUfpjBMt91j\nfOCWvY/64k2Y7vxh0MdWhqNSe8dQqiuN5DL/MlRUjPHcrGxITkW/8wY9VSfcxlsA1MTYvsKXIT6Y\nD1L+xXtR0eiO9kAUFRXCb/Rbr0OMGZV/JXxahv60FK114NZJNBrJRZ3TcnF+SOrKCtTFuW6n6Yoj\n6F1/QS390oBy8wAqKgbT9zdAQy3OMvkhrbdOmN7zJjQ1oG78muslZTKhFl2D/uMrxhODtVzASKZn\nmqXlcl6KjJZuMTGu6DPNRhXiRdcY5dmnzzaq7jY1jnzySNd2ONCnjqOPH0YfOYD+tIye6kr34/qt\ncelPxSUapeB7Z0i5nffm/xnTl78y+Pa9yhzHuEgsAEmpxgSG3cUQFo66ZMGAl9WipX1fD9JygX4r\n9aXlch6KikZ3daAdjuCt9hXCC3r3G2DvQRXcAICaPsuoBnziKHhYCXjIa/98C/q9gbO9muIT4Ucv\nDPz/0Vhn7C0SG+9+kczpQ+6OqI8fhtnZqOiYUcUZClRYGEyabJRwmX+52342KiUNZmcbU5KHSi4L\nlxh7sYzy5xYIkly8FRVlLHDq7oKo6GBHI8SwtMNhdInNmdf3V++UGRAWhq44grp0oe/XLj+Ifm8X\n6uobUHmfMf4qP/IJjj/9FlNN5cCpstYGYwbUYJtpZUxDv/VXtMNuVBB2Xr+9zdgw6zNX+xxjyEnN\ngOpTqMsWDfqy6ctfJaJ0D93xiYO+rrIuRmVdPJYR+o386e2tyN6E0tUZ3DiE8MTBMqivQV19g+sp\nFREJ6VPRFb7PGNNa4/j9zyE+0diUKicflZ2HWnSN8frRAwOPb6xz6xJzyZwO3d1udbc4cRS0HrAh\n1ninMqcZXWJ5gyd1NfcS4u/8YUjXDPOUJBdvRUUZ/8qMMRHidHcXjm0vgTnO7S9lNX02VBz1qvTK\nAHv3QPlB1FduQfVvwadMxhSfaKzj6O+cNS4DYsnonTF2TteYPn7Y+GK8jKl4QF1/I6Yfbg6dhZ1j\nSJKLl1z/kbokuYjQpbVGv/gEnCzH9M/fNTaR6m/6LGi3QX2N99fuOYvj1RchfSrqnL1QlFJMmHsJ\nul9y0WfPQosVhkguTJ4KyoQ+ZzqyPn7E2K43hKcXe0tFx4yLmV7+IMnFW85uMWm5iBCm//xbdMnf\nUTd+bdBxFecMK1+6xvSuv0J9DaaV3xgwRuI0YW4u1Negm3tnozU5S+0P3i2mIiNh0mT3Qf2Kw6gZ\n50+r5UIjycVbUZJcRGjTH7yN/sOvUQuvQd2wYvCD0qcZ+7p7mVx0u81YizH3Eph/2aDHRMztXa/i\nbL04Nwk7d41Lf5nTBkxH1tYGaLbC9PNnvOVCI8nFW73JRcuAvghB+kQ5jhceg6yLUf98x5ADwyo8\nHKbMQJ/wbqW+LvoVtNuMVssQ1w6fMQciIl1dY9q5On+oAX1AZUw3WjvO/1cVxniLminJZbyS5OKt\nSBnQF6FLv74NIiIx3b7OfZzlHGr6bDhRjnbYPbv2h++g3/xz72r5mUNfNzwcZszpG3dprDOq/CYO\nXUhSZUwzpvifPmnc6/gRCAs3aqGJcSno61xsNhtbtmyhvr6elJQU7r77bsxm9wG8nTt3sm3bNgCW\nL1/OkiVLAPjNb37DW2+9hc1m46WXXhr7gGVAX4QwXV0JMy4yVr6PZPpsePPPUF0FGcOXb9c1VThe\nfAJmXoRauWbES6vZ2eg//x7d2W7UFYtPRIVPGPqE/mVgZswxZopNmYGaMMw5IqQFveVSVFRETk4O\nTzzxBDk5ORQVFbkdY7PZ2Lp1Kxs3bmTjxo1s3boVm83YU+Xyyy9n48aNgQtYBvRFiNJaQ91pVGr6\nyAdjrNSHkQf1dVcnjmc3QXg4pm//+/BJwnntrLmgHXDscO8mYUN3iQGQnGr0ClSdMFpSFUdlMH+c\nC3pyKSkpoaCgAICCggJKSkrcjiktLSU3Nxez2YzZbCY3N5fS0lIA5syZQ2KiB3+l+YkKC4OICOiU\nMRcRYpqtRuUID5MLaRnGH0vDlN/XWqNf/imcPonptu8PuVbFTdbFxvTiowegsW7E85TJ2PxKV1YY\nLamuDphxkWf3EiEp6MmlpaXFlRwSEhJoaXHfIc9qtZKU1Ndfa7FYsFqtAYvxXCoqRrrFROjp3eVQ\npQ5RUfccyhQG07LQB8qM1sU5dGc7+tVfoN99E/WlVah5l3ocioqOgcxp6CMHjKnIHiQllTkdqirQ\nxw8Zj6XlMq4FZMxl/fr1NDc3uz2/atWqAY+VUmNa9qC4uJji4mIANm3aRHKyb8XfGqJjmKAdxPt4\n/lgLDw/3+b0FgsQ3OkPF1952hlbAMnc+YR7G3/HFlZx5cgOOH64l+rp/YOKKf8ZkjqP9L6/Stu0l\ndGsLUUtuIG7NHR4XanXGdybncjr++ho47JinzSBmhJjaL5pH69//RsSBfXTHmEnOzh2T4rDj9ec7\n3gQkudx///1DvhYfH09TUxOJiYk0NTURF+deFsFisXDgQF+tIqvVSnZ2ttdxFBYWUlhY6Hrc0NDg\n9TXAWKXf2dLCWR/PH2vJyck+v7dAkPhGZ6j4HOWHICICq0OhPI0/+zJM//Us+v9+R8ffiujY/r8Q\nM9HYgjf7UkzLbuHsjDk0etFT4IzPkTEdemeitUXG0D5CTDrB+EDt+nA3XJTj1T29MV5/vqEiPd2z\nbtegd4vl5+eza5dRsnvXrl0sWLDA7Zi8vDzKysqw2WzYbDbKysrIy8sLdKguKlq6xUTo0bWnIWWy\n13/tq6QUTF+7A9P6nxol3afPxvRvGwm7+/8bVdFINavfH4AjDegDOGuMORwoGW8Z94I+FXnZsmVs\n2bKFHTt2uKYiA5SXl7N9+3bWrl2L2WxmxYoVrFu3DoCVK1e6piu//PLLvP3223R3d7N27VqWLl3K\nTTfdNKYxq+gYaG4a03sI4bXa030f0D5QKWmor9/pt3CUJdlIKo11no25mOMgwQLNVhlvOQ8EPbnE\nxsbywAMPuD2flZVFVlbftqZLly5l6dKlbsetXr2a1atXj2mM51JR0dB5OqD3FGI4uqcHGmqG3Cck\nWNTseejuLs83+8qc3lv2RZLLeBf05DIeGd1iMhVZhJDGOrDbjc2oQoj6xzWown/w/Pi8hWhAJVjG\nLigREJJcfKCiYmQRpQgtdUZL2tMFlIGi4hLBk2oBvUwFN0DBDSMfKEJe0Af0xyPngL7PGy0J4We6\nd41LqLVcxIVLkosPTFHRRhdET0+wQxHCUHsaYsxgjg12JEIAklx84hqclK4xESJ07WlITT8v9l4X\n5wdJLj5wJRdZ6yJCRW2Vx2VfhAgESS4+ULIbpQghuqsLrA2eF6wUIgAkufigr+Ui05FFCKjvXXMl\nyUWEEEkuPlBRMuYiQkhtaE5DFhc2SS4+kAF9EUp0Te805EmSXETokOTiA+eYi5YBfREK6qohwdI3\nFihECJDk4gOTtFxECNG1VbJ4UoQcSS4+kAF9EVJqT8t4iwg5klx8MSECTCZpuYiAc2z7Jdb7/h+6\nqREA3dYKtjMyU0yEHEkuPlBKQVS0tFxEQOm6avTfXuPsof04HrkXXVPZb6aYdIuJ0CLJxVeR0dDZ\nHuwoxHlGHz+C/uDtwV/7428gLIyEHzwK3V04HrkP/f5bxovSchEhRpKLr6Ki0dItJvzMUfQSjv9+\nFL1/74Dn9emT6Pd2oa75IpH5V2K67xHjd/CNPxpdtMmpQYpYiMFJcvFVZJR0iwm/0lrDyXLQGsfz\nP0FbG1yvOf7wa4iMQt2wAgA1KR3TvY8YOzdOm4UKnxCkqIUYnCQXX0VFy4C+8C9rA9haUdd+Gc52\n4/jZj9F2O/pEOezdjSr8irHPfC+VYMF0/2OY/nVDEIMWYnCyE6WvoqKhoTXYUYjzyYmjAKjPXA0z\n5qD/ZzO66GV0ZQXEmFHXfcXtFGUyQWRkgAMVYmSSXHykIqNkhb7wK32y3Bg/yZyOaeZFOA5/gv7r\nqwCo5V9HxUwMcoRCeE66xXwl3WLCz/TJYzB5CirCaImoVbfB1JlGaZelXwxydEJ4R1ouvoqMls3C\nhH+dLEdlX+p6qCZEGIP2XZ2oyKggBiaE9yS5+CoqGrq70XY7Kiws2NGIcU43W6GlCaZlDXheRURC\nhIypiPEn6MnFZrOxZcsW6uvrSUlJ4e6778ZsNrsdt3PnTrZt2wbA8uXLWbJkCV1dXfzkJz+htrYW\nk8nE5Zdfzi233BKYwJ1/SXZ1gvSFi9E6UQ6Ampo1woFCjA9BH3MpKioiJyeHJ554gpycHIqKityO\nsdlsbN26lY0bN7Jx40a2bt2KzWYD4Mtf/jKPPfYYP/rRjzh06BD79u0LTOCy1bHwI32yHJSCKTOC\nHYoQfhH05FJSUkJBQQEABQUFlJSUuB1TWlpKbm4uZrMZs9lMbm4upaWlREZGMn/+fADCw8OZMWMG\njY2NgQncmVxkIaXwA32yHFIzZE8Wcd4IenJpaWkhMTERgISEBFpaWtyOsVqtJCUluR5bLBasVuuA\nY9ra2vjwww/JyckZ24B7qUhpuQg/OlkuXWLivBKQMZf169fT3Nzs9vyqVasGPFZKGRWHvWS323n8\n8cf5/Oc/T2rq0DWWiouLKS4uBmDTpk0kJyd7fS8wWknxqWk0AfFREUT4eJ2xEh4e7vN7CwSJbyBH\nSxP11gYmZucw0YP7yvdvdCS+wAhIcrn//vuHfC0+Pp6mpiYSExNpamoiLi7O7RiLxcKBAwdcj61W\nK9nZ2a7Hzz33HGlpaXzxi8OvBSgsLKSwsND1uKGhYZijh5acnExLVxcALbU1qMm+XWesJCcn+/ze\nAkHiG8hZpLI9KY0OD+4r37/RkfhGJz3dswrcQe8Wy8/PZ9euXQDs2rWLBQsWuB2Tl5dHWVkZNpsN\nm81GWVkZeXl5ALzyyiu0t7ezZs2aQIZtrHMBqYwsRk2fNGaKMXVmcAMRwo+CPhV52bJlbNmyhR07\ndrimIgOUl5ezfft21q5di9lsZsWKFaxbtw6AlStXYjabaWxsZNu2bWRkZHDvvfcCcMMNN3DttdeO\nfeBR/aYiCzEK+mQ5pKShYtyn4AsxXgU9ucTGxvLAAw+4PZ+VlUVWVt8A59KlS1m6dOmAY5KSkvjd\n73435jEOSqYiC385eUwG88V5J+jdYuNWhLPlIslF+E632aC+xm1lvhDjnSQXHxmlzqOk5SJG56Ss\nzBfnJ0kuoxEVLWMuYlT0yWPGF5JcxHlGkstoSMtFjNapY2BJRsW6T8EXYjyT5DIaUdEyFVmMiq6r\nhtSMYIchhN9JchmNyCjpFhOj01CLSh66qoQQ45Ukl9GIipFuMeEz3dkOrS2QkhbsUITwO0kuo6Ai\no2QqsvBdQ63xb7IkF3H+keQyGlHR0nIRvqs3kotKkW4xcf6R5DIaMhVZjIJ2tlykW0ychyS5jEZk\nFHR2orUOdiRiPKqvgeiJIDXFxHlIkstoREWDdkB3V7AjEeOQbqiFlFSf9jASItRJchkN526UMqgv\nfFFfI4P54rwlyWU0pDKy8JF2OIw1LjKYL85TklxGQUX2VkbulEF94aWWJug5Ky0Xcd7yeD+X/fv3\nM2nSJCZNmkRTUxO/+tWvMJlM3HzzzSQkJIxljKFLWi7CV/U1ACiZKSbOUx63XJ5//nlMJuPwX/7y\nl9jtdpRSPPfcc2MWXMhzJheZjiy8pBuM5IJ0i4nzlMctF6vVSnJyMna7nbKyMp555hnCw8P59re/\nPZbxhbbeAX3d2YHM9xFeqa8FpcCSEuxIhBgTHieX6OhompubOXXqFJmZmURFRdHT00NPT89Yxhfa\nXN1i7cGNQ4w/DTWQmIwKnxDsSIQYEx4nlxtuuIF169bR09PDmjVrADh48CAZGRdwufAo51bH0i0m\nvKPra2RlvjiveZxcli1bxmc+8xlMJhNpacZ/CovFwtq1a8csuJDnmi0mA/rCSw21qPmXBzsKIcaM\nx8kFID093fX1/v37MZlMZGdn+z2o8UKFT4DwcGm5CK/ori5jKrK0XMR5zOPZYg8++CAHDx4EoKio\niMcff5zHH3+cbdu2jVlw44JURhbeanSW2peZYuL85XFyOXXqFHPmzAHgjTfe4MEHH2TDhg1s3759\nzIIbFyKjpfyL8I6r1L60XMT5y+NuMWfl35oaY35+ZmYmAG1tbaMKwGazsWXLFurr60lJSeHuu+/G\nbHavErtz505XK2n58uUsWbIEgA0bNtDc3Izdbufiiy/mtttuc63HCYjoGHT76L4H4sLSt8ZFkos4\nf3mcXC666CJ+/vOf09TUxIIFCwAj0cTGxo4qgKKiInJycli2bBlFRUUUFRWxevXqAcfYbDa2bt3K\npk2bALjvvvvIz8/HbDZz9913ExMTg9aazZs3s2fPHq688spRxeSV2Hhjq1ohPFVfY7R4zXHBjkSI\nMePxn/h33HEHMTExTJs2jZtuugmA06dP84UvfGFUAZSUlFBQUABAQUEBJSUlbseUlpaSm5uL2WzG\nbDaTm5tLaWkpADExMQDY7XZ6enoCXr5cxSUYg7NCeEhK7YsLgcctl9jYWG6++eYBz1122WWjDqCl\npYXExEQAEhISaGlxbwVYrVaSkpJcjy0WC1ar1fV4w4YNHD16lLy8PBYuXDjqmLwSnwitzWit5cNC\neKa+Bialj3ycEOOYx8mlp6eHbdu28dZbb9HU1ERiYiJXX301y5cvJzx8+MusX7+e5uZmt+dXrVo1\n4LFSyqcP6B/84Ad0d3fzxBNPsH//fnJzcwc9rri4mOLiYgA2bdpEcnKy1/cCCA8Pd53blpaBrbub\nJHMMpuiJPl3P3/rHF4ou5Pi01tQ11BKTv5hYP/z+hSKJb3RCPT5PeZxcXn75ZcrLy/nWt75FSkoK\n9fX1vPrqq7S3t7tW7A/l/vvvH/K1+Ph4V7JqamoiLs69H9pisXDgwAHXY6vV6ra+JiIiggULFlBS\nUjJkciksLKSwsND1uKGhYdgV/fp9AAAgAElEQVS4h5KcnOw61xFmlO9oPF6OCpG/RvvHF4ou5Ph0\nSxN0d9ExMY4uP/z+hSKJb3RCPb7+6x2H4/GYy7vvvsu///u/c8kll5Cens4ll1zC97//ffbs2eNz\nkAD5+fns2rULgF27drkmC/SXl5dHWVkZNpsNm81GWVkZeXl5dHZ20tRkjHfY7Xb27t0b8HI0Kq53\nu4EW95aZEG6k1L64QHg9Fdnfli1bxpYtW9ixY4drKjJAeXk527dvZ+3atZjNZlasWMG6desAWLly\nJWazmebmZn70ox9x9uxZtNbMmzeP6667bkziHFK8MV7EGUkuYmSuaciySZg4z3mcXBYtWsQjjzzC\nypUrXc22V199ddQD6LGxsTzwwANuz2dlZZGVleV6vHTpUpYuXTrgmISEBB5++OFR3X/Uelsu+kyz\nlN0XI6t3rs6fFNw4hBhjHieX1atX8+qrr/L888/T1NSExWJh8eLFrFy5cizjC33mOGNfDmm5CE/U\n10CCBTUhItiRCDGmhk0u+/fvH/B43rx5zJs3b8C024MHDzJ//vyxizDEqbAwI8GckbUuYmS67jSk\nXsDbVIgLxrDJ5ac//emgzzsTizPJPPXUU/6PbDyJS0BLy0WMQGsN1ZWoBVcFOxQhxtywyeXpp58O\nVBzjW1yCdIuJkdnOQLsN0jKDHYkQYy6AFR7PX1ICRnikuhIAlSbdYuL8J8nFH/qVgBFiKLrGSC7S\nchEXAkku/hCXAN3dsq+LGF5NJUyIAEtKsCMRYsxJcvGH2N5V+jLuIoaha6ogNR0VyP2GhAgS+S33\nAykBIzxSU4mSLjFxgZDk4g9SAkaMQJ89Cw11Mt4iLhiSXPyhXwkYIQZVVw3aATJTTFwgJLn4g5SA\nESOpcU5DlpaLuDBIcvEDKQEjRuKahpwaGnv+CDHWJLn4i5SAEcOpqQRLMioqOtiRCBEQklz8RUrA\niGEY05BlvEVcOCS5+ImS5CKGoLWWacjigiPJxV/iE+FMk5SAEe5arNDZAZMluYgLhyQXf5ESMGIo\nNVWAzBQTFxZJLv4iJWDEEPpmismYi7hwSHLxEykBI4ZUUwWRUZCYFOxIhAgYSS7+IiVgxBB0dSWk\nZbp2cBXiQiDJxV+kBIwAdHub++9AbRVKusTEBUaSi79ICRgBOH7xJI4frkVXHAFAd3VBYx1MluQi\nLiySXPxESsCMDcdvn8fx0tPBDsMjuqcHPtkHHe04tjyIrjwOtTJTTFyYwoMdgM1mY8uWLdTX15OS\nksLdd9+N2Wx2O27nzp1s27YNgOXLl7NkyZIBrz/yyCPU1dWxefPmQIQ9uAuwBIzjL6+CSWH63PIx\nub7+6H0YL5trnTgKXR2oFV9Hv/EnHD95ALXk88ZrklzEBSbo/2uLiorIycnhiSeeICcnh6KiIrdj\nbDYbW7duZePGjWzcuJGtW7dis9lcr7/33ntERUUFMuzBXYCr9PXuYnTJ22Nz7bPdUF8LZ1rG5Pr+\npj8tA0BdeR2mf11vPPfHV4zu0kmTgxmaEAEX9ORSUlJCQUEBAAUFBZSUlLgdU1paSm5uLmazGbPZ\nTG5uLqWlpQB0dnbypz/9iRUrVgQ07sFcaCVgtMNufPi320Y+2Be1VcYeKO02o8spxOmDH8GUGajY\nOFRaJqZ71sPEWEhORUVEBjs8IQIq6N1iLS0tJCYa03gTEhJoaXH/K9VqtZKU1LdGwGKxYLVaAXjl\nlVf48pe/TERExIj3Ki4upri4GIBNmzaRnJzsU8zh4eGDntualk77vndJSkoK6rTToeLzN3tdNQ32\nHlR7m1f38zS+zk/34fxtsESEE2YZ+/cEvn3/dFcXdccOEfOFFcQ6z01OpufR59HtbUzw488jUD9f\nX0l8oxPq8XkqIMll/fr1NDe7/0W/atWqAY+VUl59KFdUVFBbW8uaNWuoq6sb8fjCwkIKCwtdjxsa\nGjy+V3/JycmDnuuYEAndXTRUnUJFxfh0bX8YKj5/04cOGP+2tVJfW2tMavCAp/E5Dh9wfW09cRzl\n8C1Ob/ny/dOflsHZbjqnzaar/7kToiA+Cvz48wjUz9dXEt/ohHp86eme7UkUkORy//33D/lafHw8\nTU1NJCYm0tTURFxcnNsxFouFAwf6fdBYrWRnZ3P48GGOHTvGHXfcgd1up6WlhYceeoiHHnpoLN7G\nyPqXgAlicgkUXV/d96C9DWLdf3ajun71qb4HrZ51N+ruLtAaFRnYMTj9aRmEhcHs7IDeV4hQFfQx\nl/z8fHbt2gXArl27WLBggdsxeXl5lJWVYbPZsNlslJWVkZeXx/XXX89zzz3H008/zX/+53+Snp4e\nvMTC+VkCRjvsaMcQTYa6fsmlrdX/Nz99yrXnvPZwUF+/9DSOJ9f7P5aR7nvwI5g+O6gtViFCSdCT\ny7Jly/joo4+46667+Pjjj1m2bBkA5eXlPPvsswCYzWZWrFjBunXrWLduHStXrhx0unLQnYclYBzP\nPIz+n8Gnd+sxTC66pwfqTqPm5BhP2DxMLrWnofzTgE4A0O1tUHEUNfeSgN1TiFAX9AH92NhYHnjg\nAbfns7KyyMrKcj1eunQpS5cuHfI6kyZNCu4aFxhQAuZ8qCKlzzTDRx+g4+IHP6C+BmLjobXF/y2X\n+hqw2yHrYnhnu+fTkdtaoacHqk/BlBn+jWkoh/eDdqAuluQihFPQWy7nlfOsBIwufdeYCtzS5LY4\nVGttdIvNmGM8bvNtOrLjnWIcO//P/YXqkwCojKlg7k1gnuiNQ5846lM8vtAHP4KICJh5UcDuKUSo\nk+TiR+dbCRi9d0/f6vjK4wNfbGmC7i7UjNnGYx9bLnr7H9CvvWysmen//Onewfy0TIiNQ3uQXLTD\n3rfm5mS5T/H4Qh/8CGZloyZMCNg9hQh1klz8LTkVffAjY3X5OKbbbHDwI9QioytSV1YMPKC+BgA1\nbZbRWvMhuWi73Vgo2W6DinNaGtWVkDTJmPUV62HLpb0NereZ1iePeR2PL/SZJqg6gbo4NyD3E2K8\nkOTiZ6Zlt0BdNfpPvwt2KKOiPyoBux1VcAMkWOBUxcDXnYP5qekQY/at5dJYa4yPAHr/3oHXrz4J\nk6cAoGITPEsuzq652Hg4dcxIXmNMH/wYQMZbhDhH0Af0zzcq+1LUoqXo119FL7gKlTk92CH5RO/d\nDYnJMG0WZE53b7nUVRtdZpZJMNHc98Hujere7X8jo9EH9sE/fNW4t8MONVV9s69i4zwb0LedAUDN\nvQT9/lvGDpAZU72Paxi69D0c7xRDRzt0dhjl9KMnwrSZfr2PEOOdtFzGgLrpVogx4/jlU25jCeOB\n7uyAT/ahLluEMplQmTOg+hS652zfQfXVRrdVeDhMjEX70i3Wu0hSXXktHDvcNymgsR7OdvdVEo6N\nh64OY4HkcJwxZOcZ1x+DQX3HX1+FQ/uNmWyx8ai5l6D+6TaUybPqBEJcKCS5jAFljkOt+hYcP4ze\n8edgh+O9/R/C2W7UpYuMx5nTwd5jtAR66bpqSOmt9DvRDDYfusWqKyE+EbXgKmNW2qdGMVJ6B/NV\nem+rw7k4tfXMsJdzJic182KIiPT7oL52OKDyBGrhEsLu3UTYvzyI6f/9G6Yrr/XrfYQ4H0hyGSNq\nwWchJx9d9DK6ceS6Z6FE791jtBZmzwUwWi5gbH7lVF+N6i0jrybG+lQZWdcYe8sz4yKInugad9G9\n05CZbLRcVGzvOpuRSsC09SafuHiYMgPt7xljjXXQ1WEkWyHEsCS5jBGlFKZbvgOAfvUXQY7Gc/ps\nN/qjD1B5V/R19aRlQHg49I676LZWY2ZWSprx+sRYrwf0tdZQXYmaPMWYwj33EvQn+1zPE29BxfRW\nYXAllxHGXdpsxsy16BhjFtvJ40OXrvFF7/tXgVqcKcQ4JsllDKmkFNTVn0Pv3TN+dqg8UGrspnjZ\nYtdTKiwM0qeinTPGemeKOVsuTDRDe5t3s7NamqCjzTWuouZfBs2NcPqkMRaTPqXv2N7kMuJaF1sr\nxJiNpDg1y2hl1J32PKYR6FPHjeSV7t9JAkKcjyS5jDF11XVg70G/+2awQ/GI3rvHmP10cc6A51Xm\nDKiqMI5xTkN2jbn0VkNub/P8Rs7BfGfX17xLjWvv3wvVpwbuOR/nacul1Uh0gOqdvaVP+K9rTFdV\nwKT0gFdcFmI8kuQyxlT6VMi6GP12sdHlE+L0sYNwUQ4q/JzV5lOm95WBcZbaT0k1/u39QPema0w7\nJwc417JYUmDyFPQ7xcYU3/4tl8homBAx4nRk3dZqdNEBTJ5qnOPPcZdTxyFzmv+uJ8R5TJJLAKgr\nC42/1I8dCnYow9I9PVBfg+r/wd5LZUw3vqg8bnSLJSa7tu5Vzg90b8Zdqk9BVLSxQNN5j3mX9WvR\n9HU9KaWMtS6edIuZjVaUCgsz1uf4qeWiOzuM740M5gvhEUkuAaAWXAWRUei//y3YoQzPWYm4f5eU\nk2vGWEXvNOS0vtd8arkYM8X67zyq5l/Wd8Dkc2KITRh5zKWtFTWxbysGNS0LTh7zT4ux6oRxzUwZ\nzBfCE5JcAkBFxaAWfBb9wdvozvZghzO0c8ZB+lOxcX1lYOpr+gbzAcxGy8WrysjVp9zvMzvb6Moy\nx/bNEHPypL5Y/24xMAb1O9pcddBGw1WhQFouQnhEkkuAqKuug65OdMnbwQ5lSLqmtxxL7+6PbjJn\noMs/NbYUGNBy8a5bzNFmg2ara7zFSUVEovKugFnzBrRooHetyzDrXHTPWWOsxtyXXNTU3v2AvBh3\n0R++Q/v/bXV/ofI4RMdA0iSPryXEhUySS6DMvMgYsH57e7AjGVpNJSQkDblVr8qc3lcNuX/LJTrG\nq8rI9qrevVoGayHddg+m79znflJsPLSeGbqLy7mIs3/LJWMqhIV7Ne7i+Os2Wl98ythdsh9dWQEZ\n092SnhBicJJcAkQpZbRejh1Cnz4Z7HAGpasr3cc6+uvfJdQvuShTmFeVkXucXUyDjO0oUxjKNMiv\nZVy8UW+sq2PwizrLz/RLLip8AmRMQ3/8gef7wZw+AWe70R++0/e81lBZgZoyfcRrCCEMklwCSC26\nxvhL+p3iYIfiRmsNNZUD15ecY8DK9JTJA1/0ojJyT2UFhIW7X2M4zjGYoaYj9yYX1a9bDEBdvwxq\nq3A8+F106XvD36OuGrqNfXj0e7v6nm+oNbrcZLxFCI9JcgkgFRsPM+egQ3FKcovV+AAdruWSmgHh\nE4xqwNHndJ15URnZXlkBkyYb04U9pGKdxSuHSC7t7i0XANMVBZh+uAUSLDie3oDjxSfQHUNMquht\nUUVeUQCHPkY31hvP9y4elZliQnhOkkuAqUmT/TJ7ye9691YZtuXSu3aE1HT3F72ojNxTddJtMH9E\nsb1VAIZILnqQbjEnlTEN03/8GPWFm9C7d+B49pHBr3GqAkwmzLd823j8/q6+55WCDFlAKYSnZLOw\nQEuZbKx07+oMqTIirpliw7VcANM3/sX4oD2HmhiLrh25jpfuOYujpgqVt9C7AHtbLrq1hUGH1J1d\ncmb35ALG+Iu6cTUO+1l08R/R3V2uRaCu2KoqIC2T8CnTjaoKe95E37DCGMxPmRxSPy8hQp20XALN\nOYU31Fov1ZXGivl4y7CHqfSpqMFaHZ5WRq6tBod9xCTmxtlyGaoAaNsZCAszSsUMQ82eZ+xNUzHI\nRmKnjrtW4KuF1xjrfk4dM6Yhy3iLEF6R5BJgrim8IZZcdE0lTJ7i+1RbTysj1zgXanrXLaYiIo3k\nZxtiwzCbsYByxPhnXgxgrNfpR7fbwFrvqkSg8q80Jl/s+quxaFRmignhlaB3i9lsNrZs2UJ9fT0p\nKSncfffdmM1mt+N27tzJtm3bAFi+fDlLliwB4KGHHqKpqYmIiAgAfvjDHxIfH+92fsjonSGl66sH\n794JlupK1Nxc38/vXxnZ2coYhK4eYaHmcGLjh5wtpttsg463nEvFxkFaBvrowOTi2qvF2XIxx0HO\n5ca6JK2lppgQXgp6cikqKiInJ4dly5ZRVFREUVERq1evHnCMzWZj69atbNq0CYD77ruP/Px8VxK6\n6667yMrKCnjsvlATzcaakBBquejOdmMvlWEG80fUv77YMMmF6kpMKam+jV/ExqOHWqV/bumXYais\nuejS99AOh2tNzWDlXUwLr8HhnL4sM8WE8ErQu8VKSkooKCgAoKCggJKSErdjSktLyc3NxWw2Yzab\nyc3NpbS0NNCh+k9KGroudJIL1Ub5e2+7qvrzpDKy1hp99BMmzJjj202Gqy9mOzPkYL6bWXONOGur\n+p6rrDDO71elmdx8Y28bKfsihNeC3nJpaWkhMTERgISEBFpa3D88rFYrSUlJrscWiwWr1ep6/Mwz\nz2AymbjiiitYsWLFkP3uxcXFFBcbCxg3bdpEcnKyTzGHh4f7fC5A85Rp9Bw96NE1zvz0EUzxFsw3\nf2vM4uvYX8IZIHHufMJ9fF9nMzKxAnFhisghrnH26KdYrQ1EL7pmyGOGcyYlla6TxwZ9b/Wd7UQk\npRDvwXV7Fiym8RdPYq6tJDrH2KSssaYSNX02lpSUAd+/thVfw9HSRGxKitfxjpXR/v6NNYlvdEI9\nPk8FJLmsX7+e5mb37oxVq1YNeKyU8npA+a677sJisdDR0cHmzZt56623XC2hcxUWFlJYWOh63NDQ\n4NW9nJKTk30+F8ARZ0HX11BfWzvsQkKtNY6/b4ekSXRef+OYxec4chDCwmgKj0L5+L50jzGQ31J9\nGtMQ13C8+VcwmZhw2SKfvn+OCZHoM03U19W5lYhxnGmhK2yCR9fVETFgjqW19H3a8hahHXYcJ46i\nrr6BhoaGgd+/gi8A0DWKn7e/jfb3b6xJfKMT6vGlpw+yzm0QAUku999//5CvxcfH09TURGJiIk1N\nTcTFuffXWywWDhw44HpstVrJzs52vQYQHR3NVVddxdGjR4dMLiEjJc3YN8VaP7C68LkaaqGjHWpP\nox12o4bXGNDVp4x1HOGj+HXwpFts7x6YMx9TXDz48p8nLt74vnW0DRhf0d1dRt0xD7vFlFKQNRd9\n9KDxRF2NUfZFBu2F8Jugj7nk5+eza5exEnrXrl0sWLDA7Zi8vDzKysqw2WzYbDbKysrIy8vDbrdz\n5owxNbWnp4cPP/yQKVN8HzcIFOWsqeXcLngozkHms93gLEUyFmqqRjeYDyNWRtbVlUbtsku9XDzZ\n31AlYFyr891nGQ5FZc2F2iqjoGXlceM5GbQXwm+CPuaybNkytmzZwo4dO1xTkQHKy8vZvn07a9eu\nxWw2s2LFCtatWwfAypUrMZvNdHZ2smHDBux2Ow6Hg5ycnAHdXiGrt7Wi62pQ2UMfpk8d73tQWzVo\nK8fxh19DdAym65f5FIru6YG6alTeZ3w632mkysh63x7jOG9X5ve/R2wcGozpyP2TYe891cRhZqmd\ne61Zc41rlX9qzBQzmWCQ7Z2FEL4JenKJjY3lgQcecHs+KytrwPTipUuXsnTp0gHHREVF8cgjg9eJ\nCmkJFqMA5AjTkXXlcdcMKV1TiZp/+cDXtUbv/D+IiEBf9xXfFkA21Bgr1tP88ME6TGVkvXcPzJiD\nsoxioHKoloszoXk6Wwxg+iwID0cf/RRdUwWpGagJEb7HJoQYIOjdYhciZTIZ05E96RabM88YX6iu\ncn+9xWpMwbU2+L5uprem2GAbd3ltiMrI2loPJ46OrksMXGX33da6tPnQLTYhAqbNQpcfNPZqkfEW\nIfxKkkuwpKQNmxB0R7tRdiRzhrGivHaQ5HKqou/4Qx/7FIZ2Jq1UH1bMn2ti7KCVkfU+YyGiunTR\n6K5vdlZGHlgCpq8isufdYgAq62I4fgQa62CKjLcI4U+SXIJE9SaXIbftde4hMmUGKi3D1cLoT/cO\nRBMzEXxMLlSfggQLKmaib+f3oyaa+7Yb7kfv22PULfOl5Ev/64eHG+M6fmi5QO+gvr3H+FpaLkL4\nlSSXYEmZDF2d7h+UvbSzVZI5wxi8bmly29edU8chaRJq3mXoQx8PnaiGoU+fHP1MMadBKiPr1jNw\n+BPUZaNstTjFDVJfrK0VIiLcSuiPaNbFfV/LTDEh/EqSS5CoSb0zv4YqA1N53GiRWJL7NvA6p2tM\nV1YYazPmzIdmq7FNrxd0z1moqkBN81NdtkEqI+uP3gftGH2XmNNg9cXaWr3uEgNQcYkwabKRFBOG\n32pACOEdSS7B4pyOPMS4iz51HDJnGDPAeruTXBWF6V04WFNldJtdnGM8d+gj72KoOgE9PTBttg9v\nYBD9KyM74/zgHaMu19SZfrmFSp8KJ44ZidF5D5vnRSvdrrf0S6gln/d9qwEhxKAkuQRLUqqx6HCQ\nGWPaYYeqEyjnIHNymrERVv+Wy+mTRosgc4YxGB+fCIf2exWCPn4EADV9lq/vYqD+lZEBXXcaPtmL\nWrTUbx/eKvtS6OqAY4f6nmxr9Xq8xcl07ZcxLVs98oFCCK9IcgkSNWECJCYPPmOsrga6u1zlSFR4\nuDF1ud+gvmuB5ZTpRk22i3K8H3epOGKsDUlOHcU76XNuZWS9489gCkMt+bxfrg/AxTlgMqE/6VcV\nu83m3RoXIcSYk+QSTClpg3eLOcuR9J8em5ZpbEXsdOq4saVvcu/YzUU50NLkNi4zHF1xBKbP9l+X\nkLkvueiOdvQ7xagFV6HiE/1zfUDFmGHGHPSBfX1P2s54tTpfCDH2JLkEkZo0edBBeH2qorccydS+\nY9Myob7aNViuK49D5jRXdWB1Ue+4y0HPpiTrrk44fQo13U/jLeDqmtJtNvQ7xdDZgbr2y/67fi+V\nfSmcOIq2nTFaau02n7vFhBBjQ5JLMKWkGaVdOtsHPK0rj7uXI0nLMAbfG2uND9TKEwPXZkyaDAlJ\ncHjguIvu6UGfPYubU8eMMRu/JpfelktrC3rHnyDrYv9ev5eadylojf70I+jsMColS7eYECFFkksQ\nKWchyvragS9UHh/YJQZ905Grq4wV5R1tA9ZmGOMu8weMu+hjh3Cs+xaO//6R2711hTGYzzQ/DeaD\nqzKyfm+XUV3g2n/w37X7mz7b2CHywD6j/A34NBVZCDF2JLkE0yCl93Vbq1Er7NxFfc7pyLWVg4/J\ngDHucqYZe+UJHH//G45H18GZJigrQTdbBx57/CgkJKH8uL7DVRn5ZDkkJo++lthQ9wkLg7m5xriL\nqyKydIsJEUokuQSTq/R+v3GX3j1c3FouE2ONwo01VcaYjFKQMW3gMb3jLs2P/gD9y6dgTg6mf9sI\n2oH+4O8DjnUO5vtd74e8uuYLo9t8bAQq+1KwNhiFJ0G6xYQIMZJcgkjFTARzLLr8oFGokt5V9zB4\nIcW0DHRNpTEmk5KGiooe+HpKGliSsZ86jvr8Ckz/8gBqVjZMnYl+d5frMN1ug7rT+G19S38TY41S\nLJ+93v/X7kdl5wGg33+r977SLSZEKAn6fi4XvDnzYe8eHPd8DXIuNyr+xsYPOn1XpWWiS98zSr0M\nsuJdKYXp1ruJmxhDa2ZfSRd1RQH69y+ga6qM4pEnyo3nZ4zBYPvVn4Oesyjz2H7Yq5Q0YxKDczGl\ndIsJEVKk5RJkpm/fi+neR1AFN8Cxw3D0wNCD7GkZxkZZzlL8g1AX5RCZd8XA5xZcbQy0v2+0XsZk\nML+X6arrMC35gt+vOxiVfWnfAx/Lvwghxoa0XIJMmUwwa66x7e5Ntxp/iVtSBj82LRPn+nu3wfzh\n7pGYBHPmo9/bhf7yV43kkpLWt6J+nFLZecZOnNExxiC/ECJkSMslhChTGGpWNmqI5EL//VC8LBGv\nrigwFmxWHIWKI4zF+pOAu8goBSOtFiFCjySX8SQpFcLDXaX4vaEuX2zsGb+9yJjqfB4kFxUzEWZl\nQ2JSsEMRQpxDusXGERUWZtQYM8d5XQ9MxZghJx9dYkxJPi9aLoDpW98Hh33kA4UQASXJZZwx3fav\nMGGCb+desQTHvndBmfy2v0qw+XMRqBDCfyS5jDPqnIWTXsnNN0q0JCa7r5ERQgg/kuRyAVETIlA3\nr0VFRIx8sBBCjELQk4vNZmPLli3U19eTkpLC3XffjdnsviBu586dbNu2DYDly5ezZMkSAHp6enj+\n+ec5cOAASilWrVrFwoVjU9PqfGBauCTYIQghLgBBTy5FRUXk5OSwbNkyioqKKCoqYvXqgdvO2mw2\ntm7dyqZNmwC47777yM/Px2w2s23bNuLj43n88cdxOBzYbLZgvA0hhBD9BH0qcklJCQUFBQAUFBRQ\nUlLidkxpaSm5ubmYzWbMZjO5ubmUlhrb3L755pssW7YMAJPJRFyc1JgSQohgC3rLpaWlhcREo45W\nQkICLS0tbsdYrVaSkvrWMlgsFqxWK21tbQD89re/5cCBA6SmpnLrrbeSkJAw6L2Ki4spLi4GYNOm\nTSQne7dWxCk8PNzncwNB4hsdiW90JL7RCfX4PBWQ5LJ+/Xqam5vdnl+1atWAx0opr9Zv2O12Ghsb\nueiii/j617/On/70J1566SXuvPPOQY8vLCyksLDQ9bihocHje/WXnJzs87mBIPGNjsQ3OhLf6IR6\nfOnp6R4dF5Dkcv/99w/5Wnx8PE1NTSQmJtLU1DRot5bFYuHAgQOux1arlezsbGJjY4mMjOQzn/kM\nAAsXLmTHjh3+fwNCCCG8EvQxl/z8fHbtMqr17tq1iwULFrgdk5eXR1lZGTabDZvNRllZGXl5eSil\nuPzyy12JZ//+/WRmZgY0fiGEEO6CPuaybNkytmzZwo4dO1xTkQHKy8vZvn07a9euxWw2s2LFCtat\nWwfAypUrXdOVb7nlFp566ilefPFF4uLiuP3224P2XoQQQhiU1lqPfNj56fTp0z6dF+p9ohLf6Eh8\noyPxjU6ox+fpmMsFnVyEEEKMjaCPuYxH9913X7BDGJbENzoS3+hIfKMT6vF5SpKLEEIIv5PkIoQQ\nwu/CHnrooYeCHcR4NL7sPtMAAAm8SURBVHNmaO+HIvGNjsQ3OhLf6IR6fJ6QAX0hhBB+J91iQggh\n/C7oiyjHk9LSUl544QUcDgfXXnutqxpzMD3zzDPs3buX+Ph4Nm/eDHi+R85Ya2ho4Omnn6a5uRml\nFIWFhXzhC18ImfgAuru7efDBB+np6cFut7Nw4UJuuukm6urqeOyxx2htbWXmzJnceeedhIcH57+L\nw+Hgvvvuw2KxcN9994VUbAB33HEHUVFRmEwmwsLC2LRpU0j9jNva2nj22Wc5deoUSim+853vkJ6e\nHhLxnT59mi1btrge19XVcdNNN1FQUBAS8Y2KFh6x2+36u9/9rq6pqdFnz57V3//+9/WpU6eCHZb+\n5JNPdHl5ub7nnntcz7300kv6tdde01pr/dprr+mXXnopKLFZrVZdXl6utda6vb1d33XXXfrUqVMh\nE5/WWjscDt3R0aG11vrs2bN63bp1+tChQ3rz5s367bff1lpr/dxzz+nXX389aDH+8Y9/1I899ph+\n+OGHtdY6pGLTWuvbb79dt7S0DHgulH7GTz75pC4uLtZaGz9jm80WUvE52e12fdttt+m6urqQjM9b\n0i3moaNHj5KWlkZqairh4eEsXrx40L1nAi07O9vtLxpP9sgJhMTERNfAZHR0NBkZGVit1pCJD4xK\n3FFRUYBRZdtut6OU4pNPPnHtaLpkyZKgxdjY2MjevXu59tprAdBah0xswwmVn3F7ezuffvopS5cu\nBYxy9hMnTgyZ+Pr7+OOPSUtLIyUlJSTj85Z0i3no3D1lkpKSOHLkSBAjGpone+QEWl1dHcePH2fW\nrFkhF5/D4eDee++lpqaGz33uc6SmphITE0NYWBjQt39QMLz44ousXr2ajo4OAFpbW0Mmtv42bNgA\nwHXXXUdhYWHI/Izr6uqIi4vjmWee4cSJE8ycOZM1a9aETHz9vfPOO1x55ZVAaP4f9pYkl/Oct3vk\njIXOzk42b97MmjVriImJGfBaKMRnMpl49NFHaWtr48c//rHPNef87cMPPyQ+Pp6ZM2fyySefBDuc\nIa1fvx6LxUJLSwv/9V//5VZ7Kpg/Y7vdzvHjx7n11luZPXs2L7zwAkVFRSETn1NPTw8ffvghN998\ns9troRCfLyS5eMhisdDY2Oh63NjYiMViCWJEQ/Nkj5xA6enpYfPmzXz2s5/liiuuCLn4+ps4cSLz\n5s3j8OHDtLe3Y7fbCQsLw2q1BuVnfejQIT744AP27dtHd3c3HR0dvPjiiyERW3/O+8fHx7NgwQKO\nHj0aMj/jpKQkkpKSmD17NmDs+VRUVBQy8Tnt27ePGTNmuHbRDbX4fCFjLh7Kysqiurqauro6enp6\n2L17N/n5+cEOa1Ce7JETCFprnn32WTIyMvjSl74UcvEBnDlzxrVddnd3Nx999BEZGRnMmzePd999\nF4CdO3cG5Wd988038+yzz/L000/zve99j/nz53PXXXeFRGxOnZ2dri67zs5OPvroI6ZOnRoyP+OE\nhASSkpJcrdGPP/6YzMzMkInPqX+XGITW/xFfySJKL+zdu5df/OIXOBwOrrnmGpYvXx7skHjsscc4\ncOAAra2txMfHc9NNN7FgwQK2bNlCQ0NDUKcxHjx4kAceeICpU6e6mvVf/epXmT17dkjEB3DixAme\nfvppHA4HWmsWLVrEypUrqa2t5bHHHsNmszFjxgzuvPNOJkyYEJQYAT755BP++Mc/ct9994VUbLW1\ntfz4xz8GjC6oq666iuXLl9Pa2hoyP+OKigqeffZZenp6mDRpErfffjta65CJr7Ozk9tvv52nnnrK\n1W0cSt8/X0lyEUII4XfSLSaEEMLvJLkIIYTwO0kuQggh/E6SixBCCL+T5CKEEMLvJLkI4YF77rkn\naKvkGxoa+NrXvobD4QjK/YXwhUxFFsILv/vd76ipqeGuu+4as3vccccdfPvb3yY3N3fM7iHEWJOW\nixABZLfbgx2CEAEhLRchPHDHHXdw6623ulajh4eHk5aWxqOPPkp7ezu/+MUv2LdvH0oprrnmGm66\n6SZMJhM7d+7kjTfeICsri7feeovrr7+eJUuW8Nxzz3HixAmUUlxyySV885vfZOLEiTz55JO8/fbb\nhIeHYzKZWLlyJYsWLeK73/0uv/nNb1z1xH72s59x8OBBzGYzX/nKVygsLASMllVlZSURERG8//77\nJCcnc8cdd5CVlQVAUVERf/nLX+jo6CAxMZHbbruNnJycoH1fxflLClcK4aEJEyZw4403unWLPf30\n08THx/PEE0/Q1dXFpk2bSEpK4rrrrgPgyJEjLF68mJ/97GfY7XasVis33ngjc+fOpaOjg82bN/P7\n3/+eNWvWcOedd3Lw4MEB3WJ1dXUD4nj88ceZMmUKzz33HKdPn2b9+vWkpaUxf/58wKim/K//+q/c\nfvvtvPLKK/z85z9nw4YNnD59mtdff52HH34Yi8VCXV2djOOIMSPdYkKMQnNzM/v27WPNmjVERf3/\n7d0/S+tQHMbxL/45VCnGYIeM3exkwUEQqouTdHHpJGhLURdFcPEluKgvQFBEqA7ioi/AzcFZ1EVU\nKKXQYEVKK8ZWh4uBXu+9ttzAxcvzmfLvJCHLwzlJzi+EZVkkk0nOzs78Y2zbZnJyks7OTowxOI7D\n0NAQ3d3d9PX1kUwmuby8bOl6rutyfX3N9PQ0xhii0SgTExP+JIcAsViM4eFhOjo6GB8f5+7uDvhR\nWsDzPPL5vD/PluM4gT4PkQ/quYj8Bdd1qdfrzM/P+9ve3t6aCstFIpGmNo+Pj+zu7nJ1dcXz8zON\nRqPlSQnL5TLhcJienp6m89/c3PjrlmX5y8YYPM+jXq/jOA7pdJrDw0Py+TzxeJyZmZl/PmW//J8U\nLiJt+Llo08DAAF1dXWxvb/vVIb9ycHAAwMbGBuFwmPPzc3Z2dlpqa9s2lUqFWq3mB4zrui0HRCKR\nIJFIUK1W2draIpfLsbS01FJbkXZoWEykDZZlUSqV/HcVtm0Tj8fZ29ujWq3SaDQoFot/HOaq1WqE\nQiF6e3t5eHjg5OSkaX9/f/+n9ywfIpEIg4OD7O/v8/Lywv39Paenp4yNjX1574VCgYuLCzzPwxiD\nMeZbVjiU70HhItKG0dFRALLZLKurqwAsLi7y+vrKysoKmUyGzc1NyuXyb8+RSqW4vb1ldnaWtbU1\nRkZGmvZPTU1xdHREOp3m+Pj4U/vl5WVKpRILCwusr6+TSqVa+ifG8zxyuRzZbJa5uTmenp5+WVZX\nJAj6FFlERAKnnouIiARO4SIiIoFTuIiISOAULiIiEjiFi4iIBE7hIiIigVO4iIhI4BQuIiISOIWL\niIgE7h0u1NQ/isR3GgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlclWX+//HXdXNAQGRHEYVRXDJx\nSzHFJUxRK53GGrMsc2xTB6vJxtKZ+U3ltw0zwjTJsrKsprQpbZ2xQU1LM9fSxH3FXBBZBFkE7uv3\nx6mTBMoROAvweT4ePuLc97nP/eYc4sN9Xdd9XUprrRFCCCEuwXB1ACGEEO5PioUQQohqSbEQQghR\nLSkWQgghqiXFQgghRLWkWAghhKiWFAshhBDVkmIhhBCiWlIshBBCVEuKhRBCiGpZXB2gLh0/frzG\nx4aGhpKVlVWHaeqW5KsdyVc7kq923DlfRESEXc9zSrHIyspi/vz55ObmopQiISGBG264gYKCAlJS\nUjh9+jRhYWFMnToVPz8/tNYsWrSIbdu20aRJExITE4mOjnZGVCGEEFVwSjOUh4cHd955JykpKTz9\n9NOsWLGCY8eOsXz5crp27crcuXPp2rUry5cvB2Dbtm2cPHmSuXPnMnHiRF577TVnxBRCCHERTikW\nQUFBtisDHx8fWrVqRXZ2Nps2bSI+Ph6A+Ph4Nm3aBMDmzZu55pprUErRsWNHzp07R05OjjOiCiGE\nqILTO7gzMzM5dOgQ7du3Jy8vj6CgIAACAwPJy8sDIDs7m9DQUNsxISEhZGdnOzuqEEKInzm1g7u4\nuJjk5GQmTJiAr69vhX1KKZRSl/V6aWlppKWlAZCUlFShwFwui8VSq+MdTfLVjuSrHclXO+6ezx5O\nKxZlZWUkJyczcOBA+vTpA0BAQAA5OTkEBQWRk5ODv78/AMHBwRVGDpw5c4bg4OBKr5mQkEBCQoLt\ncW1GG7jzaAWQfLUl+WpH8tWOO+ezdzSUU5qhtNYsWLCAVq1aMXLkSNv22NhY1qxZA8CaNWvo3bu3\nbfvatWvRWrN37158fX1tzVVCCCGczylXFnv27GHt2rVERUXxyCOPADB27FhGjRpFSkoKq1atsg2d\nBbjqqqvYunUrDz74IF5eXiQmJjojphBC1Dvm6s9R4a1RV3Z36HmcUiw6derE0qVLq9z32GOPVdqm\nlOLee+91dCwhhKjX9Jb16PdehdgBDi8WMt2HEELUQ/rAbszXX4DoK1ATHnT4+RrUdB9CCPELrTXk\nZcPxDAhtgWre0v7jsk7BscPojENwIgO6xmL0G+zgxFbmhtWo0HBU+ysvnjHzOOZLT0FgMMaUf6C8\nmjg8lxQLIUSDYq78FL31W/jpCJzL/3VH246oPoNQvQeg/AMrHae1Rm/6Gv3RYjiTad2oFPj5w+Zv\nMHOyUDfcctlD/C+H/n4D+vUUdHAoxtOvoCyelZ+TfxbzxZmAxvjLE6hmAQ7LcyEpFkKIBkPv+RH9\n/kJo3QbVMw5atUG1bI0+egD93Rr0+6+il74GHWJQ3WJRXWMhvDUc3IO59HU4uAci26Ku+zMqsi20\nbgMeFvSbL6KXvwOF52D0BIcUDH3mNOaiuRAYDNlZ6G9XowYOq/gc08R8ZRZkZ2H89SlUC/uGvdYF\nKRZCiAZBm+WYS1+D4FCMGbNRTX5tmlGde8B1f0T/dMRaNLZvQn+wCP3BIggMgdwzEBCE+tMDqH6D\nUYZHxRe/eyr4NkV/uQwKC+COP4M2obwMysvB1++iBUSbJrq87NLZy8owF84GsxzjkWcwX30e/cUH\n6LjBKMuvv6b1N/+DPTtQ4++/ZDOVI0ixEEI0CPrb1XD0IOrev1YoFBdSrX6Hunk83DwefeY0esdm\n9K4fUBFRqOE3obx9qj7OMGDsJPD1Q3++1PpL+0IdYzAmPYryr3g/mN6/C/OVWZw+fx4694BuvVFd\neqGa+Vd83if/ggO7rdmbR2D8/jbMl55Cf7cG1X+I9Tlnc9EfvgUdY1ADhtbwXao5KRZCiHpDnyvA\nfPlZVOs2qNF32f7qNovOoZe9bR0ZdPU1dr2WCglDDboeBl1v3/OVQo0ah46MRh8/Ch4e4GGBkmL0\nig8xn/orxpS/o37X3prpm/+h330ZgkJp0jOO4i3rYfM3aKUgIgrVug1EtgWvJuj/fogaOAyjj3Vi\nVbr1hsi26C+WovsOQnl4WK+CSooxxiU6tN/kYqRYCCHqBX2+xDoC6OBu9J4d6J+OYEyejmrajMIP\n34a8HIzEvzv8F6nq1Q/Vq1/FbD2uxpz/DOasGahxiXD0AHrlp9C5B8bERwj4XVvOZ2Zat+/Ygj60\nF713J3xnncGCiCjUrff9eg6lMEbehvnys+hNX0NAEHrDatQNY1AtIx36/V2MFAshhNvT5eWYC5Ph\nwC7UfY/A+RL0O/Mxn5mGcftkzn3yPqrvIFT0FS7Jp6LaYfwjGfOVWehFc6zbEv6AGj0B5WHt/1CG\nAW06oNp0sB2nC87CT0ehZavKTWc9+kCr36E/X4LWQFg4asQtTvqOKpNiIYRwKvPrL1G/a4eKaldp\nnzbL0W/OA0D1HgBXdreORvrXAvh+A+q2iRi9B1if26IlZuqzmHMeB68mqJvGO/X7+C3lH4gx9Un0\nFx9Ai4hfm5QudYyfP1zRpep9hoEx8lbMV54DwHhoplPup7gYKRZCCKfR+Xnot+ejQ5pjPPFSpb+m\n9df/Q3+7ytqO/+0q8GkKUdHWEUDX/xFjyK8Tkar2nTH+/jzmm3Npds1QCoNdPwW4slhQN46tuxfs\n2Q/ad0a1ikLFXFV3r1sDUiyEEE6jd26Fn++Q1p+9j/rjn37dl59nvSHuiq4Yf3kCdn2P3rwO/cNG\n1IChVV45qNAWeEx7Gt/QUArddArw2lCGgfHosy7p0P4tKRZCCOfZsQWaBaC6xqK/XIa++hrrzW+A\n/vBNKCnCuGMyytPTOsy0W2/X5nUD7lAoQCYSFEI4iTbL0Tu3obr0RI25G5o2w3x7vnX7vnT0upWo\nYaNcNtpHXJoUCyGEcxzaZ52rqUsvVNNmqDH3wKG96FWfYb77MgSHoUbc6uqU4iKkWAghnEL/uAWU\nYeuoVX3iofNV6CWvw09HMG67D9XE28UpxcVIsRBCOIXesQWiO6KaNgN+vvFs3J/Bywu6xlrvKxBu\nSzq4hRAOp8/mwJH9qFHjKmxXYeEYT74MzQLdpiNXVE2uLIQQdUbnn7VOE15cVHH7j1sBUF16VTpG\nBYdZRz8JtyZXFkKIGtNao9evgh2b0Yf3/bpoUFQ76/0Bv/RB/LgV/AOtE+eJekmuLIQQNaY/X2pd\nGOjwPlTbjta5kMZOhIxDmAuftw6LLS9H79xqnZrbkF859ZVTrixSU1PZunUrAQEBJCcnA5CSksLx\n48cBKCwsxNfXl9mzZ5OZmcnUqVOJiLCuANWhQwcmTpzojJhCiMtgpn2M/vhdVNy1qAl/qVAITI11\nVbp/v2ldsa7wHFTRBCXqD6cUi0GDBnHdddcxf/5827apU6favl68eDG+vr62x+Hh4cyePdsZ0YQQ\nNWB+/aV1yGvPONSfHqx0xWAMGYl56if0/z5G7/oBDMO6Wp2ot5xyTdi5c2f8/Pyq3Ke15ttvv6V/\n//7OiCKEqCVz41r02/OhS0+Me6fZpuD+LXXrvdYhsccOQ3QnVNOqfweI+sHlHdy7du0iICCAli1b\n2rZlZmby6KOP4uPjw2233caVV1a91mxaWhppaWkAJCUlERpa81knLRZLrY53NMlXOw0ln3mugLw5\nM/EZdD3e/Qc7IZmVxWIh2MebgsXzKfryYzw7dyfo/z1f7U105t+e5ezcp/GOH463A9//hvL5ujOX\nF4t169ZVuKoICgoiNTWVZs2acfDgQWbPnk1ycnKFZqpfJCQkkJCQYHucVYtZJ0NDQ2t1vKNJvtpp\nCPm0aWKmPgM/bOT8jq3kh7RAhbao8yz6bC4UF1qn37BYh7T6HUgnb8FzkJeLGnYT5Tfezpn8Asgv\nqP4F73mYAqDAge9/Q/h8XeWX/uHquLRYlJeXs3HjRpKSkmzbPD098fx5zHV0dDQtWrTgxIkTtGtX\neaEUIRoT/dkS+GEj6vrR6NWfY745F+PhJ+t0hJE+dhjz2Wlw/jwoA4JCoKkfeRmHoHUbjCn/4MKV\n3kTj4dJisWPHDiIiIggJCbFtO3v2LH5+fhiGwalTpzhx4gQtWtT9X09C1Cf6++/Qn76H6jcEddOd\nEBaOXvwSevXnqCG///V5WafQH74FPfrYtVJbhXOUFGO+Oht8mqJumwjZWZB1Ep2dhd+4yRT2H4ay\nuLwxQriIUz75OXPmkJ6eTn5+PpMnT2bMmDEMHjy4UhMUQHp6OkuXLsXDwwPDMLjvvvsu2jkuREOj\ny8sxUx6zjh66sgeqc3fwaoL5Rgr8rj1q3J+t02IMGIretgH90VvomJ7QIgK94Svr8qPFRbD5G8xz\n+RiDR1Z/0l/O/f5COHnMunznb0YuNQ0NpchNm1GEczilWDz00ENVbp8yZUqlbX379qVv376OjiSE\nezq4B/bsgKBQ9K4f0B/9vL1ZAEbi31CeXsDPk/CNn4L5+AOYb6SgQpqjN38D7TtjjL8f86O30O+9\nillUiLrhFtu8S7qsFA7sgbAWqOAw22nN79agv/mf9bkyxFVUQa4phXAyrTVQ9Qpoesdm8PDAeGIe\nlJ5H794O+3ai4gZX+OUOoAJDULdPQr+WjD56AHXzeNTwm1CGB8ak6ei35qKXv2O9Ia5jF/SWdegf\nvrM+VgpirsIYMBQiotDvpEK7Tqjf1+H60aJBkWIhhBPp0lLMv92HGnkratD1lffv2ALtO6N8mwJN\nrWs+XKLvQV19DZSVoSLboKJ+HQSiLBa46yHw9rUuX/rlMmtfRI+rUd37oDMOotetxFwwy3qAb1OM\n+6ZJn4S4KPnJEMKZThyFvGz0V1+g46+rcHWhc87AsUOo0RPsfjmlFKr/kKr3GQbcPgl1ZTfwbAJX\ndrMNhVW9+qFvHAs7v0dvWovqMwgV0rxW35po2KRYCOFEOuOQ9YufjkDGIYiK/nXfjs0AqC6xdXY+\npRT07Ff1PsMDuvZCdZU5m0T1ZApIIZwp45B1ZTiLBf3t6gq79I4tEBwGEZEuCifExUmxEMKJdMZB\niIyGrrHojWvQ5eXW7aXnYdcPqK69ZMU44ZakWAjhJNo0IeMQKjIaI24wnM2F9O8BOL9rO5QUobr2\ndnFKIaomxUIIZzmTCUWF1tXiuvaCps3QG6xNUee3rAeLJ3Tq6uKQQlRNioUQzpJxEAAVGY2yeKJ6\nD0R/vwFdVEjJlvVwRZdqZ3EVwlWkWAjhJDrjEBgGtIoCQPUdBOfPo1d8RPlPR1Fd624UlBB1TYqF\nEE6iMw5BeGuUVxPrhugroHkE+r8fAsgQVuHWpFgI4SxHD6Ii29oeKqVQcYOgvByPiChUc/vWFRDC\nFaRYCOEEOv8s5GRZh81eQPUZBECTXnEuSCWE/eQObiGc4Zj1zu0LrywAVFg4xl+fomn3WEpKzrsi\nmRB2kSsLIZxA/zwS6rdXFgCqUzeMZv5OTiTE5ZFiIYQzZByCoFCUFAVRT0mxEMIJ9NGD1pvxhKin\npFgI4WD6fAmcPFapv0KI+kSKhRCOdvwomCYqqnJ/hRD1hRQLIRzMtoZFFZ3bQtQXThk6m5qaytat\nWwkICCA5ORmApUuXsnLlSvz9rR1+Y8eOpWfPngAsW7aMVatWYRgGd911Fz16yALyoh7LOAg+viAr\n0Yl6zCnFYtCgQVx33XXMnz+/wvYRI0Zw4403Vth27Ngx1q9fzwsvvEBOTg5PPvkkL774IoYhF0Gi\nftJHD0LrNtZlToWop5zy09u5c2f8/Pzseu6mTZvo168fnp6eNG/enPDwcPbv3+/ghEI4hv7pqG0N\nCyHqM5fewb1ixQrWrl1LdHQ048ePx8/Pj+zsbDp06GB7TnBwMNnZ2VUen5aWRlpaGgBJSUmEhobW\nOIvFYqnV8Y4m+WrH2fl0eTmFn7xPwb9eRfk2JWjEH/G8xPnl/asdyed4LisWw4YNY/To0QAsWbKE\nxYsXk5iYeFmvkZCQQEJCgu1xVlZWjfOEhobW6nhHk3y148x8+tRxzEVz4MBu6BmHuuPP5PkHwiXO\nL+9f7Ui+mouIsG8CS7uKRUFBAZ988glHjhyhuLi4wr6ZM2defjogMDDQ9vWQIUOYNWsWYL2SOHPm\njG1fdnY2wcHBNTqHEM6mi4swn5kGaNQ9D6P6xMua2qJBsKtYvPjii5SVlREXF4eXl1ednDgnJ4eg\noCAANm7cSGRkJACxsbHMnTuXkSNHkpOTw4kTJ2jfvn2dnFMIh0v/HgoLMB5+EnVld1enEaLO2FUs\n9u7dy2uvvYanp2eNTjJnzhzS09PJz89n8uTJjBkzhp07d3L48GGUUoSFhTFx4kQAIiMjiYuL4+GH\nH8YwDO655x4ZCSXqDb1jM/g0hQ4xro4iRJ2yq1hERUVx5swZwsPDa3SShx56qNK2wYMHX/T5N998\nMzfffHONziWEq2jTRO/YjIq5CmWR2f9Fw2LXT3SXLl145plnGDRoUIW+Brj0L30hGpWjByAvB7r1\ndnUSIeqcXcVi9+7dhISEsGPHjkr7pFgIYaW3bwKlUF1kLW3R8FRbLLTWTJ48mdDQUDw8PJyRSYh6\nSW/fDNFXyJoVokGqtudYKcW0adNk+J8Ql6Bzs+HIflTXWFdHEcIh7Bpm1KZNG06cOOHoLELUW3rH\nZgBUd+mvEA2TXX0WMTExPPPMM8THx1e6ZV36LIT4uQkqOBRatXF1FCEcwq5isWfPHpo3b86uXbsq\n7ZNiIRo7XVoKu75H9R0kzbWiwbKrWDz++OOOziFE/bX3RygpRsmQWdGA2VUsTNO86D65u1o0dnr7\nJvDygk7dXB1FCIexq1iMHTv2ovuWLFlSZ2GEqG+01tZi0ak7yquJq+MI4TB2FYuXXnqpwuOcnByW\nL19ObKwMExSNXNYpyDqFGjbK1UmEcCi72pDCwsIq/OvYsSP3338/H3/8saPzCeHW9N6dAKiOXVyc\nRAjHqnGHQ2FhIWfPnq3LLELUP/t2QtNm0DLS1UmEcCi7mqHmzZtXYUhgSUkJu3btYuDAgQ4LJkR9\noPfthPZXomSgh2jg7CoWv52avEmTJgwdOpRu3WT0h2i8dG42ZJ5AxV/n6ihCOJxdxaJHjx506NCh\n0vb9+/fLKnai0dL70gFQstCRaATsunZ+6qmnqtz+9NNP12kYIeqVfTuhiTdERrs6iRAOd8kri19u\nxtNa2/794tSpUzJluWjU9L6d1inJZVU80Qhc8qf8wpvxbrvttgr7DMPgpptuckwqIdycPlcAPx1B\n3XjxG1aFaEguWSxeeukltNY88cQTzJw5E601SimUUvj7++Pl5eWsnEK4l/27QGvprxCNxiWLRVhY\nGACpqamAtVkqLy+PoKCgyzpJamoqW7duJSAggOTkZADefvtttmzZgsVioUWLFiQmJtK0aVMyMzOZ\nOnUqERERAHTo0IGJEyde9jcmhCPpfTvBwwJtO7o6ihBOYVdj67lz53jttdfYsGEDFouFt99+m82b\nN7N///5KzVNVGTRoENdddx3z58+3bevWrRu33347Hh4evPPOOyxbtoxx48YB1qG6s2fPruG3JITj\n6X07oU17mQ9KNBp2jYZauHAhvr6+pKamYvm5M69jx46sX7/erpN07twZPz+/Ctu6d+9u6yDv2LEj\n2dnZl5NbCJfRJcXWJVQ7ShOUaDzsurLYsWMHr7zyiq1QAPj7+5OXl1cnIVatWkW/fv1sjzMzM3n0\n0Ufx8fHhtttu48orr6yT8whRJw7ugfJy6a8QjYpdxcLX15f8/PwKfRVZWVmX3XdRlY8++ggPDw/b\n1CFBQUGkpqbSrFkzDh48yOzZs0lOTsbX17fSsWlpaaSlpQGQlJRUacnXy2GxWGp1vKNJvtqpy3wF\nPx3inFKEXD0Ao6lf9QfYoTG9f44g+RzPrmIxZMgQkpOTue2229Bas3fvXt577z2GDh1aq5N/9dVX\nbNmyhccee8w295Snpyeenp4AREdH06JFC06cOEG7du0qHZ+QkEBCQoLtcVZWVo2zhIaG1up4R5N8\ntWNvPl14Dr30dVSfeNSV3at8TvkPm6F1G7KLiqGo2Kn5XEXy1Y475/tlMFF17Oqz+MMf/kC/fv14\n/fXXKS8v5+WXXyY2NpYbbrihxgG///57Pv74Y6ZPn06TJr92Ep49e9Z2M+CpU6c4ceIELVq0qPF5\nhLCXLinBfOlJ9Lo0zPlPow/trfyck8fg4G6Zklw0OtVeWZimyVdffcXQoUNrXBzmzJlDeno6+fn5\nTJ48mTFjxrBs2TLKysp48skngV+HyKanp7N06VI8PDwwDIP77ruvUue4EHVNl5ViLngW9u9CjZ2I\n/t/HmHP/D2P6LFR4K+tzDuzGnPckNPGRyQNFo1NtsTAMg8WLFzN48OAan+Shhx6qtO1ir9e3b1/6\n9u1b43MJcbm0WY5+7QX4cSvqzikY1wxHx/TEnDUdc87jGDNmweH9mK/OhsBgjIdmopq3dHVsIZzK\nrmaoXr16sXnzZkdnEcIl9LsL0FvWoUbfhXHNcABUiwiMvzwOBfmYSdMxU5+FiCiMGc9JoRCNkl0d\n3KWlpbzwwgt07NiRkJCQCgsh3X///Q4LJ4Sj6ZM/odeuQCXciDG84lxn6nftMRJnWJueYq7CmPQo\nytvHRUmFcC27ikVkZCSRkbJspGh49M6tAKjBI6vcrzpfhTH7TfD1k9XwRKNmV7G45ZZbHJ1DCJfQ\nO7dB85aosPCLPkf5+TsxkRDuSf5UEg2aNssxV31GefbpyvtKz8Oe7aiYni5IJkT9IsVCNGh6+Tvo\n916l4F8LK+/clw7nz0uxEMIOUixEg6W3rkf/50Pw8aVk3Up0cVHF/Tu3gsUCV8gNdkJUR4qFaJD0\niWOYb7wIbTtiJP4dXVyE3rKu4nN2boP2nWWEkxB2sKtYaK1JS0tj5syZTJs2DYD09HS7pygXwpl0\ncSFm6jPg5YUxeQZc0RWPVlHob9J+fU52lnVZ1C7SBCWEPewqFkuWLGH16tUkJCTYJsMKCQnh448/\ndmg4IS6X1hpz0VzIPI4x8RFUcChKKXyG/B72p6NP/mR9Xvo2AFTMVa6MK0S9YVexWLNmDdOnT6d/\n//62G/KaN29OZmamQ8MJcdkyDsLW9agbb0d16mbb7D3oOjAM9Lqfry5+3AoBwdCqjWtyClHP2FUs\nTNPE29u7wrbi4uJK24RwNb1lPRgG6pqKE/15BIVA11j0t6vQpaXoXT+gYq6qMBuBEOLi7CoWV111\nFYsXL6a0tBSwXuovWbKEXr16OTScEJdDa43evA6u6IpqVvlGOmNAAuTloD97HwoLQPorhLCbXcVi\n/Pjx5OTkMGHCBAoLCxk/fjynT5/mjjvucHQ+Iez302HIPI6K7V/1/i6x0CwA/d8PQRkXXdxICFGZ\n3cuqPvLII+Tm5pKVlUVoaCiBgYGOzibEZdGb11mLQI+qp7hXFgsqbjD6y2XQtqNM4yHEZbC7z8I0\nTfz9/YmOjsbf39+2mp0QzqRLSylfkITel15xu9bW+yiu6ILyv/gfMmqAdRle1UWaUIW4HHZdWYwd\nO7bK7R4eHgQFBdGnTx/GjBkjHd7C8XZugS3rMY8exHhiHsrr5yV5jx+Fkz+hhvz+koerlpEY02dB\nZFsnhBWi4bCrWNx1111s2rSJUaNGERISQlZWFp988gk9e/YkIiKCDz74gDfffJPJkyc7Oq9o5PTG\nr8GrCZw+if78A9RN46zbt6wDpVA946p9DdX+SkfHFKLBsatYfP7558yaNQtfX18AIiIiaNeuHTNm\nzGDevHlERUUxffp0hwYVQpcUo3/YiOo3GEqK0Ss+Ql99DapVlLW/okMMyj/I1TGFaJDs6rMoLCyk\npKSkwraSkhIKCwsBCAwM5Pz583WfTogL6B82wvkSVO+BqFvuBm8fzHdS0T8dhRMZFx8FJYSoNbuu\nLOLj43nqqae4/vrrCQ0N5cyZM3zxxRfEx8cD8MMPPxAREXHJ10hNTWXr1q0EBASQnJwMQEFBASkp\nKZw+fZqwsDCmTp2Kn58fWmsWLVrEtm3baNKkCYmJiURHR9fyWxX1nd70NQQGWyf/MwzU6Anot+Zh\nvpZsbYK6qvomKCFEzdh1ZTFu3DiGDx/O+vXreeutt/jmm28YPnw448ZZ24tjYmKYOXPmJV9j0KBB\n/P3vf6+wbfny5XTt2pW5c+fStWtXli9fDsC2bds4efIkc+fOZeLEibz22ms1+d5EA6ILC+DHLajY\ngbblTVX/BOjQGY4dgvZXogKDXZxSiIbLrisLwzAYNmwYw4YNq3K/l5dXta/RuXPnSnNJbdq0iSee\neAKwXr088cQTjBs3js2bN3PNNdeglKJjx46cO3eOnJwcgoKkPbqx0tu+g7Iy1NUDbduUUhjjEjGf\nfhjV91oXphOi4bOrWADk5uayf/9+8vPz0Vrbtg8ePLjGJ8/Ly7MVgMDAQPLy8gDIzs4mNDTU9ryQ\nkBCys7OlWDRieuNaCG0BbTpU2K4iojCSF0MTWZNCCEeyq1hs3LiRefPm0bJlSzIyMoiMjCQjI4NO\nnTrVqlhcSCl12ZO6paWlkZZmnUU0KSmpQoG5XBaLpVbHO1pjzmfmZnN693Z8b7qDZmFhNXqNxvz+\n1QXJVzvuns8edhWLJUuWkJiYSFxcHHfddRfPPfccq1evJiMjo1YnDwgIsDUv5eTk4O9vnX4hODjY\ntm4GwJkzZwgOrtwenZCQQEJCgu3xhcdcrtDQ0Fod72iNOZ/51RdgllPcJZaSGp6jMb9/dUHy1Y47\n56tucNIv7OrgzsrKIi6u4kiT+Ph41q5de/nJLhAbG8uaNWsA65oZvXv3tm1fu3YtWmv27t2Lr6+v\nNEE1YnrT19AyElr9ztVRhGi07Lqy8Pf3Jzc3l8DAQMLCwti7dy/NmjW7rPmh5syZQ3p6Ovn5+Uye\nPJkxY8YwatQoUlJSWLVqlW3oLFinRN+6dSsPPvggXl5eJCYm1uy7E/Wezj8L+9JRI2+TtSeEcCG7\nisWQIUPYvXs3ffv2ZcSIEcxtzaIVAAAZ1klEQVScOROlFCNHjrT7RA899FCV2x977LFK25RS3Hvv\nvXa/tmjAMg6A1qgOnV2dRIhGza5iceONN2L8PLY9Pj6emJgYiouLad26tUPDCaEzDlm/kIn/hHCp\navssTNPkzjvvtK2SB9bOGikUwimOHoLgUFl7QggXq7ZYGIZBREQE+fn5zsgjRAU64yBEylQvQria\nXc1QAwYMYNasWVx//fWEhIRU6Gjs0qWLw8KJxk2XlFjXqOglEwQK4Wp2FYsvv/wSgA8++KDCdqUU\nL730Ut2nEgLg+BHQJkr6K4RwObuKxfz58x2dQ4hKdMZB6xdSLIRwObtuygMoKytj165drF+/HoDi\n4mKKi4sdFkwIMg6BT1PrnFBCCJey68ri6NGjzJo1C09PT86cOUO/fv1IT09nzZo1thvphKhrOuMQ\nRLaVm/GEcAN2XVksXLiQW2+9lTlz5mCxWOtL586d2b17t0PDicZLm+Vw7LD0VwjhJuwqFseOHWPg\nwIEVtnl7e8tSqsJxMk9ASbEMmxXCTdhVLMLCwjh48GCFbfv37yc8PNwhoYT45c5tubIQwj3Y1Wdx\n6623kpSUxNChQykrK2PZsmX873//Y9KkSY7OJxqrjIPgYYGISFcnEUJg55VFr169+Pvf/87Zs2fp\n3Lkzp0+fZtq0aXTv3t3R+UQjpTMOQctIlMXT1VGEENh5ZXH27Fnatm0rM8EK58k4hIrp6eoUQoif\n2VUsEhMTiYmJYcCAAfTu3Rtvb29H5xKNmM7LgbwcuRlPCDdiVzNUamoqPXv25Msvv2TixInMmTOH\nzZs3U15e7uh8ojGydW7LSCgh3IXdK+UNHz6c4cOHc/r0adatW8f777/Pyy+/zOuvv+7ojKKR+XUN\nizYuzSGE+JXd0338Ii8vj9zcXPLz82natKkjMonGLuMghDRH+fq5OokQ4md2XVkcO3aMb775hnXr\n1nH+/Hni4uJ45JFHaN++vaPziUZIZxyEKGmCEsKd2FUs/vnPf9KnTx8mTpxITEyMbYlVIeqaLiqE\nU8dRV8e7OooQ4gJ2FYuFCxfa5oSqS8ePHyclJcX2ODMzkzFjxnDu3DlWrlyJv791Kc2xY8fSs6cM\no2wM9Ma1oDWqcw9XRxFCXMCuCmCxWMjNzWX//v3k5+ejtbbtGzx4cI1PHhERwezZswHrWt+TJk3i\n6quvZvXq1YwYMYIbb7yxxq8t6h+tNfqr/1iHzEZf4eo4QogL2FUsNm7cyLx582jZsiUZGRlERkaS\nkZFBp06dalUsLrRjxw7Cw8MJCwurk9cT7kub5SjDo/KOQ3vh2CHUHX+WacmFcDN2dT4sWbKExMRE\nnnvuOby9vXnuueeYOHEibdvW3U1T69ato3//X9daXrFiBdOmTSM1NZWCgoI6O49wLZ2dhfnIXZir\nP6+8b81/oYkPqq/0Vwjhbuy6ssjKyiIuLq7Ctvj4eCZOnMj48eNrHaKsrIwtW7Zw++23AzBs2DBG\njx4NWAvV4sWLSUxMrHRcWloaaWlpACQlJREaGlrjDBaLpVbHO1pDyVfw5UecO5uL/vciAvsPxvLz\nRIFmwVlOb/4an0E34N86ymX5XEXy1Y7kczy7b8rLzc0lMDCQsLAw9u7dS7NmzTBNs05CbNu2jbZt\n2xIYGAhg+y/AkCFDmDVrVpXHJSQkkJCQYHuclZVV4wyhoaG1Ot7RGkI+XVaKuWI5tL8SfjrKmTkz\nMaY9gzIMzJWfwvnzlPSJd8j32RDeP1eSfLXjzvkiIiLsep5dzVBDhgyxrYo3YsQIZs6cySOPPMKw\nYcNqnvACv22CysnJsX29ceNGIiNlmuqGQG/9Fs7mYowYgxpzN+xLR3/1hbVje81/oW1HVFQ7V8cU\nQlTBriuLUaNG2b6Oj48nJiaG4uJiWrduXesAxcXFbN++nYkTJ9q2vfPOOxw+fBilFGFhYRX2ifpL\nr/4CmreEzlehlEJv/gb90WLw9oETGagJf3F1RCHERdTo5om6bHvz9vbmjTfeqLDtgQceqLPXF+5B\nHzsE+9NRt9yN+vmmTuPO+zEfvx/95lzwbYqKHeDilEKIi5FbsYVT6NVfgKcXqv8Q2zYVEoYaPcF6\nE17cYFSTJq4LKIS4pLq/LVuI39CF59AbvkJdfQ2qabMK+9Q1w61FpFtvF6UTQthDioVwOP3tKjhf\ngrp2RKV9yjAqXG0IIdyTFAtRa7qkmNIDuzF3/Qgnj0HmCTAMaOID3j7oLesg+grU72SkkxD1lRQL\nUSv6yAHM5H+QXVRo3WAYENLc+nVxEZQUQVkZxpi7XRdSCFFrUixEjen8s5gvPws+vgQ88A/ymwZA\n85Yoi2fF52ktcz0JUc9JsRA1os1yzIWzIS8b49FZePeOo+Aid6hKoRCi/pOhs+KSdEkJ5kdvobes\nR5eV/bp9+buw6wfU7ZNRbTu4MKEQwhnkykJclDbLMV9Lhu83oAECg1EDh0NgMPo//0YNHIYxsG6m\nfBFCuDcpFuKi9AeL4PsNqFvvQYW1xPzqC/Sn71l3tu2IGjvJtQGFEE4jxUJUyVz5KTrtE1TCjRgJ\nfwDAo/vV6MwT6K3rUX2vRXl6VvMqQoiGQoqFqER/vwG95DW4qi/qlrsq7FPNW6Ku+6OLkgkhXEU6\nuEUF+vRJzIXPQ5sOGPf8terlT4UQjY4UC1GBXvY2AMbkGTKxnxDCRoqFsNGH9qE3fY0aOgoVXL+X\ngBRC1C0pFgKw3mVt/nsRNAtAXXezq+MIIdyMFItGRpeVYa7+Ap11quKO7Ztg74+o349Fefu6JpwQ\nwm3JaKhGRGuNXvwS+ttVaG8f1NhJqLhrwTQx//0mtGiFkpvshBBVkGLRiOhP3kN/uwqVcCP6yH70\nojno7RtRv2sPJ49hJP4dZZEfCSFEZfKboR7Qv0z/XQvm11+iP3sf1T8BNeYelDbRK5ajP34XvWU9\ntL8SevSpg7RCiIbILYrFlClT8Pb2xjAMPDw8SEpKoqCggJSUFE6fPk1YWBhTp07Fz8/P1VGdTh/e\nh5k0nYKb7oDhNbsZTu/Ygn4nFWKuQo1LtM4CqzxQ1/8RHXMV5udLMH5/m8wOK4S4KLcoFgCPP/44\n/v7+tsfLly+na9eujBo1iuXLl7N8+XLGjRvnwoSuYX62BMrLOPfvt1A+TTGuue6Sz9eZJzD/tQBy\nzkBJsfXfuQKIbIMxeXqlZiYVFY3Hn//myG9BCNEAuO1oqE2bNhEfHw9AfHw8mzZtcnEi59NHD8IP\nG1Ejb8WrVxz6nQXo7Rd/H/TRg5izpsPh/RDeCtUxBhU7AHXDaIy/PC6jnIQQNeY2VxZPP/00AEOH\nDiUhIYG8vDyCgoIACAwMJC8vz5XxXML8Yin4+KKG/oGAsOacnjEJ85XnMB55BtWm4hoSes+PmPOf\nAh9fjGnPoFq2dk1oIUSD5BbF4sknnyQ4OJi8vDyeeuopIiIiKuxXSlXZnp6WlkZaWhoASUlJhIbW\n/K5ji8VSq+PrWlnGIc5s/ZamfxyPX1Qba74n5pA9/T546Sm8h43Co3k4RvOWmNlZnE1NwqNFBEGP\np+AR2sLped3t/fstyVc7kq923D2fPdyiWAQHBwMQEBBA79692b9/PwEBAeTk5BAUFEROTk6F/oxf\nJCQkkJCQYHucdZFlPe0RGhpaq+Prmvnuq+DVhKJ+QynOyiI0NJSccg0P/BPz5STO/fst0OavB7Tt\niH7wMXLwABd8H+72/v2W5KsdyVc77pzvt3+cX4zLi0VxcTFaa3x8fCguLmb79u2MHj2a2NhY1qxZ\nw6hRo1izZg29e/d2dVSn0aeOozd+jRr6B1SzikVStYzE4//mW5c4zcmC7NNwLh9ieqKaeLsosRCi\noXN5scjLy+P5558HoLy8nAEDBtCjRw/atWtHSkoKq1atsg2dbSz0f/4NFgtq2KiLPkdZLBAWbv0n\nhBAO5vJi0aJFC2bPnl1pe7NmzXjsscdckMh1dP5Z9KpP0RtWo+KvRwUEuTqSEEIAblAsBOicM+gv\nl6PX/hfOl0DPONTvb3N1LCGEsJFi4WJ6/y7MlH9CWRmqTzzquj+iIqJcHUsIISqQYuFCOi8H85VZ\nEBCMMfX/UNL/IIRwU257B3dDp8vKMF99DgoLMBL/JoVCCOHWpFi4iP7wLdi7E3Xn/ajWbV0dRwgh\nLkmKhQuYG9ei0z5GDR6J0XeQq+MIIUS1pM/CSXRZGez+Ab1lPXrjGmjXCXXLXa6OJYQQdpFi4UDa\nNGHPDvR3X6G3fQeFBeDtg7oqDnXL3SiLp6sjCiGEXaRYOIA++ZN1nesNqyE7yzpzbI8+qF79oXMP\nlKeXqyMKIcRlkWJRx8yVn6GXLAQUxPRA/XGCtVB4NXF1NCGEqDEpFnVEmyb6o8XoFR9Bjz4Yd0xG\nBYa4OpYQQtQJKRZ1QJeVot+ah97wFSr+OtTtk1CGh6tjCSFEnZFiUUs6LwfzjRRI/x41ahzqhluq\nXKhJCCHqMykWNaTLStErP0N/9j6UlqL+9ADGgKGujiWEEA4hxaIGdPo2zPdehZM/QddYjFvvRbWw\nb7UpIYSoj6RYXCa9YzPm3P+D5i0xHvgnqlvjWcFPCNF4SbG4DLq4CPOdl6FlJMY/U+R+CSFEoyFz\nQ10G/cm/IPs0xvgpUiiEEI1Koy8W+mwO5U89TOEX/0afK7j4844cQKd9irrmOlT7zk5MKIQQrifN\nULk5oDX5C18AiyeqVz/UgKHQsQvKsNZSXV6Oufgl8A9A/XG8iwMLIYTzNfpioaKi8fhnCgF5Z8j5\n7AP0d2vQ362BwBBr4Yjtjz64F44ewJj0KMrXz9WRhRDC6VxaLLKyspg/fz65ubkopUhISOCGG25g\n6dKlrFy5En9/fwDGjh1Lz549HZrFs90VGHdMRo++C/39BvTmdeg1/0Wv/NT6hK6x0Ku/QzMIIYS7\ncmmx8PDw4M477yQ6OpqioiJmzJhBt27dABgxYgQ33nij0zOpJk1QfeKhTzy6qBD9w0bYl44aeavc\nmS2EaLRcWiyCgoIICgoCwMfHh1atWpGdne3KSBUoH19U30Egq9kJIRo5t+mzyMzM5NChQ7Rv357d\nu3ezYsUK1q5dS3R0NOPHj8fPr3JfQVpaGmlpaQAkJSURGhpa4/NbLJZaHe9okq92JF/tSL7acfd8\n9lBaa+3qEMXFxTz++OPcfPPN9OnTh9zcXFt/xZIlS8jJySExMbHa1zl+/HiNM4SGhpKVlVXj4x1N\n8tWO5KsdyVc77pwvIsK+qYpcfp9FWVkZycnJDBw4kD59+gAQGBiIYRgYhsGQIUM4cOCAi1MKIUTj\n5tJiobVmwYIFtGrVipEjR9q25+Tk2L7euHEjkZGRrognhBDiZy7ts9izZw9r164lKiqKRx55BLAO\nk123bh2HDx9GKUVYWBgTJ050ZUwhhGj0XFosOnXqxNKlSyttd/Q9FUIIIS6Py/sshBBCuD8pFkII\nIarlFkNnhRBCuDe5svjZjBkzXB3hkiRf7Ui+2pF8tePu+ewhxUIIIUS1pFgIIYSolscTTzzxhKtD\nuIvo6GhXR7gkyVc7kq92JF/tuHu+6kgHtxBCiGpJM5QQQohquc0U5a7y/fffs2jRIkzTZMiQIYwa\nNcqleVJTU9m6dSsBAQEkJycDUFBQQEpKCqdPnyYsLIypU6dWOWW7M1xsdUN3yXj+/Hkef/xxysrK\nKC8vp2/fvowZM4bMzEzmzJlDfn4+0dHRPPDAA1gsrvvxN02TGTNmEBwczIwZM9wq35QpU/D29sYw\nDDw8PEhKSnKbzxfg3LlzLFiwgIyMDJRS/PnPfyYiIsIt8h0/fpyUlBTb48zMTMaMGUN8fLxb5KsV\n3YiVl5fr+++/X588eVKXlpbqadOm6YyMDJdm2rlzpz5w4IB++OGHbdvefvttvWzZMq211suWLdNv\nv/22q+Lp7OxsfeDAAa211oWFhfrBBx/UGRkZbpPRNE1dVFSktda6tLRU/+1vf9N79uzRycnJ+ptv\nvtFaa/3KK6/oFStWuCTfLz799FM9Z84c/eyzz2qttVvlS0xM1Hl5eRW2ucvnq7XW8+bN02lpaVpr\n62dcUFDgVvl+UV5eru+9916dmZnplvkuV6Nuhtq/fz/h4eG0aNECi8VCv3792LRpk0szde7cudJf\nHJs2bSI+Ph6A+Ph4l2YMCgqyddRduLqhu2RUSuHt7Q1AeXk55eXlKKXYuXMnffv2BWDQoEEufQ/P\nnDnD1q1bGTJkCGCdfdmd8lXFXT7fwsJCdu3axeDBgwHrokJNmzZ1m3wX2rFjB+Hh4YSFhbllvsvV\nqJuhsrOzCQkJsT0OCQlh3759LkxUtby8PNvys4GBgeTl5bk4kdWFqxu6U0bTNJk+fTonT55k+PDh\ntGjRAl9fXzw8PAAIDg526fK9b775JuPGjaOoqAiA/Px8t8oH8PTTTwMwdOhQEhIS3ObzzczMxN/f\nn9TUVI4cOUJ0dDQTJkxwm3wXWrduHf379wfc9//hy9Goi0V9pJRCKeXqGBQXF5OcnMyECRPw9fWt\nsM/VGQ3DYPbs2Zw7d47nn3++Viso1rUtW7YQEBBAdHQ0O3fudHWcKj355JMEBweTl5fHU089VWkl\nNVd+vuXl5Rw6dIi7776bDh06sGjRIpYvX+42+X5RVlbGli1buP322yvtc4d8NdGoi0VwcDBnzpyx\nPT5z5gzBwcEuTFS1gIAAcnJyCAoKIicnx7bkrKtUtbqhu2UEaNq0KTExMezdu5fCwkLKy8vx8PAg\nOzvbZZ/znj172Lx5M9u2beP8+fMUFRXx5ptvuk0+wHbugIAAevfuzf79+93m8w0JCSEkJIQOHToA\n0LdvX5YvX+42+X6xbds22rZtS2BgIOCe/39crkbdZ9GuXTtOnDhBZmYmZWVlrF+/ntjYWFfHqiQ2\nNpY1a9YAsGbNGnr37u2yLPoiqxu6S8azZ89y7tw5wDoyavv27bRq1YqYmBg2bNgAwFdffeWyz/n2\n229nwYIFzJ8/n4ceeoguXbrw4IMPuk2+4uJiW/NYcXEx27dvJyoqym0+38DAQEJCQmxXizt27KB1\n69Zuk+8XFzZBgfv8/1Ebjf6mvK1bt/LWW29hmibXXnstN998s0vzzJkzh/T0dPLz8wkICGDMmDH0\n7t2blJQUsrKyXD7sbvfu3Tz22GNERUXZLqXHjh1Lhw4d3CLjkSNHmD9/PqZporUmLi6O0aNHc+rU\nKebMmUNBQQFt27blgQcewNPT0+n5LrRz504+/fRTZsyY4Tb5Tp06xfPPPw9Ym3wGDBjAzTffTH5+\nvlt8vgCHDx9mwYIFlJWV0bx5cxITE9Fau02+4uJiEhMTeemll2xNtO70/tVUoy8WQgghqteom6GE\nEELYR4qFEEKIakmxEEIIUS0pFkIIIaolxUIIIUS1pFiIRunhhx922R3UWVlZ3HnnnZim6ZLzC1ET\nMnRWNGpLly7l5MmTPPjggw47x5QpU5g0aRLdunVz2DmEcDS5shCiFsrLy10dQQinkCsL0ShNmTKF\nu+++23a3ssViITw8nNmzZ1NYWMhbb73Ftm3bUEpx7bXXMmbMGAzD4KuvvmLlypW0a9eOtWvXMmzY\nMAYNGsQrr7zCkSNHUErRvXt37rnnHpo2bcq8efP45ptvsFgsGIbB6NGjiYuL4/777+e9996zzQW1\ncOFCdu/ejZ+fH3/4wx9ISEgArFc+x44dw8vLi40bNxIaGsqUKVNo164dAMuXL+c///kPRUVFBAUF\nce+999K1a1eXva+i4WrUEwmKxs3T05ObbrqpUjPU/PnzCQgIYO7cuZSUlJCUlERISAhDhw4FYN++\nffTr14+FCxdSXl5OdnY2N910E1deeSVFRUUkJyfzwQcfMGHCBB544AF2795doRkqMzOzQo4XX3yR\nyMhIXnnlFY4fP86TTz5JeHg4Xbp0Aawz1f71r38lMTGR999/nzfeeIOnn36a48ePs2LFCp599lmC\ng4PJzMyUfhDhMNIMJcQFcnNz2bZtGxMmTMDb25uAgABGjBjB+vXrbc8JCgri+uuvx8PDAy8vL8LD\nw+nWrRuenp74+/szYsQI0tPT7TpfVlYWu3fv5o477sDLy4s2bdowZMgQ26RzAJ06daJnz54YhsE1\n11zD4cOHAetU7KWlpRw7dsw2T1J4eHidvh9C/EKuLIS4QFZWFuXl5UycONG2TWtdYZGs0NDQCsfk\n5uby5ptvsmvXLoqLizFN0+5J4nJycvDz88PHx6fC6x84cMD2OCAgwPa1l5cXpaWllJeXEx4ezoQJ\nE/jggw84duwY3bt3Z/z48W45zb6o/6RYiEbtt4vQhISEYLFYeP31120r11XnvffeAyA5ORk/Pz82\nbtzIG2+8YdexQUFBFBQUUFRUZCsYWVlZdv/CHzBgAAMGDKCwsJBXX32Vd999lwceeMCuY4W4HNIM\nJRq1gIAATp8+bWvrDwoKonv37ixevJjCwkJM0+TkyZOXbFYqKirC29sbX19fsrOz+fTTTyvsDwwM\nrNRP8YvQ0FCuuOIK/vWvf3H+/HmOHDnC6tWrGThwYLXZjx8/zo8//khpaSleXl54eXnVyxXYRP0g\nxUI0anFxcQDcc889TJ8+HYD777+fsrIyHn74Ye666y5eeOEFcnJyLvoat9xyC4cOHeJPf/oTzz77\nLFdffXWF/aNGjeLDDz9kwoQJfPLJJ5WO/8tf/sLp06eZNGkSzz//PLfccotd92SUlpby7rvvcs89\n93Dfffdx9uzZKpfxFKIuyNBZIYQQ1ZIrCyGEENWSYiGEEKJaUiyEEEJUS4qFEEKIakmxEEIIUS0p\nFkIIIaolxUIIIUS1pFgIIYSolhQLIYQQ1fr/iWbs4xf8d58AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -673,9 +1234,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX+///H+7CoiOwooljikrmvKS5hilZqZk1atjg6\nlRplk61On9/Y9DULM8I0GRtbHHOmtEWsmcrCBSfNRMUyzS2XIBdAFtkFrvfvj1OnyIWL5XAd4HW/\n3bzJuc65zvXi7ZEn1/t9Xe+30lprhBBCiMuwWV2AEEII1ydhIYQQolISFkIIISolYSGEEKJSEhZC\nCCEqJWEhhBCiUhIWQgghKiVhIYQQolISFkIIISolYSGEEKJS7nVxkMzMTJYuXUpOTg5KKaKiohgz\nZgz5+fnExcWRkZFBcHAws2fPxtvbG601b731FikpKTRp0oTo6GjCw8MrPc7JkyerXWNQUBCZmZnV\n3r+xkHYyR9rJHGknc5zZTqGhoaZeVydnFm5ubtxzzz3ExcUxf/581q9fT1paGgkJCfTo0YPFixfT\no0cPEhISAEhJSeH06dMsXryY6dOn8/rrr9dFmUIIIS6hTsLC39/fcWbQrFkz2rRpQ1ZWFsnJyURG\nRgIQGRlJcnIyADt37uTaa69FKUXnzp0pKCggOzu7LkoVQghxEXXSDfVb6enpHDt2jI4dO5Kbm4u/\nvz8Afn5+5ObmApCVlUVQUJBjn8DAQLKyshyv/UViYiKJiYkAxMTEVNinqtzd3Wu0f2Mh7WSOtJM5\n0k7muEI71WlYFBcXExsby9SpU/Hy8qrwnFIKpVSV3i8qKoqoqCjH45r06UnfqTnSTuZIO5kj7WRO\noxmzACgrKyM2NpZhw4YxcOBAAHx9fR3dS9nZ2fj4+AAQEBBQoWHOnj1LQEBAXZUqhBDid+okLLTW\nLFu2jDZt2jBu3DjH9v79+5OUlARAUlISAwYMcGzfsmULWmsOHTqEl5fXBV1QQggh6k6ddEMdPHiQ\nLVu20K5dO5544gkAJk+ezIQJE4iLi2Pjxo2OS2cB+vTpw+7du3n44Yfx9PQkOjq6LsoUQghxCaoh\nLasq91k4n7STOdJO5kg7mXOpdtIFeejk/6Fa+KL6DanWe5sds6jzq6GEEEJUnz5fAvtTML7aBN8m\nQ1kZDBhW7bAwS8JCCCF+pg0DMk5Dy9ZVvjrzsu97NgP9yRrUyJtQoe2qtm9xEUWbPsX4Jhl97BD8\ndALKy6GFL2r4GFTEdRBW+QwXNSVhIYQQP9P/eRf98bsQHIIaMAx1zbWoNlfU7D2/2YHx5iIozEcf\nPYjt/2JR7h6V75d/Dr3xP+iN/+VcQR4084IrO6GuvxXVqStc3Rvl5laj2qpCwkIIYQm9P4XclO3o\nm+5A+dTd1Y7G10koL29Uj34V6zn5I/qT96FLT7C5oT/9AP3Je9C5G7Z7H0UFBFfpOLqsDL32bfTn\na6FdOGrwZPS7y9GfvI8aP7nia8+cRH//DRQVQlE+5Oagd22FkmLodQ3+d9xLbkArlM26uV8lLIQQ\n1aaNcjjxA7TrUKXfcnVuNsbylyjOz4M9X2Ob8RSq49W/Pn8uG528FdVrACqoVcV9tUb/dw2cSkPd\ndAcqpI3p4xrbN6HfiEO7uWF7+BlU194/fx8GxttLoWkzbNOfQLXwRZ/LQe9IQq/7N8a8R+yB0b3f\nZd9faw0nU9G7tqKTt8Dpn+xdRZP+hPLwxDh6CP3JGnTfQai27e377E/BiI+BkiL7m7i5QbPmqD6D\nUDf8AdXmCjyDglAWXwggV0P9TK7KMEfayZz62k5aa/jpOPpkKqp5C/D2gRY+4BeAsl0YBsY7/0Bv\n/A/4+KEGDUcNjoLQMMjOhNM/oTNOo67qUeEHutYaY+l82JeC7yNzyf3nUsjKRN1+L6pzd/QX69Bf\nJ0FZKXi3wDZzDuqqHvZ9y8rQby9Fb9sAbu6ARl17gz00Wvhe/ns7uBcj7hno0AUK8iArA9uTMai2\nV2IkfYZeFY+a+mdsQ0ZW3O/0TxjLYuDkj6gxE1HjJ1+0LfQ3yRjvvwWn00Ap6NQV28jxqL4Rv74m\n/xzG3AfBPwjbXxaid2xBr1wCrcOwzXgS/IPB0/OC8RJXuINbwuJn9fU/d12TdjLH6nbS57LRmz61\n/3DzuHz/uDYM2LsT/c0O9N5dkHP2whe174ztz8/YA+SX/XZ+ifHai6gBw9ClpbA32T7w6ukJ58//\num+TZthmPIHq0R8AY9sG9FuvoCb+iZZ33kfGieMYb7wMe3faX+/piRo8EtVnEMa7r0P6SdQd96MG\nXYfx2ovw3S7U+DtRkdejP34XvWU9NGmKuvlu1IixFx2Y1qdSMWKeBN8AbE8tgJJijBceB2XDFv0X\njJfnQrtwbI89d/H9S0rQ7yxDb90APfrbzz6aNvv1+b277AEY0gYVeSOqbwTK9+Jda3rXNnv4dO4G\nh/bB1b3sgejV/JL/RhIWtUzCwvmkncyxup2MN+LQ2zehpj6MbUjUJV+nT/yA8e9lcPQgNG0GXfug\nuvdFte8ERUWQfw6dcQq9dhW0bovt0Xkobx/7b9vzH4XQdtieeB7l7oHOy7WfEZxNh1ahqJC20LwF\nxopXIPU46vb7UL0HYjw7C8LaY3tsPsEtW5KZmYk2DPSGj6GsFDVsNMrbPvWPLizAeD3WHiS+AXAu\nB3VPNLZho3/9Hk6lYaxeDvtSoFsfbFP/jPL7dXogfeYkRtxcOF+C7emXHN1aOvUYxotz4HwJ2Nyw\n/W0JqtXlf3Aamz9B//sf9mB5+K8oH3/7Gcsrz9rPDh6bh/LyrvzfZ9kC9K6tqIGRqKkPVzrgLWFR\nyyQsnE/ayRwr20n/+APGc4+C1nBFR/vVN7/7bVkX5KPXrUJv/gy8W6Bum4a6Ztglf2jp73Y7fnO2\nPfRXjCX/D3KzsP11UaUDv7q4yH7msOdr8PWH4iJszyxGBYeYaidtlKMTVqGT1mP70yOoXtdc+Bqt\n0Umfot97EzyboG6bBtln0SlfwY9HwbMJtseft4fgb/fbl4Lx6jzUzXdhu+EPl63Dsc83OzD+8SL4\n+KNuvgu9Kh4CgrE98QKqhY+59yguhIPfQY/+pgatJSxqmYSF80k7mWNlO5XHzYUTP6BG3YxOWGX/\nbbp9Z8fzuqQE4/89DBlnUMNvRE24y9Rvw3p/Csar8+0PykqxPTy30gFfx75GOfqDlejP16KmPOQ4\nM6hKO2mtK733QZ9Ks5+J/PiDfUOHLqg+Eaj+Q1CBLS++T3FRhS4lU7UcO4SxZB7k5ULL1vag8HPe\nZKeuEBZyNZQQDYjelwL799gHi4eMsl/+uem/FcNi/YeQfso+BmHyhz2A6toH26y/YsQ/j7rxtqrt\na3NDTZyGvuHWSgeiL/keJm6SU63bYvvLi3DgW2h7JcovsPJ9qhgUAKp9Z2xzFqC/WIe64TanBoWr\nkLAQooHQhoHx/goIbImKHIPy8EBFXIf+8gv0xHtRLXzQZ9PRn32A6j+0Sj/sf6Gu7oUt7l8o9+r9\n6KhuUFTpGO4eUI3vrcrHaRmKuusBpx/HVVh3h4cQwhRtGOjTaRhfbcL49H30N8no7LP8vgdZf50E\nacdQt9zjuAJKDR8DZaXorV/YX/PeW6Cw9+lXU3WDQtRv8q8uhAvSpaXolK/QX22CowegsODX5375\nooUv+AfaB7I1cPYMXNERNWCY47WqTTvo3B29+VP0FR3tV+CMvxMVWLW7kYWQsBCijumsDMg/Z780\ntagAysvAw9P+x80NvXcXemuiffA0qBWq/1D7nEDhV9nD4acf0T8ehdQf0Pl5jvdVrUJR426/4Ooa\n23VjMF57EWPZAnsX1fW31PW3LBoACQsh6ojOysB4Zzns2X75F9ps0OsabJE3wtW9Lry0slNX+0Ry\nZvUeZL9HITcL2x8fQnk2qXrxotGTsBDCyXRZGXrjx+iP3gFtoG6ajAprb59FtJmXfS6g0lIoPW//\nO7Qdyr/yq3jMUu7uqFunwPFD0Cei8h2EuAgJCyGcSGeewfj7C/Ybw3oOwDZ5+gUT49UF2+ARMHhE\nnR9XNBwSFkI4if7hgP2u57IybA/MgT4RtbqgjhB1ScJCCCco/jIR45V54B+IbdZcVOu2VpckRI3U\nSVjEx8eze/dufH19iY2NBSAuLs4xPUdhYSFeXl4sXLiQ9PR0Zs+e7bgFvVOnTkyfPr0uyhSiWozk\n/6ETVoG7h30Mwt2D3IN7oWNXbNFPm54vSAhXVidhMXz4cG644QaWLl3q2DZ79mzH1ytXrsTLy8vx\nOCQkhIULF9ZFaULUiD5+GP3mImgVav9TVAhFhTQbcxsl4yZXOj24EPVFnYRF165dSU9Pv+hzWmu+\n+uor5s6dWxelCFFrdF6uffDax8++DsJvprLwkQkXRQNj+ZjF999/j6+vL61bt3ZsS09P58knn6RZ\ns2bccccdXH311Zd5ByFqn047jj52CHXNtagmTS98vrwc4x8L4VwutjkL6mTOIyGsZHlYbN26lSFD\nhjge+/v7Ex8fT4sWLTh69CgLFy4kNja2QjfVLxITE0lMTAQgJiaGoKCgatfh7u5eo/0bi8bQTmWn\n0siKm4s+lwMfrqTZmNvwGvMHbL7+9sn6zuVQuG4VhQe+xWfW/9Gs36AL3qMxtFNtkHYyxxXaydKw\nKC8vZ8eOHcTExDi2eXh44PFzP294eDitWrXi1KlTdOjQ4YL9o6KiiIr6dRWwmpz2yzoN5jT0dtIF\nefblN8vLsc14EuPrJArWvElBwir7XdDZmVBWBtgn6SvoOZCCi7RHQ2+n2iLtZE6jX89i7969hIaG\nEhj4692q586dw9vbG5vNxpkzZzh16hStWtX9TUyi8dGlpRjxL0DmGWyz56E6d8Ot/1D0qVT7kp9F\nhdA3AvyDUS1DoFsfq0sWos7USVgsWrSI/fv3k5eXx8yZM5k0aRIjRoy4oAsKYP/+/axZswY3Nzds\nNhv3338/3t6Vr+IlRE1ow0CvfBUOfYe67zFU526O51TrMNTd0RZWJ4T1ZFnVn8npsDkNrZ10brZ9\ncaD/fQ5n01E334lt3B01ft+G1k7OIu1kTqPvhhLCKlpr9Kq/2xcFKi+HLj2xTZwGfQdbXZoQLknC\nQjROPx5Fb/kMNWg4auwkVIhMxyHE5UhYiEZJ79oKNhvq9vtQ3jIdhxCVkTW4RaOjtUbv2gZdekpQ\nCGGShIVofH46AeknUTI+IYRpEhai0dG7toGyofoMtLoUIeoNCQvR6OhdW6FzN5SPv9WlCFFvSFiI\nRkWf/BFOpaL6SReUEFUhYSEaFb17GyiF6nPh5H9CiEuTsBCNit71FXTogvILrPzFQggHCQvRYOmS\nEvTB79AF+fbHZ05C2jHpghKiGuSmPNEg6cICjEXPwLFDoGzQLhyaNgNA9ZGwEKKqJCxEg6ML8zEW\n/Q1+PIqaPB3y89DffwNH9kPn7qjAYKtLFKLekbAQDYouzMeIewZSj2Gb+RSq98/3UoyfjC4uAjc3\nawsUop6SsBANhi4t/TUoHpiD6nVNhefVz91QQoiqkwFu0XB8vweOH0ZNnXVBUAghakbCQjQYeu9O\naNIU1W+o1aUI0eBIWIgGQWuN/nYnXN0L5eFhdTlCNDgSFqJhOPkjZGWgevS3uhIhGiQJC9Eg6L07\nAVDd+1lciRANU51cDRUfH8/u3bvx9fUlNjYWgDVr1rBhwwZ8fOyLz0yePJm+ffsCsHbtWjZu3IjN\nZmPatGn07t27LsoU9ZjeuxPatkcFBFldihANUp2ExfDhw7nhhhtYunRphe1jx45l/PjxFbalpaWx\nbds2Xn75ZbKzs5k3bx6vvPIKNpucBImL0wX5cOR71A1/sLoUIRqsOvkJ3LVrV7y9vU29Njk5mcGD\nB+Ph4UHLli0JCQnhyJEjTq5Q1Gd6/x4wDFQP6YISwlksvSlv/fr1bNmyhfDwcKZMmYK3tzdZWVl0\n6tTJ8ZqAgACysrIsrFK4vL3J0LwFhF9ldSVCNFiWhcXo0aO57bbbAFi9ejUrV64kOjq6Su+RmJhI\nYmIiADExMQQFVb+/2t3dvUb7Nxau1k7aMMjYl0LTfhH4tmxldTkOrtZOrkrayRxXaCfLwsLPz8/x\n9ciRI1mwYAFgP5M4e/as47msrCwCAgIu+h5RUVFERUU5HmdmZla7nqCgoBrt31i4WjvpowfR53Io\n6dTdpepytXZyVdJO5jiznUJDQ029zrJR4+zsbMfXO3bsICwsDID+/fuzbds2SktLSU9P59SpU3Ts\n2NGqMoWL03t3gbKhuve1uhQhGjRTZxb5+fl89NFHnDhxguLi4grPPfvss5Xuv2jRIvbv309eXh4z\nZ85k0qRJ7Nu3j+PHj6OUIjg4mOnTpwMQFhZGREQEjz76KDabjXvvvVeuhBIO+ttk9Feb0Hm5kJcL\nmachvDPK28fq0oRo0JTWWlf2ovnz51NWVkZERASenp4Vnhs+fLizaquykydPVntfOR02x6p20uXl\n6LUr0evXgl8ABIVACx+Utw9q8AhUx651XtPlyOfJHGknc1yhG8rUmcWhQ4d4/fXX8ZA5d4QFdE4W\nxvKFcGgfaviNqEn3yfxPQtQxU2HRrl07zp49S0hIiLPrEaICffonjIV/geIi1L2PYhs03OqShGiU\nTIVF9+7def755xk+fHiFq5gARowY4ZTChNBGOcaKV6CsDNvTL6HaXGF1SUI0WqbC4sCBAwQGBrJ3\n794LnpOwEM6iN30CPxxA/Wm2BIUQFqs0LLTWzJw5k6CgINxk/WJRR3TGafSHK6F7P5R0PQlhuUqv\nSVVK8fjjj6OUqot6hEBrjbHyVbDZsN0TLZ89IVyAqRsYrrzySk6dOuXsWoQAQP/vczjwLWriNFRA\nsNXlCCEwOWbRrVs3nn/+eSIjIy+Yn0TGLERt0kWF6PdXwFU9UMOut7ocIcTPTIXFwYMHadmyJd9/\n//0Fz0lYiNqkt22EogJsf5gq3U9CuBBTYfHMM884uw4h0IaB3vRfaN8Z1b5T5TsIIeqMqTELwzAu\n+UeIWrN/D5z5CTVinNWVCCF+x9SZxeTJky/53OrVq2utGNG4GRv/Az5+qP5DrC5FCPE7psLi1Vdf\nrfA4OzubhIQE+vfv75SiROOj00/Bd7tQY29Hucu8T0K4GlPdUMHBwRX+dO7cmYceeoh169Y5uz7R\nSOjNn4DNhoqUK6CEcEXVXiiisLCQc+fO1WYtopHSJcXorYmovoNRfoFWlyOEuAhT3VBLliypcBlj\nSUkJ33//PcOGDXNaYaLx0Ns3Q2EBasRYq0sRQlyCqbD4/dTkTZo0YdSoUfTs2dMpRYnGQxcWoP+7\nBq7oCB2utrocIcQlmAqL3r1706nThde9HzlyRNbHFjWi338LcrKwPfAXuQlPCBdmasziueeeu+j2\n+fPn12oxonHR+1LQ//scdf0tchOeEC7usmcWv9x0p7V2/PnFmTNnZMpyUW26qBBj5RIIaYsaf+n7\neIQQruGyYfHbm/HuuOOOCs/ZbDZuueUWUweJj49n9+7d+Pr6EhsbC8Dbb7/Nrl27cHd3p1WrVkRH\nR9O8eXPS09OZPXu2YxHxTp06MX369Cp9U8L16fdXQHYWtqdiUB6eVpcjhKjEZcPi1VdfRWvN3/72\nN5599lm01iilUErh4+ODp6e5/+TDhw/nhhtuYOnSpY5tPXv25M4778TNzY1Vq1axdu1a7r77bsA+\noL5w4cIafFvClelD+9BbPkONvgXVoYvV5QghTLhsWAQH29cSiI+PB+zdUrm5ufj7+1fpIF27diU9\nPb3Ctl69ejm+7ty5M9u3b6/Se4r6S2/fBM28UDffaXUpQgiTTF0NVVBQwOuvv8727dtxd3fn7bff\nZufOnRw5cuSC7qnq2LhxI4MHD3Y8Tk9P58knn6RZs2bccccdXH21XFLZUGit0d/uRHXtg/JsYnU5\nQgiTTIXF8uXLad68OfHx8Tz66KOA/Wxg5cqVNQ6LDz/8EDc3N8cNfv7+/sTHx9OiRQuOHj3KwoUL\niY2NxcvL64J9ExMTSUxMBCAmJuaChZmqwt3dvUb7NxY1bafSHw6SlZtFi8HX0awBt7d8nsyRdjLH\nFdrJVFjs3buX1157DXf3X1/u4+NDbm5ujQ6+efNmdu3axdy5cx3X2Ht4eODhYZ9ILjw8nFatWnHq\n1Ck6dOhwwf5RUVFERUU5HmdmZla7lqCgoBrt31jUtJ2M/30BSpF/ZWcKGnB7y+fJHGknc5zZTr9c\nTFQZU/dZeHl5kZeXV2FbZmZmlccufmvPnj2sW7eOp556iiZNfu2OOHfunOOS3TNnznDq1ClatWpV\n7eMI16K/3QlXdkL5+FldihCiCkydWYwcOZLY2FjuuOMOtNYcOnSId955h1GjRpk6yKJFi9i/fz95\neXnMnDmTSZMmsXbtWsrKypg3bx7w6yWy+/fvZ82aNbi5uWGz2bj//vvx9vau/ncoXIY+lwPHD8t9\nFULUQ6bC4uabb8bT05M33niD8vJy/v73vxMVFcWYMWNMHeSRRx65YNul1u4eNGgQgwYNMvW+on7R\n3+0CrVE9BlhdihCiiioNC8Mw2Lx5M6NGjTIdDkLo4iLw8ET99i7/b3eCXwC0C7euMCFEtVQ6ZmGz\n2Vi5cqVj0FmIyuiSEoz/92eM5x9DFxbYt5WVofenoHr0lwkDhaiHTA1w9+vXj507dzq7FtFA6PUf\nQsZp+OkExqvz0CUlcGQ/FBWieshSvELUR6bGLEpLS3n55Zfp3LkzgYGBFX4zfOihh5xWnKh/9NkM\n9PoPUP2HQt8I9PKXMF5bgGrZGtzd4epelb+JEMLlmAqLsLAwwsLCnF2LaAD0+28BoG6bhgoMxigs\nQK+KRwN07YNq2szS+oQQ1WMqLCZOnOjsOkQDoA9+h975JeqmyahA+7xitsgbMAry0GvfRvUeaHGF\nQojqMhUWQlRGG+UY7y6HgGDU9bdWeE7deBuqe19o296i6oQQNWVqgFuIyuikzyDtGLaJ01BNKk4Q\nqJRCteuAssnHTYj6Sv73ihrT6Sftixl17Q39hlhdjhDCCSQsRI3o8nKMN+LA3R3b1D/LPRRCNFCm\nxiy01mzYsIGtW7eSl5fHSy+9xP79+8nJyamwDoVofPRnH8DRg6j7H0f5B1pdjhDCSUydWaxevZpN\nmzYRFRXlmCY3MDCQdevWObU44dr0iSPoj99BDRiG7ZprrS5HCOFEpsIiKSmJp556iiFDhji6GVq2\nbHnBUqmi8dDFhRivvwwt/FB3zbS6HCGEk5kKC8MwaNq0aYVtxcXFF2wTjYM+lYbx/BNw5iS2aQ+j\nmrewuiQhhJOZCos+ffqwcuVKSktLAfsYxurVq+nXr59TixOup/irTRjzH4O8XGyzn0V17WN1SUKI\nOmAqLKZMmUJ2djZTp06lsLCQKVOmkJGRwV133eXs+oSL0FpjfPBPcl/8PwgNw/bXOJTM8yREo2Hq\naigvLy+eeOIJcnJyyMzMJCgoCD8/WRazsdBao/+9DL35U5qNvpmSCVNQMmW9EI2KqbD4ZU1sHx8f\nfHx8HNtsckdug/fboFDX30qLGY9x/uxZq8sSQtQxU2ExefLF10x2c3PD39+fgQMHMmnSJBnwbmB+\nHxTqD3+Um+6EaKRMhcW0adNITk5mwoQJBAYGkpmZyUcffUTfvn0JDQ3lvffeY8WKFcycKZdQNiR6\n7UoJCiEEYDIs/vvf/7JgwQK8vLwACA0NpUOHDsyZM4clS5bQrl07nnrqqcu+R3x8PLt378bX15fY\n2FgA8vPziYuLIyMjg+DgYGbPno23tzdaa9566y1SUlJo0qQJ0dHRhIfLus11SZ/4Af3ZWtTQURIU\nQghzV0MVFhZSUlJSYVtJSQmFhYUA+Pn5cf78+cu+x/Dhw3n66acrbEtISKBHjx4sXryYHj16kJCQ\nAEBKSgqnT59m8eLFTJ8+nddff930NyRqThvlGKvioYUPauI0CQohhLmwiIyM5LnnniMxMZE9e/aw\nYcMG5s+fT2RkJADffPMNoaGhl32Prl274u3tXWFbcnKy4z0iIyNJTk4GYOfOnVx77bUopejcuTMF\nBQVkZ2dX+ZsT1aO3rIfjh1ET/4Ty8q58ByFEg2eqG+ruu+8mJCSEbdu2kZ2djZ+fH9dffz1RUVEA\ndOvWjWeffbbKB8/NzcXf3x+wn53k5uYCkJWVRVBQkON1gYGBZGVlOV4rnEefy0Z/+DZ06YkaGGl1\nOUIIF2EqLGw2G6NHj2b06NEXfd7T07PGhSilqtzdkZiYSGJiIgAxMTEVAqaq3N3da7R/Q5G7ainF\npSUEPjgH9+DgC56XdjJH2skcaSdzXKGdTC+rmpOTw5EjR8jLy0Nr7dg+YsSIah/c19eX7Oxs/P39\nyc7OdtzDERAQ4JjdFuDs2bMEBARcsH9UVJTj7AaosE9VBQUF1Wj/hkAf3o+RtB41ZhI5Tb3hIu0h\n7WSOtJM50k7mOLOdKhtC+IWpsNixYwdLliyhdevWpKamEhYWRmpqKl26dKlRWPTv35+kpCQmTJhA\nUlISAwYMcGz/7LPPGDJkCIcPH8bLy0u6oOqA3vwpeHmjxky0uhQhhIsxFRarV68mOjqaiIgIpk2b\nxosvvsimTZtITU01faBFixaxf/9+8vLymDlzJpMmTWLChAnExcWxceNGx6WzYJ+4cPfu3Tz88MN4\nenoSHR1dve9OmKaLC9F7vkINGnHBGtpCCGEqLDIzM4mIiKiwLTIykunTpzNlyhRTB3rkkUcuun3u\n3LkXbFNKcd9995l6X1E12igHQNncKm7fvR3On0dFDLegKiGEqzN16ayPjw85OTkABAcHc+jQIc6c\nOeOYM0rUH8aiv2G8tvCC7Xr7JghqBR2utqAqIYSrM3VmMXLkSA4cOMCgQYMYO3Yszz77LEopxo0b\n5+z6RC3SZaVwaB+Ul6H3pzjWotA5Z+HAt6ixk+QGPCHERZkKi/HjxztmmI2MjKRbt24UFxfTtm1b\npxYnatmpNCgvA2XDWPMmtr8uQrm5ob/eAlqjBl1ndYVCCBdVaTeUYRjcc889jlXywH4ZlwRF/aN/\nPAqAmnAkt/EjAAAWbElEQVQX/HQC/eUX9u3bN0H7zqhW5i6hE0I0PpWGhc1mIzQ0lLy8vLqoRzhT\n6lFo0hR1w63QuRt63b/Qh/dD2nHUoOFWVyeEcGGmuqGGDh3KggULuPHGGwkMDKzQr929e3enFSdq\nl049Cm2vRNncsE26F2P+Yxjxz4ObG2rAtVaXJ4RwYabC4vPPPwfgvffeq7BdKcWrr75a+1WJWqcN\nA1KPoQYOB0Bd0REVMQK9bQP0ugbVwsfaAoUQLs1UWCxdutTZdQhnO5sORYUQ1t6xSd1yN/roQWwj\nxlpYmBCiPjA9N1RZWRmHDx8mOzubwYMHU1xcDCBLqdYXvwxut/t1ESnlF4jbvHirKhJC1COmwuLH\nH39kwYIFeHh4cPbsWQYPHsz+/ftJSkpyTNEhXJv+8SjYbNDmCqtLEULUQ6bu4F6+fDm33347ixYt\nwt3dni9du3blwIEDTi1O1B6dehRah6E8aj6dvBCi8TEVFmlpaQwbNqzCtqZNm1a6lKpwIalHUWGy\njrkQonpMhUVwcDBHjx6tsO3IkSOEhIQ4pShRu/S5HMjJqjC4LYQQVWFqzOL2228nJiaGUaNGUVZW\nxtq1a/niiy+YMWOGs+sTtSH1GFBxcFsIIarC1JlFv379ePrppzl37hxdu3YlIyODxx9/nF69ejm7\nPlELfpnmQ84shBDVZerM4ty5c7Rv317WmKivUo9CYEtU8xZWVyKEqKdMhUV0dDTdunVj6NChDBgw\nQO6tqGd06lGQwW0hRA2Y6oaKj4+nb9++fP7550yfPp1Fixaxc+dOysvLnV2fqCFdXARnTqKkC0oI\nUQOmzix8fHy4/vrruf7668nIyGDr1q28++67/P3vf+eNN95wdo2iJtKO29eqkMFtIUQNmJ7u4xe5\nubnk5OSQl5dH8+bNnVGTqCFdVAgZpyDjtH1tbZBuKCFEjZgKi7S0NL788ku2bt3K+fPniYiI4Ikn\nnqBjx441OvjJkyeJi4tzPE5PT2fSpEkUFBSwYcMGfHzsM6FOnjyZvn371uhYDZ3WGn44gPHFOkjZ\nDvo366Nf0RECgqwrTghR75kKi7/+9a8MHDiQ6dOn061bN8cSqzUVGhrKwoULAfuKfDNmzOCaa65h\n06ZNjB07lvHjx9fKcRo6vXcXxsfvwLFD4OWNGn0zqv1VEBwCQa1QXnIGKISoGVNhsXz5csecUM6y\nd+9eQkJCCA4OdupxGhqdcRrj1Xn2S2PvnIkaPALVRK5WE0LULlMJ4O7uTk5ODkeOHCEvL8/e5fGz\nESNG1EohW7duZciQIY7H69evZ8uWLYSHhzNlyhS8vb1r5TgNjf7sQ7DZsD35Asov0OpyhBANlNK/\n/cl/CTt27GDJkiW0bt2a1NRUwsLCSE1NpUuXLjzzzDM1LqKsrIwZM2YQGxuLn58fOTk5jvGK1atX\nk52dTXR09AX7JSYmkpiYCEBMTEyNJjZ0d3enrKys2vtbofxsBpkzb6PZyHH4zHyiTo5ZH9vJCtJO\n5kg7mePMdvL0NDcTtakzi9WrVxMdHU1ERATTpk3jxRdfZNOmTaSmptaoyF+kpKTQvn17/Pz8ABx/\nA4wcOZIFCxZcdL+oqCiioqIcjzMzM6tdQ1BQUI32t4Kx+g0wyikZPqbOaq+P7WQFaSdzpJ3McWY7\nhYaGmnqdqZHqzMxMIiIiKmyLjIxky5YtVa/sIn7fBZWdne34eseOHYSFhdXKcRoSfS4HveUz1KDr\nUEGtrC5HCNHAmb4pLycnBz8/P4KDgzl06BAtWrTAMIzKd65EcXEx3377LdOnT3dsW7VqFcePH0cp\nRXBwcIXnhJ1OXAelpagb/2B1KUKIRsBUWIwcOZIDBw4waNAgxo4dy7PPPotSinHjxtW4gKZNm/Lm\nm29W2DZr1qwav29Dpgvy0Zs+QfUfigppa3U5QohGwFRYTJgwwfF1ZGQk3bp1o7i4mLZt5QeVFfQX\nCVBchBpzm9WlCCEaiWrdPBEUJHcDW0V//w36k/dR10Si2srkgEKIulE7t2KLOqGzMjD+sRBC2qDu\necDqcoQQjYiERT2hS0sxli2AslJsD/wF1dTL6pKEEI2IhEU9od/9Bxw7hG3aI6jWMlYkhKhbEhb1\ngN79FXrLetSNf0D1jah8ByGEqGUSFi5Oa43xn3ft4xQT7ra6HCFEIyVh4er2pUDqMdT1t6JsblZX\nI4RopCQsXJzx2QfgF4gaNNzqUoQQjZiEhQvTPxyAg3tRoyeg3D2sLkcI0YhJWLgw47MPoHkL1LDR\nVpcihGjkJCxclD75I+z5GjViLKppM6vLEUI0cs5dK1WYprWG8+ehvAzKy9GfvAeeTVDX1XyyRiGE\nqCkJCxdhvPI3+5VPv6FG3oRq4WNNQUII8RsSFi5Apx2HfSmoAcPgyk7g5g6enqh+QyrdVwgh6oKE\nhQvQW9aDuzvqzhkobzmTEEK4HhngtpguKUFv34zqO0SCQgjhsiQsLKZ3/g+KClCR11tdihBCXJKE\nhcX0lvXQOgw6dbO6FCGEuCQJCwvptGNw9CDq2tEopawuRwghLsklBrgffPBBmjZtis1mw83NjZiY\nGPLz84mLiyMjI4Pg4GBmz56Nt7e31aXWKp20Htw9UBEjrC5FCCEuyyXCAuCZZ57Bx+fXAd6EhAR6\n9OjBhAkTSEhIICEhgbvvbjhTdOuSYvTXm1H9h6Cat7C6HCGEuCyX7YZKTk4mMjISgMjISJKTky2u\nqHbpr5OgqBB17Q1WlyKEEJVymTOL+fPnAzBq1CiioqLIzc3F398fAD8/P3Jzc60sr1bp8yXo/6yG\nKzpCx6utLkcIISrlEmExb948AgICyM3N5bnnniM0NLTC80qpiw4AJyYmkpiYCEBMTAxBQUHVrsHd\n3b1G+1dFwQcryc/OxP/Rv+EZHFwnx6wtddlO9Zm0kznSTua4Qju5RFgEBAQA4Ovry4ABAzhy5Ai+\nvr5kZ2fj7+9PdnZ2hfGMX0RFRREVFeV4nJmZWe0agoKCarS/WfpcDsb7/4Re13AupB3UwTFrU121\nU30n7WSOtJM5zmyn3/9yfimWj1kUFxdTVFTk+Prbb7+lXbt29O/fn6SkJACSkpIYMGCAlWXWGv3x\nO3C+BNttU60uRQghTLP8zCI3N5eXXnoJgPLycoYOHUrv3r3p0KEDcXFxbNy40XHpbH2nT6Wit6xH\nRd6ACmlrdTlCCGGa5WHRqlUrFi5ceMH2Fi1aMHfuXAsqch7j/RXQpCnqpslWlyKEEFVieVg0Bjr1\nGMbH78C3yahb/4hq4Wt1SUIIUSUSFk6kf/oR46N/we6voJkX6qY7UKNutrosIYSoMgkLJ9GFBRgL\nngK0PSRGjkc1b1jTlQghGg8JCyfRWxOhqADb/8WiruxkdTlCCFEjll862xBpoxy94WPo1BUJCiFE\nQyBh4Qx7dsDZdGwjx1tdiRBC1AoJCycwNnwEgS2h90CrSxFCiFohYVHL9I8/wKF9qBFjUW5uVpcj\nhBC1QsKilunEj+033g0dZXUpQghRa+RqqBrQJSXob3eggkIgNAyKi9DJW1DDrkd5yWWyQoiGQ8Ki\nBvTq5ej/fY7+ZUPzFlBWhhoxzsqyhBCi1klYVJPel4L+3+eo68aguvRCnzwBaSegdRgqpI3V5Qkh\nRK2SsKgGXViAsXKJPRgm/gnl4YnqG2F1WUII4TQywF0N+v23IDsL29SHUR6eVpcjhBBOJ2FRRY7u\np9ETUOFXWV2OEELUCQmLKtCHvsNYsdje/XTznVaXI4QQdUbGLH5H79qK8dmHqF4DUAOuRbUKRedk\noT9Ygd6+GQKCsd33qHQ/CSEaFQmL39DnSzDeXQ4lJeh1/0av+ze0C4f0U1BWiho7CXXjRFSTJlaX\nKoQQdUrC4jf0pk8gJwvb489DcAh655fo3dugSy9st01FtQq1ukQhhLCEhMXPjIJ89KfvQ7c+qKu6\nA6BGT4DREyyuTAghrGdpWGRmZrJ06VJycnJQShEVFcWYMWNYs2YNGzZswMfHB4DJkyfTt29fp9ZS\nuO4dKMjDdssUpx5HCCHqI0vDws3NjXvuuYfw8HCKioqYM2cOPXv2BGDs2LGMH18360HoczkUfvwu\nqt8Q1BUd6uSYQghRn1gaFv7+/vj7+wPQrFkz2rRpQ1ZWVp3XoT95D33+PLYJd9X5sYUQoj5wmfss\n0tPTOXbsGB07dgRg/fr1PP7448THx5Ofn++04+qzGeikT2k6YgwqpK3TjiOEEPWZ0lrryl/mXMXF\nxTzzzDPceuutDBw4kJycHMd4xerVq8nOziY6OvqC/RITE0lMTAQgJiaG8+fPV/nYZT+dIO+NRfjP\n+v/AP7Bm30gj4O7uTllZmdVluDxpJ3OkncxxZjt5epq7Z8zysCgrK2PBggX06tWLceMunNo7PT2d\nBQsWEBsbW+l7nTx5stp1BAUFkZmZWe39GwtpJ3OkncyRdjLHme0UGmrulgBLu6G01ixbtow2bdpU\nCIrs7GzH1zt27CAsLMyK8oQQQvzM0gHugwcPsmXLFtq1a8cTTzwB2C+T3bp1K8ePH0cpRXBwMNOn\nT7eyTCGEaPQsDYsuXbqwZs2aC7Y7+54KIYQQVeMyV0MJIYRwXRIWQgghKiVhIYQQolISFkIIISol\nYSGEEKJSlt+UJ4QQwvXJmcXP5syZY3UJ9YK0kznSTuZIO5njCu0kYSGEEKJSEhZCCCEqJWHxs6io\nKKtLqBekncyRdjJH2skcV2gnGeAWQghRKTmzEEIIUSlLJxJ0BXv27OGtt97CMAxGjhzJhAkTrC7J\nJWRmZrJ06VJycnJQShEVFcWYMWPIz88nLi6OjIwMgoODmT17Nt7e3laXaznDMJgzZw4BAQHMmTOH\n9PR0Fi1aRF5eHuHh4cyaNQt390b/342CggKWLVtGamoqSikeeOABQkND5TP1O//5z3/YuHEjSinC\nwsKIjo4mJyfH0s9Uoz6zMAyDN954g6effpq4uDi2bt1KWlqa1WW5BDc3N+655x7i4uKYP38+69ev\nJy0tjYSEBHr06MHixYvp0aMHCQkJVpfqEj755BPatGnjeLxq1SrGjh3LkiVLaN68ORs3brSwOtfx\n1ltv0bt3bxYtWsTChQtp06aNfKZ+Jysri08//ZSYmBhiY2MxDINt27ZZ/plq1GFx5MgRQkJCaNWq\nFe7u7gwePJjk5GSry3IJ/v7+hIeHA9CsWTPatGlDVlYWycnJREZGAhAZGSntBZw9e5bdu3czcuRI\nwL6o1759+xg0aBAAw4cPl3YCCgsL+f777xkxYgRgXyq0efPm8pm6CMMwOH/+POXl5Zw/fx4/Pz/L\nP1ON+rw4KyuLwMBf190ODAzk8OHDFlbkmtLT0zl27BgdO3YkNzcXf39/APz8/MjNzbW4OuutWLGC\nu+++m6KiIgDy8vLw8vLCzc0NgICAALKysqws0SWkp6fj4+NDfHw8J06cIDw8nKlTp8pn6ncCAgK4\n6aabeOCBB/D09KRXr16Eh4db/plq1GcWonLFxcXExsYydepUvLy8KjynlEIpZVFlrmHXrl34+vo6\nzsLEpZWXl3Ps2DFGjx7Niy++SJMmTS7ocpLPFOTn55OcnMzSpUt57bXXKC4uZs+ePVaX1bjPLAIC\nAjh79qzj8dmzZwkICLCwItdSVlZGbGwsw4YNY+DAgQD4+vqSnZ2Nv78/2dnZ+Pj4WFyltQ4ePMjO\nnTtJSUnh/PnzFBUVsWLFCgoLCykvL8fNzY2srCz5XGE/cw8MDKRTp04ADBo0iISEBPlM/c7evXtp\n2bKlox0GDhzIwYMHLf9MNeoziw4dOnDq1CnS09MpKytj27Zt9O/f3+qyXILWmmXLltGmTRvGjRvn\n2N6/f3+SkpIASEpKYsCAAVaV6BLuvPNOli1bxtKlS3nkkUfo3r07Dz/8MN26dWP79u0AbN68WT5X\n2LuYAgMDOXnyJGD/odi2bVv5TP1OUFAQhw8fpqSkBK21o52s/kw1+pvydu/ezT//+U8Mw+C6667j\n1ltvtbokl3DgwAHmzp1Lu3btHN0CkydPplOnTsTFxZGZmSmXOf7Ovn37+Pjjj5kzZw5nzpxh0aJF\n5Ofn0759e2bNmoWHh4fVJVru+PHjLFu2jLKyMlq2bEl0dDRaa/lM/c6aNWvYtm0bbm5uXHnllcyc\nOZOsrCxLP1ONPiyEEEJUrlF3QwkhhDBHwkIIIUSlJCyEEEJUSsJCCCFEpSQshBBCVErCQjRKjz76\nKPv27bPk2JmZmdxzzz0YhmHJ8YWoDrl0VjRqa9as4fTp0zz88MNOO8aDDz7IjBkz6Nmzp9OOIYSz\nyZmFEDVQXl5udQlC1Ak5sxCN0oMPPsif/vQnXnrpJcA+XXZISAgLFy6ksLCQf/7zn6SkpKCU4rrr\nrmPSpEnYbDY2b97Mhg0b6NChA1u2bGH06NEMHz6c1157jRMnTqCUolevXtx77700b96cJUuW8OWX\nX+Lu7o7NZuO2224jIiKChx56iHfeeccxz8/y5cs5cOAA3t7e3HzzzY41l9esWUNaWhqenp7s2LGD\noKAgHnzwQTp06ABAQkICn376KUVFRfj7+3PffffRo0cPy9pVNFyNeiJB0bh5eHhwyy23XNANtXTp\nUnx9fVm8eDElJSXExMQQGBjIqFGjADh8+DCDBw9m+fLllJeXk5WVxS233MLVV19NUVERsbGxvPfe\ne0ydOpVZs2Zx4MCBCt1Q6enpFep45ZVXCAsL47XXXuPkyZPMmzePkJAQunfvDthntn3ssceIjo7m\n3Xff5c0332T+/PmcPHmS9evX88ILLxAQEEB6erqMgwinkW4oIX4jJyeHlJQUpk6dStOmTfH19WXs\n2LFs27bN8Rp/f39uvPFG3Nzc8PT0JCQkhJ49e+Lh4YGPjw9jx45l//79po6XmZnJgQMHuOuuu/D0\n9OTKK69k5MiRjon1ALp06ULfvn2x2Wxce+21HD9+HACbzUZpaSlpaWmOuZZCQkJqtT2E+IWcWQjx\nG5mZmZSXlzN9+nTHNq11hUWygoKCKuyTk5PDihUr+P777ykuLsYwDNMT4WVnZ+Pt7U2zZs0qvP8P\nP/zgeOzr6+v42tPTk9LSUsrLywkJCWHq1Km89957pKWl0atXL6ZMmSLToQunkLAQjdrvF9oJDAzE\n3d2dN954w7EqWWXeeecdAGJjY/H29mbHjh28+eabpvb19/cnPz+foqIiR2BkZmaa/oE/dOhQhg4d\nSmFhIf/4xz/417/+xaxZs0ztK0RVSDeUaNR8fX3JyMhw9PX7+/vTq1cvVq5cSWFhIYZhcPr06ct2\nKxUVFdG0aVO8vLzIysri448/rvC8n5/fBeMUvwgKCuKqq67i3//+N+fPn+fEiRNs2rSJYcOGVVr7\nyZMn+e677ygtLcXT0xNPT89Gv8qccB4JC9GoRUREAHDvvffy1FNPAfDQQw9RVlbGo48+yrRp03j5\n5ZfJzs6+5HtMnDiRY8eO8cc//pEXXniBa665psLzEyZM4IMPPmDq1Kl89NFHF+z/5z//mYyMDGbM\nmMFLL73ExIkTTd2TUVpayr/+9S/uvfde7r//fs6dO8edd95ZlW9fCNPk0lkhhBCVkjMLIYQQlZKw\nEEIIUSkJCyGEEJWSsBBCCFEpCQshhBCVkrAQQghRKQkLIYQQlZKwEEIIUSkJCyGEEJX6/wG3Vkil\nyo892QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAENCAYAAADgwHn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd8leX9//HXdRIgJGQnjDAThkhA\nZhgyghBFRRGrBWcLVlFRtFT5au1PlKo1qAgVQeoCq60gbY04WiHsIRCQJWGFmcjIXmTnvn5/3HDg\nGAJ3xsk5CZ/n4+HDk/vc430SzSf3fS2ltdYIIYQQgM3VAYQQQrgPKQpCCCHspCgIIYSwk6IghBDC\nToqCEEIIOykKQggh7KQoCCGEsJOiIIQQwk6KghBCCDspCkIIIew8XR2gOk6ePFmt40JCQkhPT6/l\nNLVH8tWM5KsZyVcz7p4vLCzM0n5ypyCEEMJOioIQQgg7KQpCCCHspCgIIYSwk6IghBDCrs56H33z\nzTesWrUKpRRt27Zl8uTJZGdnM2fOHPLy8oiIiGDKlCl4etbLDlFCCNEg1MmdQmZmJv/973+JjY1l\n1qxZGIbBpk2b+Oyzzxg9ejRz587Fx8eHVatW1UUcIYQQlaizx0eGYVBSUkJ5eTklJSUEBASwd+9e\nBg4cCMDw4cNJSEioqzhCCFFv6NxsjCUfoQsLnH6tOnlWExQUxO23387jjz9O48aN6dmzJxEREXh7\ne+Ph4WHfJzMz85LHx8fHEx8fD0BsbCwhISHVyuHp6VntY+uC5KsZyVczkq9mnJkv+5O/Urx5HUFj\nxuHp5O9BnRSF/Px8EhISmDdvHt7e3rz99tvs3LnT8vExMTHExMTYv67uqEF3H3Eo+WpG8tWM5KsZ\nZ+XTOzdjbFiJuuN+spv6QjWvYXVEc50UhT179tC8eXP8/PwAGDBgAAcOHKCgoIDy8nI8PDzIzMwk\nKCioLuIIIUS9oAvyMT5bAG06oG6+q06uWSdtCiEhIRw6dIji4mK01uzZs4c2bdoQGRnJ5s2bAViz\nZg39+vWrizhCCGGnCwswVn6N8clcdGr15lVzFr10IeRmY5vwFKqOembWyVU6d+7MwIEDee655/Dw\n8KBDhw7ExMTQp08f5syZw+LFiwkPD2fEiBF1EUcI0YDpsjL02v9C0j7UxKdRjZtcer8zJ9Grv0Vv\njIeiQvD0RCesR93zCGpwDEqpOk7+i3z7dqE3rECN+hWqfac6u26dDQoYN24c48aNc9jWokULXn/9\n9bqKIIRo4HTiTozFH8CpZABUv8HQd3DF/XYlYMx7FWweqKghqBG3gX8gxsdz0J/MRe/Zhu3BJ1DN\n/Or6I5j5iosw/v4uNA9Djbm3Tq8tI5qFEPWezsuhfP5fMGZPh7JSbI//EfyDMLasveT+xsplEBSK\nbeZH2H73B1R4F1RQKLY/vIK6ewLsSsD48+/ROVl1+0HO0RviIf0Mtt88WemdjrNIURBC1GvaMDA+\nnAV7tqPGPoBtxruoPoNQUUNgzzZ0Qb7j/hmpsH836vqRKP9Ah/eUzYZt1K+wPTcT8rLRX3xUlx/l\nQsata6FNOOqa7nV+bSkKQoh6Ta/+FhJ3ou55BNvocahGjQFQ/aOhrAz94w+O+/+wCrRGXV95G6YK\n74y65dforevQP/3o1Py/pNNOw5EDqP7D6vS650lREELUW/rnE+h/LYLrolDDRjm+2aEThLZEb113\nYX+t0ZtWwTU9UCEtLntudcvd0KI1xj8XoEuKq5YrMw0jfhm6vLxKxwH2vKr/0CofWxukKAgh6iVd\nWmo+Nmrqje23Uyr0FlJKoQZEw/496OxzsyUc2gtpp1GDYy5xRkeqUSNsD06GtNPob7+wnquwAOOv\nM9BLPoS9Vb/L0FvXQadrUcHNq3xsbZCiIISol/RXn0HKUWy/fQrlF3DJfVT/YaAN9LYN5jGbVkKT\npqg+gyxdQ13TA3X9SPT3/zHvSkpL0ds3Uf7uq5T/v8fRe7Y5Ziovx3j/TTidAk28HO5SKuQvLa24\nLeUYnDxhPvpyESkKQgi3o1OOYXw2v9LHNnr/bvTyONSwm1E9oyo9j2rVFtqGm20DRYXobRtR/Qaj\nmnhZzqLunghNvTHm/hnj2d9iLIiF40mgFMbcVzCWfY42DDPX0o/hp+2o+x5D9R+G3rkFXVzxM+ht\nGzCm3o/ev9tx+9a1YLOZXWldpEpFIT09nYMHDzorixBCAKDjl6HX/g/9r4UV3zubh/HRbAhthRr3\n0BXPpQZEw9GD6O//A8VFlh4dORzv64e691EoyEd174vt6ZfNrqwvzkYNHI7++nOMd1/lbNw/0Su/\nRo28HVv0zeZdSnERerfj7M9aa4xvv4DiIowP3rI/2tJao7euh269UL7+VcpYmywVhfT0dF588UWm\nTp3KK6+8AsDmzZtZsGCBU8MJIa4+urwcvWur+fhl9Xfm6/PvaY3x6TzIy8b2yDOW/uJX/cwGW/3t\nUmjeCjpdW+VMtv7D8HhnsXnN7n1QNg9U4yaoib9H3fcYJO4g/5N3oXsf1K/PFaoukeAfZP71f7H9\nuyHlGOqmsVBUiPHBm2aD9OH9kJGKinJNr6PzLBWF999/n969e/PJJ5/YV0a77rrr2L179xWOFEKI\nKkpKhPxc1INPQNtwjEXvXPhretMq2L4Jdcf9qA6dLZ1OBYdC526gDXNsQi1OX6GUwnbDrdie/QtN\nb7kL2yPTUOeWA1DnRkvz03aHsRJG/DLw9UeNfcD8jAf3or/81Gx/aNQY1XtgreWrDktFISkpibFj\nx2KzXdjd29ubggLnL/gghLi66B9/MH859hqA7ZFpUFKEsXAOZSeT0Z+/D126o0bdWaVzqiE3QeMm\nqEE3OCWz6nQtfpOeQXn7OG7vP8xhrIQ+nQK7E1DDb0E1aoxt4HBU9M1mQ/bGeNR1Uaim3k7JaJWl\nouDv78/p06cdtqWkpLj1ghdCCNfRWqNLS6p33I7NENkb1cQL1aoNavzDkLiTzOceAQ8btt9NRdk8\nqnReNegGbLP+jgoKrXKmGunQ2WGshF75NXg2Qg2/5UK28Q9D+05QUuyyAWsXs1QUbr/9dmbOnMnq\n1asxDIMNGzYwe/Zs7rjjDmfnE0LUQ/qH1RjP/BadW8W5g44lQVY6qveFLqNq6CjoPRCdn2tOUleN\nX+xKKZRX0yofV1NKKfMX/f496JMn0JtWogZEo/wuTK+hGjXGNvkF1K8nwnWV96SqK5ZmSR0xYgS+\nvr7Ex8cTHBzMunXrGD9+PP3793d2PiFEfXR4PxSeRa9fgRo97sr7n6N3bDK7ZF7UzVQphe13z+Cf\nl0luSCtnpHUq1X8Y+tsvMN57HUpKUDFjKu4TFIK6qWqPxJzF8tTZUVFRREW5vooJIdyfPm1OXa3X\n/Q99y10VHvfoAz9hrIgzZwE9N/BMa43+cbM5BYWPr8P+qkkTGrfuUe2lKF1JhbWDNh0g5ZjZ3bRN\nBxcnujxLj48+/vhjDhw44LDtwIEDLFq0yBmZhBD13akUCAiGzHTYfYlRv5/Nh11bMeb/5ULbw6lk\nOPOz5dHG9cn5Ecq2GPd/5G6pKGzcuJGOHTs6bIuIiGDDhg1OCSWEqL90fi7k5ZgL1wQEYaz5zvH9\njSvgdIo5gd3h/eiFf0Ubhr2Hjuo1wBWxnUqNvA3bEy9A9z6ujnJFlh4fKaUwzg3jPs8wDLTWTgkl\nhKjHTqUAoNq0h2E3o5f9E516EtU8DF1chF72OXTsinpgstkz59+fmP/+6Udze0Cwiz9A7VONm0Av\n144/sMrSnULXrl1ZvHixvTAYhsHSpUvp2rWrU8MJIeoffW4pTFq2QQ29ETw80Gv/Z7634ivIycJ2\n90SzZ86oX6GG3oT+bimcOOzQ60i4hqU7hYkTJxIbG8ujjz5KSEgI6enpBAYG8txzzzk7nxCivjmV\nAo0bQ3BzlM2G6jUQvSEePeJ2c/6hXgNR56aaUErBfY+Zq6Ht2+3y0bzCYlEIDg5m5syZJCUlkZGR\nQXBwMJ06dXIY4Xw5J0+eZPbs2favU1NTGTduHNHR0cyePZu0tDRCQ0OZOnUqzZo1q94nEUK4BX06\nGVq0Rp37/aBuuBW9fSPG2y9CcTG2Xz3osL/y9MT2xJ/MdQ6a178upw2N5S6pNpuNLl26OLQtGIZh\nqTCEhYXx5ptv2o959NFH6d+/P3FxcfTo0YOxY8cSFxdHXFwcDzzwQDU+hhDCbZxKQXW86NFyl+7Q\nqi2cSkYNvcmczvoXVOMm0Lp9HYYUlbFUFI4cOcJHH33EiRMnKClxHLq+ZMmSKl1wz549tGzZktDQ\nUBISEnj55ZcBiI6O5uWXX5aiIEQ9pouLICMVhlyYntpsO7gT/a+FqDH3ujCdsMJSUZg3bx59+/bl\n8ccfp0mTJjW64MaNGxk82FxAIicnh8BAc7h3QEAAOTk5NTq3EMLFzvwMUOFuwDY4Bl3LM5QK57BU\nFNLT07n33ntr/AMtKytj+/bt3HfffRXeU0pVev74+Hji4+MBiI2NrfZEfJ6enm49iZ/kqxnJVzO1\nka8w8UdygcCu3fGs5c96NXz/3IGlohAVFcWuXbvo1atXjS62Y8cOwsPDCQgwh7X7+/uTlZVFYGAg\nWVlZ+Pn5XfK4mJgYYmIu3I6mV3Oo+/meU+5K8tWM5KuZ2shnHEwEZSOrsTeqlj/r1fD9c6awsDBL\n+1kqCqWlpbz11lt07drV/gv9vCeffNJyqIsfHQH069ePtWvXMnbsWNauXStzKwlRz+lTKRDaEtWo\nkaujiGqyVBTatGlDmzZtanShoqIidu/ezaRJk+zbxo4dy+zZs1m1apW9S6oQoh47lQytava7QriW\npaLw61//usYX8vLy4uOPP3bY5uvry/Tp02t8biGE6+nyckg9heopU+rXZ5bHKZSVlXHy5Elyc3Md\ntnfv3r3WQwkh6qG0U1BeJncK9ZylorB//37efvttSktLKSwspGnTphQVFREcHMy7777r7IxCCBfT\nxw6h132Puu9RlGcl7QXnJ8K7xOA0UX9Ymqfik08+YcyYMSxcuJCmTZuycOFC7rrrLm666SZn5xNC\nuAG9eQ16/XL0qm8r3+eiifBE/WWpKJw8eZJbb73VYdvYsWP59tvK/wMRQjQc+sRh89/fLEbnZl96\np3ML66im3nWYTNQ2S0XB29ubwsJCwBx5nJKSQn5+PkVFRU4NJ4RwPW0YkHwUru0JJcXouM8uvZ/0\nPGoQLLUpDBgwgB07djBkyBBuuOEGZsyYgYeHBwMHyjS3QjR46WegqBAVNRRad0CvXIaOvgXV/sJq\njFprOP0z6voRLgwqaoOlojBhwgT76zFjxtC5c2eKioro2bOns3IJIdxF8lEAVNtw6Hs9essajMUf\nYPu/1y9MTZOVAcWF5myool6ztiDCL1x77bX07t3b8noKQoj6S584AjYbtG6P8m6GuvNBSEpEJ6y/\nsNO5RmYlj4/qvUrvFF577TX+9Kc/ATB9+vRKJ6ubMWOGc5IJIdyCTj4CrdqiGjUGQA0eiV7zHfqT\nuZR/8REUFkBJsblzmNwp1HeVFoXo6Gj76xEj5DmhEFet5COorhceFSubB7bfPoVeEQeNm4BXU/Dy\nhpatUX6BLgwqakOlRWHIkCGAuVLamTNn+NWvfkUjmeRKiKuKzs2G7ExoG+6wXbWLQP3uDy5KJZzp\nio0CNpuN5cuX4+HhURd5hBCXoLVGl5U67/xlpZSfOVnxjfONzO0inHZt4V4stRQPGzaMFStWODuL\nEKISenkcxnO/c1ph0N8sIf3Je9HZGY7bk4+YL35xpyAaLktdUpOSkvjf//7HsmXLCA4Odmh0loZm\nIZxLG+XolV9Dbjb8fBzad6rd85eVotd9D2Wl6C1rUaN+deHNE0cguDnKx7dWryncl6WiMHLkSEaO\nHOnsLEKIS/npR8gyV/TSRw+harkosCsB8nJQPr7ojSvRN91p/8NPJx+Vu4SrjKWiMHz4cCfHEEJU\nxli/HHz9QWs4dhC4pcI+2jCgpAjlVfV5h4x130NQCM1+PZG8v70Jxw5BeBd0cRGc+dkcySyuGpbX\nU8jOziYpKYm8vDxzSPs50l1VCOfRWRmwOwE16k50ynH00UOX3m/l1+hvlmB742NUEy/r5087DYk7\nUGPuw2vojeQt/Ct600pUeBdIOQZao9rJncLVxFJR2Lp1K3PnzqVVq1YkJyfTtm1bkpOT6dq1qxQF\nIZxIb4wHw0ANuQk2r0H/tB1dVFDhjkDv3AwF+XBoL3Tva/3865eDsqEGx2DzaYbqPQi9dR163O8u\namTuePmTiAbFUu+jJUuWMHnyZN544w28vLx44403mDRpEuHh8heEEM6iDQO9YQVc2xPVvBUqvLP5\nCOn4Ecf9iovg8AHzdeJO6+cvKzOLznX9UEEhAKjrR0LBWfTOrWZ3VO9mcO49cXWwVBTS09MZNGiQ\nw7bo6GjWrVvnlFBCXG10WSk6M81xY+JOyEhFDR1lft2hs7nvsYOO+x3aay6D2dSnSkWB3VshNxvb\n+fMDdL0OgkLQm+LNOY/aRVQ6xY1omCw9PvLz8yM7O5uAgABCQ0M5ePAgvr6+GIZh+UJnz55lwYIF\nJCcno5Ti8ccfJywsjNmzZ5OWlkZoaChTp06lWbNm1f4wQtRX+vsv0XGfoaKGou58EBXaEmP999DM\nD9VrAADK1x9CWqCPOhYFvW8XeDZCjbzdXAQnJwvlf+XpJox130NgCPToY9+mbDbUoBHo7/4FHjbU\nDaNr94MKt2e5S+r+/fsZOHAgo0ePZsaMGSiluO222yxfaOHChfTq1YtnnnmGsrIyiouL+fLLL+nR\nowdjx44lLi6OuLg4HnjggWp/GCHqK52UCN4+6F1b0Dt+MO8Odm1FjRyDumh6GRXeBX3kgOOxibug\nY1dUr/5mUdi3EzXwBsd9ftqOsexzVGhLc7nMgCBI3Im67R6UzXG2AnX9CPS3X0CZATKS+apjqSiM\nHTvW/jo6OprIyEiKiopo08baNLkFBQXs27ePJ554wryopyeenp4kJCTw8ssv28/78ssvS1EQVx2t\nNRw/jOo5ADX2AfRX/0Cv+c7s+TP0F+ugd+gECevRuVkov0B0Xg6kHEWNfQDaRkAzX/Ox0y+KgrHs\nczhz0tw/Yb3ZNuHhgRoSUyGPah4GnbpBUiKqrRSFq42lovDtt98yePBgAgICAAgJqVrDU2pqKn5+\nfsyfP5/jx48TERHBhAkTyMnJITDQvM0NCAggJyenivGFaAByMiEvB9p3RAWFoCY+jY4ZAxlnUC1b\nO+yqOnRBAxxNgp5R6P27ze3depmPfrr2RO/bhdb6wgC0o4fg6EHUPZOwjbwNXVIMqafM44JCLxnJ\nduvdGMvjzLsKcVWxVBT27t3L559/zjXXXMOQIUMYMGAA3t7WB8mUl5dz9OhRHnroITp37szChQuJ\ni4tz2EcpVWmDVnx8PPHx8QDExsZWuSid5+npWe1j64Lkq5n6mq/42AGygYAevWl8/v1KPodu1p9U\nm42mZ1JoFnILuUf2U+TdjJA+A1AeHhT0H0Letg0EFuXjeW4kcs4/F1Ds5U3I7b/G5u1jniisdYVz\nO+S74WbzHzdSX3++9Y2lovB///d/nD17ls2bN7Nu3To+/vhjevbsydChQxkwYMAVjw8ODiY4OJjO\nnc3eEwMHDiQuLg5/f3+ysrIIDAwkKysLPz+/Sx4fExNDTMyF29z09HQrsSsICQmp9rF1QfLVTH3N\nZ/y0A4AcvyCUlfyt2nJ23y6K0tMp37EFunQnIysLAN3OnAIjc+NqbDG+6LxcjPUrUENiyCwohILC\nKudzF5KvZsLCwiztZ3k9TR8fH0aOHMlLL73E7NmzKSoq4u2337Z0bEBAAMHBwZw8aU7Nu2fPHtq0\naUO/fv1Yu3YtAGvXriUqKspqHCEaDH3iCDQPszxFhQrvAkcPoVNPmV1Wu120AE5wc2jeyt41VW9c\nAWWlqOHSi0hYY3maC4D9+/ezYcMGtmzZQrNmzRg3bpzlYx966CHeeecdysrKaN68OZMnT0ZrzezZ\ns1m1apW9S6oQV50TR1AR11jfP7wzbFhhzmwKqGt7OrytuvVC/7AaXVqCXvNf6NId1bpdbSYWDZil\novDpp5/yww8/oJRi0KBB/OlPf6JDhw5VulCHDh2IjY2tsH369OlVOo8QDYk+mwcZqRBdcZK7yqgO\nndGAXvtfCAiGFr9ojL62F3rNf9Ff/QMyUrHdPaFWM4uGzVJRKC4uZsqUKVx77bXOziPE1eWEOWWF\nal+Frp9h7aFRYygqRPUeVLGDRtceoGzo5XHmeIReA2sxsGjoLLUpPPzww1IQhHACfaLqk84pT88L\ng8q69az4vncz8xGT1qhhN5v7C2GR5YZmIYQTnDgMgSEo30v3vKuMCu9i/rvrdZd+/7ooaNS44uA3\nIa5A/oQQwoXOTzpXVWrUr1DXdEcFBFfy/p2oQSNQAUE1jSiuMnKnIISL6KJCc2Wz6hSFgCDUZdoK\nlGcj+3TYQlSF5aJQVlbGvn372LRpEwBFRUUUFRU5LZgQDZ59ZTNZxEa4D0uPj06cOMHMmTNp1KgR\nGRkZXH/99SQmJrJ27VoZWyCEBTovl5IzydCi7YVtJw6bL2QmUuFGLN0pfPDBB4wfP545c+bgea4n\nQ7du3di/f79TwwnREOiyMoy5fybr/z2BkbDhwhsnjkAzP3NNAyHchKWikJKSwtChQx22eXl5UVJS\n4pRQQjQketk/4ehBPFqEoRfNsd8h6BOHZWUz4XYsFYXQ0FCOHHFcFzYpKYmWLVs6JZQQDYXevxv9\nv3+jhtxIYOz74OOHMe81c+nNk8nSniDcjqWiMH78eGJjY/niiy8oKyvjyy+/5O233+aee+5xdj4h\n6i2dn4vx0Wxzsrt7HsEjIAjbE3+C/FyMt/5krqss7QnCzVgqCn379uWFF14gNzeXbt26kZaWxrPP\nPkvPnhVHUwohzNXUjL+/C3k52B55FtXECwDVviNqwtOQdtr8Wu4UhJuxPHgtPDychx9+2JlZhGgw\n9JY1sGMz6tcTUe0df/HbooZinDmJ3r4RQuURrHAvlorCkiVLLrm9UaNGBAUF0atXL/tSnUII0D+s\nhhatUTF3XPJ9223j4bbxdZxKiCuz9Pjo1KlTfPXVV+zdu5fTp0+zd+9evvrqK44ePcqKFSuYMmUK\nO3fudHZWIeoFXVQIB39C9YxC2WTSAFG/WLpTMAyD3//+9/Tv39++LSEhgQ0bNvDaa6+xZs0a/vGP\nf9CrVy+nBRWi3ti/C8rKUN37ujqJEFVm6c+YXbt20a9fP4dtffv2td8dDBs2jNTU1NpPJ0Q9pPds\nB6+m0Lmbq6MIUWWWikLLli1Zvny5w7bly5fTokULAHJzc2ncuHHtpxOintFam0WhWy+UZyNXxxGi\nyiw9Pnr00UeZNWsWX331FUFBQWRmZmKz2XjmmWcAOHnyJOPHS6OZEPx8DLLSUbfLGB5RP1kqChER\nEfz1r3/l4MGDZGdnExAQQJcuXRzmQerWTW6VhdC7twGgekh7gqifLI9T8PT0lF/8QlyB3rPdnM+o\nksVvhHB3lopCQUEBS5cuJTExkby8PLTW9vfee+89Sxd64okn8PLywmaz4eHhQWxsLPn5+cyePZu0\ntDRCQ0OZOnUqzZo1q94nEcLF9Nl8OLwfdevdro4iRLVZamj+8MMPOXr0KHfffTf5+fk89NBDhISE\nMHr06Cpd7KWXXuLNN98kNjYWgLi4OHr06ME777xDjx49iIuLq/onEMJN6L0/gjZQPfpdeWch3JSl\norB7926eeeYZoqKisNlsREVFMXXqVNavX1+jiyckJBAdHQ1AdHQ0CQkJNTqfEC61Zzs084Xwzq5O\nIkS1WXp8pLXG29sbMNdRKCgoICAggNOnT1fpYq+99hoAN954IzExMeTk5BAYGAhAQEAAOTk5lzwu\nPj6e+Ph4AGJjYwkJqd6iJJ6entU+ti5IvppxZT5dXk5a4g68+gzCv3mLS+4j37+akXx1w1JRaN++\nPYmJifTo0YOuXbvy4Ycf4uXlRatWrSxf6JVXXiEoKIicnBxeffVVwsLCHN5XSlW62EhMTAwxMTH2\nr9PT0y1f92IhISHVPrYuSL6acWU+feQAOjeb4i49Ks0g37+akXw188vfuZWx9Pjo0UcfJTQ0FICJ\nEyfSuHFjzp49y5NPPmk5UFBQEAD+/v5ERUWRlJSEv78/WVlZAGRlZeHn52f5fEK4E71rKygbKrK3\nq6MIUSOWikJubq59lTV/f38ee+wxpk6dSlFRkaWLFBUVUVhYaH+9e/du2rVrR79+/Vi7di0Aa9eu\nJSoqqjqfQQiX0oaB3rwauvVENZM/bET9Zunx0auvvsonn3xSYftrr73GwoULr3h8Tk4Ob731FgDl\n5eUMGTKEXr160bFjR2bPns2qVavsXVKFqHf274bMdNRdE1ydRIgau2xRMAwDODefy7l/zjtz5gwe\nHh6WLtKiRQvefPPNCtt9fX2ZPn16VfIK4Xb0ppXQ1AfVe6CrowhRY5ctCvfee6/99S/XY7bZbNx5\n553OSSVEPaELzqJ//AF1/QhUI5kUUtR/ly0K7777LlprXn75ZWbMmGHfrpTCz89PZkYVVz29bQOU\nlqAGx1x5ZyHqgcsWhfM9jubPn18nYYSob/SmldCqLXSQAWuiYbDU0Jyfn8+yZcs4fvx4hR5HF99B\nCHE10adTzLmO7p5Q6RgbIeobS0Xhr3/9K2VlZQwaNEgeGQlxjt60Emw21IDhro4iRK2xVBQOHjzI\nhx9+SKNGspKUEADaKEf/sBoi+6ACglwdR4haY2nwWrt27cjIyHB2FiHqj8SdkJ2JTRqYRQNj6U6h\ne/fu/OUvf2H48OEEBAQ4vDdixAinBBPCnem9O6BxE7hORuGLhsVSUdi/fz/BwcHs2bOnwntSFMTV\nSKefgdCWKHmkKhoYS0XhpZdecnYOIeqX9FQIbu7qFELUOkttChfTWmMYhv0fIa5KGakoKQqiAbJ0\np5CZmclHH33Evn37OHv2rMN7S5YscUowIdyVLsiHwrMQIkVBNDyW7hTef/99PD09mT59Ol5eXsyc\nOZN+/frxyCOPODufEO4nPRUWROkOAAAgAElEQVQAFXzpFdaEqM8sFYWDBw/y+OOP06FDB5RSdOjQ\ngccff5xvvvnG2fmEcD+ZZlGQOwXREFkqCjabzT5Nto+PD7m5uTRp0oTMzEynhhPCHelzdwrS0Cwa\nIkttCp06dWLHjh3079+fnj17Mnv2bBo3bkzHjh2dnU8I95ORCk28wMfX1UmEqHWWisKUKVPsC+xM\nmDCBr7/+msLCQkaPHu3UcEK4I32uO6pMgicaIktFoby8HD8/c+3Zxo0bc9dddzk1lBBuLeOMPDoS\nDZalojB58mQiIyMZPHgw/fv3x8vLy9m5hHBfGamoTte6OoUQTmGpoXn+/Pn06dOHFStWMGnSJObM\nmcO2bdsoLy93dj4h3IouyIeCsyDdUUUDZelOwc/Pj1GjRjFq1CjS0tLYuHEjixcv5r333uOjjz6y\nfDHDMHj++ecJCgri+eefJzU1lTlz5pCXl0dERARTpkzB09NSJCFcIyMNACXdUUUDVeVpLnJycsjO\nziYvLw8fH58qHfvdd9/RunVr+9efffYZo0ePZu7cufj4+LBq1aqqxhGibmWcMf8tbQqigbJUFFJS\nUli8eDFTpkzhzTffBGDatGm88847li+UkZHBjz/+yMiRIwFzDqW9e/cycOBAAIYPH05CQkJV8wtR\npy6MUZDHR6JhsvSs5sUXX2TAgAFMmjSJyMhIbLYq32CwaNEiHnjgAQoLCwHIy8vD29vbPiguKChI\nBsMJ93d+jEIzGaMgGiZLReGDDz6o0bP+7du34+/vT0REBHv37q3y8fHx8cTHxwMQGxtLSEhItXJ4\nenpW+9i6IPlqpi7yZedlU9a8FSGhoVU+Vr5/NSP56kalv+mtPt+3ssjOgQMH2LZtGzt27KCkpITC\nwkIWLVpEQUEB5eXleHh4kJmZSVDQpde6jYmJISbmwrKH6enplrL9UkhISLWPrQuSr2bqIl/5yWQI\nCK7WdeT7VzOSr2bCwsIs7VdpUVi/fr39tdaaAwcOEBAQQHBwMBkZGWRnZ9O1a1dLReG+++7jvvvu\nA2Dv3r18/fXXPPXUU7z99tts3ryZwYMHs2bNGvr162cptBAuI2MURANXaVG4eLW1jz/+mKioKIdp\nLb777jtOnz5do4vff//9zJkzh8WLFxMeHi5Lewq3JmMUxNXAUkPB+vXrK4xHuPnmm/nd737HQw89\nVKULRkZGEhkZCUCLFi14/fXXq3S8EC4jYxTEVcBSN6KAgAC2bdvmsG3btm32+ZCEuCrIGAVxFbB0\npzBx4kRmzZrFsmXLCA42G9lSUlL4wx/+4Ox8QrgNGaMgrgaWisJ1113Hu+++y44dO8jMzKRPnz70\n6dMHX1/pqy2uIhmp0LiJjFEQDZrlwQe+vr4MGzbMmVmEcBltlENJMcrLu/J9MmQdBdHwWV5P4fvv\nvycxMZG8vDyH92bMmOGUYELUJR33D/SGFdhemY+qbEW1jFQIkUdHomGz1ND8ySefEB8fT7du3Thy\n5AgDBgwgJyfH3otIiPpMl5WhN6yAvBz0d0sr3zE9FSWNzKKBs1QUtmzZwgsvvMCtt96Kh4cHt956\nK9OmTavWlBVCuJ3EHZCXAy1bo1d9g04/U2EXXXAWCvJBuqOKBs5SUSgpKSE4OBgwl+MsLi6mdevW\nHDt2zJnZhKgTetMqaOaH7amXQNnQcZ9V3CnT7HkkdwqiobNUFFq3bs3hw4cBiIiIYOnSpfz73/+u\ndK4iIeoLfTYfvWsLqv8wVGhLVMwY9Ja16BOHHXeU7qjiKmGpKEyYMME+XfZvf/tbjh49yvbt25k0\naZJTwwlRW3TBWfSplIrbt22AsjLU9eYUK+rmu6CZL8a/FqG1vrDfmZ/NF/L4SDRwlnofderUyf66\nVatWvPjii04LJIQz6C//jl6/AtuzrzlMaKd/WAVh7aBdRwCUtw9q9Hj0kg9hx2aMokL0xng4+JM5\nkrmZjOIXDVvVV8sRop7RWqP3bIfyMowFsejsDHP7mZNweD9q0A0OYw/U8FsgtCXGe6+jF86B7AzU\nnQ9i++ObMkZBNHjVXzlHiPoi7ZQ55fXwW9A/rMZ4Lxbbs38x7xKUDTVwuMPuyrMRtt8+hU5Yh4oa\nBl0ipRiIq4YUBdHg6cSdAKiYO1Bdr8NYMBP9+d/M7df2RAUEVzhGXdMddU33uo4qhMtJURANnt67\n02wPaN4K1SIMdcvd6P/+CwB154MuTieEe7FUFLTWrFy5ko0bN5KXl8dbb71FYmIi2dnZXH/99c7O\nKES16fJyOLAb1W+I/RGQGns/OuUYHDuE6jXQtQGFcDOWGpqXLFnC6tWriYmJsa9BGhwczFdffeXU\ncELU2NGDUFiA6tbLvknZPLA9+f+wvfIeqkkTF4YTwv1YKgpr167lueeeY/Dgwfa/tpo3b05qaqpT\nwwlRUzpxJygF1/Z02K5sNpRPMxelEsJ9WSoKhmHg5eXlsK2oqKjCNiFcxdi8mqxXn0WXlTps14k7\noH2nymc+FUI4sFQUevfuzd///ndKS83/4bTWLFmyhL59+zo1nBBW6S1rKdm+Cf39lxe2FZyFowdR\n3Xq7MJkQ9YulovCb3/yGrKwsJkyYQEFBAb/5zW9IS0vj/vvvd3Y+Ia5Iaw3HDoHNhv5miTkoDeDA\nHjAMh/YEIcTlWep95O3tzbRp08jOziY9PZ2QkBACAgIsX6SkpISXXnqJsrIyysvLGThwIOPGjSM1\nNZU5c+aQl5dHREQEU6ZMwdNTesmKKko/A/l5+Ix7iLNfL8b4bD62P7xitic08YKO17g6oRD1hqXf\nwIZhAODn54efn5992/lJ8q6kUaNGvPTSS3h5eVFWVsb06dPp1asX33zzDaNHj2bw4MG8//77rFq1\niptuuqmaH0VcrfSxJACa9B9CQaMm6H+8h/5htdme0KU7yrORixMKUX9YKgr33nvvJbd7eHgQGBjI\ngAEDGDduXKUNz0op+3vl5eWUl5ejlGLv3r08/fTTAAwfPpylS5dKURBVd+wQeHri2a4jyjcIvXk1\nevH7ZlfUEbe5Op0Q9YqlojBx4kQSEhIYO3YswcHBpKens2zZMvr06UNYWBhLly5l0aJFPPbYY5We\nwzAMnnvuOU6fPs2oUaNo0aIF3t7eeHh4ABAUFERmZuYlj42Pjyc+Ph6A2NhYQkJCqvo5AfD09Kz2\nsXVB8lVP5snj6PAuNGralNBGjSib8icynpkAQND1N+DpJpnd9ft3nuSrGXfPZ5WlovDtt98yc+ZM\nvL29AQgLC6Njx448//zzzJ07l3bt2vHcc89d9hw2m40333yTs2fP8tZbb3Hy5EnLIWNiYoiJibF/\nfX4AXVWFhIRU+9i6IPkqp4sKoSAfFRTquN0wMJL2oQbdQFlZmZnPxx819gH07gSyvHxQbvI9lZ9v\nzUi+mgkLC7O0n6VGgYKCAoqLix22FRcXU1BQAEBAQAAlJSWWLujj40NkZCQHDx6koKCA8vJyADIz\nM526kpsuLKA8XQbb1Vf6P3/HmPE0uvQX/52d+RmKCqFDZ4fNtpvvwuP/YmV2UyGqyFJRiI6O5tVX\nXyU+Pp6dO3eycuVKXnvtNaKjowHYtWvXZatQbm4uZ8+eBcyeSLt376Z169ZERkayefNmANasWUO/\nfv1q+nkqZbz3Ojlv/slp5xfOpffvhoJ82LPdcfvRQwCo9p0vdZgQooosPT564IEHaNmyJZs2bSIr\nK4uAgABGjRplf6QTGRnJjBkzKj0+KyuLefPmYRgGWmsGDRpE3759adOmDXPmzGHx4sWEh4czYsSI\n2vlUl6CCQilP3In83Vj/6LxcOJVsvt62AdVn0IU3jx0yu522au2idEI0LJaKgs1m46abbqq0Z1Dj\nxo0ve3z79u154403Kmxv0aIFr7/+upUINRcUipGVjq20FNVIuijWK4f3mf9u3R69ayu6uAjVxOzN\npo8dgvYdUTYPFwYUouGwPFIsOzubpKQk8vLyHBY0d+Zf97Uq+FwDZXYGhLZ0bRZRJTopETw9sd01\nAeOdGejd21BRQ8x5jpKPokaMdnVEIRoMS0Vh69atzJ07l1atWpGcnEzbtm1JTk6ma9eu9aYoqMAQ\nNEBmmhSFekYn7YP2nSCyF/gHoreth6gh8PMJKCut0MgshKg+y+spTJ48mTfeeAMvLy/eeOMNJk2a\nRHh4uLPz1Z5zXRl1pvt2GRMV6ZJiOJaE6tQNZfNA9R0Me7ajiwrMR0eAat/JxSmFaDgsFYX09HQG\nDRrksC06Opp169Y5JZRTBJ0bVJKZ5tocomqOJUF5GapzNwBU1BAoLUHv3Go2Mvv4yp2fELXIUlHw\n8/MjOzsbgNDQUA4ePMiZM2fscyLVB6pxE5RfgBQFN6X37cL49ouK25MSzRcdu5r/jugKgSHohPXm\nnEftO8lYBCFqkaU2hZEjR7J//34GDhzI6NGjmTFjBkopbrutfs0r4xHakjIpCm7J+N+/IXEnultv\nVPiFNgKdtA9atUU1MydiVDYbqt9g9KpvQRuo66JcFVmIBslSURgzZox9RtTo6GgiIyMpKiqiTZs2\nTg1X2zxCWlB24oirY4hf0KWlcO6OwPjfv/B4/I/mdsOApH3mI6OLqKhh6BXm+uAqXNoThKhNV3x8\nZBgGDz74oH3VNTDn+KhvBQHAI7QFZKY7dKkVbuDoASgpgXYdYcdm9KkUc/vJE1B4Fjp1c9y/Q6cL\n7QjS80iIWnXFomCz2QgLCyMvL68u8jiVLaQFFBdCwVlXRxEX0ft3g7JhmzQNGjVCf/8fc/u5uwfV\n6VqH/ZVSqBtGQ6duqIDgOs8rRENm6fHRkCFDmDlzJrfccgvBwcEODXvdu3d3Wrja5hHSwnyRlQY+\nzVwbpoExvv8SvWsLtmmvV7nhV+/fDe0iUC3CUINvRK/7Hj3mPji0DwKC4PzP7SK2G++AG++orfhC\niHMsFYXly5cDsHTpUoftSinefffd2k/lJB6h5365ZKRDm3o0xqIe0Hu2waFESNoHnbtd+YDzxxUX\nwZGDqJgxAKibxqLX/hcd/xU6KRHV8VrpXSREHbJUFObNm+fsHHXCdu4vTp2ZJhPj1SKtNfx8zHy9\ncYV9TIElSfvMcQhdrwNAhbRA9R+GXv2dOVr5prFOSCyEqIy1RZaBsrIy9u3bx6ZNmwAoKiqiqKjI\nacGcwRYQBB6eMlahtuVkQX4eNGmK3rbRXBDHIr1vF3h4ONxdqJvvMgsCoH7ZyCyEcCpLReHEiRM8\n/fTT/O1vf+O9994DIDEx0f66vlA2mzmyWYpC7fr5OADqlruguAi9faPlQ/X+3RB+jX3WUwDVuj30\n7A/ePtCmQ22nFUJchqWi8MEHHzB+/HjmzJmDp6f5xKlbt27s37/fqeGcIigULUWhVulzj47UsJuh\nZWv0xnhrx53NhxNH7I+OLmab+DS252aiPGRKbCHqkqWikJKSwtChQx22eXl5WV6C050ouVOofSnH\nwT8Q5euHuj4GDiWiz1hYg/vQT+ao5EsUBeXjiwpr54SwQojLsVQUQkNDOXLEcSRwUlISLVvWw4nI\ngkIhOxN9bm1oUXP65+PQuj0AatBwUDb0ppVXPm7/HmjcGCKucXJCIYRVlorC+PHjiY2N5YsvvqCs\nrIwvv/ySt99+m3vuucfZ+WpfUAgYBuRkujpJg6CNcjiVbLYDgDmYrHsf9KZV5nuXO3b/bnMAmqyE\nJ4TbsFQU+vbtywsvvEBubi7dunUjLS2NZ599lp49ezo7X61T59ZVkEdItST1FJSWQOsO9k22wTHm\nCneJOys9TOdmwc/HL/noSAjhOpbGKeTm5hIeHs7DDz/s7DzOd36xnYw0VDXnUtNGOfo/fwfAdvfE\n2kpWP53vedSm/YVtPaOgmR/Gl5+hfvwBnZsNeTmgNapla2jVDgryzeOkKAjhViwVhcmTJxMZGcmQ\nIUOIiorCy8vrygddJD09nXnz5pGdnY1SipiYGG699Vby8/OZPXs2aWlphIaGMnXqVJo1c/L0E/bF\ndqq3ApsuK0MvnIPeug6UQo+47cLdx1VI/3wclIKWbe3blGcj1A23or9bis7JAl9/8PMHwzDHJfyw\n2tzRu5k5CZ4Qwm1YKgrz58/nhx9+YPny5XzwwQf06dOHIUOG0Lt3bzwsdBn08PDgwQcfJCIigsLC\nQp5//nmuu+461qxZQ48ePRg7dixxcXHExcXxwAMP1PhDXY7y8jZ/GVXj8ZEuLcH42xuwaytq5O3o\nlV+jN61C3TbeCUnrB/3zcQhthWrSxGG7bcx96NvvveQUFbrgLJxOgaY+0uVUCDdjeeW1UaNG8cor\nrzBr1iw6dOjA4sWLmTRpkqWLBAYGEhERAUDTpk1p3bo1mZmZJCQkEB0dDZjrNCQkJFTzY1RRNcYq\n6OIijLmvmAXhvkex3fMIdL0OvTHenPffxXR5ObrUBV2EU47DxY+OLlLZnEXK2wcVcQ2qVf2bfl2I\nhs7yNBfn5eTkkJ2dTV5eHj4+PlW+YGpqKkePHqVTp07k5OQQGBgIQEBAADk5OVU+X7UEh1b58ZH+\nxwLYvwc18WlsN4wGQA2OgfQzcPAnZ6SsEv3puxivTK20x48uLTX/Qq/NaxYXQ9ope88jIUT9Z+nx\nUUpKChs2bGDjxo2UlJQwaNAgpk2bRqdOVWupLSoqYtasWUyYMAFvb2+H95RSlf5lGR8fT3y8OUo2\nNjaWkJCQKl33PE9PT0JCQsgNa0vR4X2Wz6NLS0jbsZmmMbfhN+bCoyJ94+2kff4+jbetx3/IiGpl\nulS+qjJys0nbsg7KSvE9vA+vQcMr7JM98wVKdifg99zrNLmuX63kK03aR6bW+F3bA69q/kxqU3W/\nf3VF8tWM5KsblorCiy++yIABA5g0aRKRkZH2pTmroqysjFmzZjF06FAGDBgAgL+/P1lZWQQGBpKV\nlYWfn98lj42JiSEmJsb+dXp69RqJQ0JCSE9Px2jaDJ2fR1rKCbON4Qr0nu3oogKKr+1d8dr9h1K0\ncSUlv/otyrtmjeTn81WVsTzOnECumR85//47+Z0d17jQxw9jbF4DTbzI/vNU1G+exHb9SMvn12mn\n0XGf0VhB6UNTUTazHcDYuwuAPN8g8qv5M6lN1f3+1RXJVzOSr2bCwsIs7Wd57qPHHnuMHj16VKsg\naK1ZsGABrVu35rbbbrNv79evH2vXrgVg7dq1REXV0SLsVeyBpHdugSZN4VLTMQyOgdIS9Nb1tZnQ\nMq01ev330LGr2eB9eD/6sOOcVMbXn4O3D7YZ86BLd/TCv2Is++cVlyXVBfkY/1qIMX0yevsmires\nQ29YcWGHlOPmiOTm9XBkuxDikizdKXh6epKdnU1SUhJ5eXkOv0xGjLjyY5MDBw6wbt062rVrx7Rp\n0wC49957GTt2LLNnz2bVqlX2Lql1QQWHosHsgXSF+XW0YaB3bUF173PpkbftO0Hr9uYkcMNvcUre\nyzq0F07/jJr4NKrPIPRX/0Sv+ArVsStg3iWwayvqjvtQwaHYnpqO/nQ++uvFZlH8zZPm7LG/oLdv\nwvhsHpzNRw0agbrjfjw+eYfS/3yK7nM9qpmfORFeq3b2OwchRP1nqShs3bqVuXPn0qpVK5KTk2nb\nti3Jycl07drVUlHo2rUrX3zxxSXfmz59etUS14bzA9isLLZz7JC5XkCvAZd8WymFGnIjesmH6JRj\nKItTPevMNMjNhjYdUJ7Vn+ZBr/ve7NrZdwiqSRPUsFHo5XHo9DOokBb2uwQ14nYzr2cjmPAUBAaj\nv/0CvJrC+Icd2nP07gSMD96Edh2xTX0cdW4sge8jfyDzmQnor/6Buv9xc0Ry977Vzi6EcD+WisKS\nJUuYPHkygwYNYuLEibzxxhusXr2a5ORkZ+dzDv8gsNnMZTmvQO/cDB4eqB6VN86qAcPR/1qE3hiP\nGl/5qG+tNRzai7Hya9ixBbQBjRpDeGdUx2spjOiCkZNttg+UlaHaRaCurXwqEX02D719E2roTfZx\nAmrEbeZSliu/hkE3XLhL8L7QU0wpBXfcb659EL8M/AJQt/7aPOehRIwFM6FNOLapf0Y1vdDm0qhD\nJ9QNo9GrvkH3GmgWNel5JESDYqkopKenM2jQIIdt0dHRTJo0id/85jdOCeZMysMDAoIh68pjFfTO\nrdClO8qn8kZk5etnPrrZsAJ9y90ov4CK5zmwB2PJh5B8FLyboUbdaY7mPbIfnbQPvfxLcn8xc6tu\n4oVt5seVXlv/sBrKSlHDRl3IEhSC6jcEvX6FObDsorsEh8xKwa8fgrwc9JefYvj6o8I7m2MxgkKx\nPf2SQ0GwHzfmXvTWdRgfzjK/lqIgRINiqSj4+fmRnZ1NQEAAoaGhHDx4EF9fXww3GLRVbUGh6IzU\ny+6iT/9szgBqoa1AjbkXvX0j+uvFqPsfczxPXg7Ggljw8kY9OBk14IYLI4Cjhpj7FBcR5GkjMy8P\nPBtB6imM16eh1/0PdcvdFbNpbT46irimwiMrdeNY9Ja1sG9XhbsEh/1sNpjwlHnH8el8tI8PeDU1\n7xB8/S99jHcz1F2/RS96x9wgRUGIBsVSV6KRI0faV1kbPXo0M2bMYNq0adx0001ODedMqm04HDtk\nDsCqhN61xdy356XbExzO17INKvpm9Lr/oU+lOJ7ni4+hsBDbky9iG3ZzhSkhAFQTLzxahKECglHN\n/FAR10C3XuiV36BLSyte8PA+s2BddJdgP1f7jnBNj0rvEhz29WyE7bHnIbwzALapM1DBl5/LSQ0a\nYa6B4B9o/iOEaDAs3SmMHTvW/jo6OprIyEiKiopo06b+TlOgeg1Ar/4W9u2stBFZ79gM7Tpe8Zek\n/Zy334v+YTXGvxfh8eT/M8+RuBO9eTVq9DhU66qtJGa76U6MOS+ht65DDb4wrkBrjfHdv6CpN6rf\nkEsfO2kaFJyt9C7BIXcTL2zTXofSkks+Mqqwv82G7ckXIS+70gGHQoj6qeqDDjAHadTnggBAl+7Q\n1MdsSL4EnZsFRw6gKikYl6J8/c0G211b0Qf2oIuLMT6bD83DUKPHVT1jt15md9flXzp0A9arvoE9\n21Bj7nVY8N4hi1+AOU211eyenpYKgn1/Xz9ZLlOIBqhaRaEhUJ6eqB590bu3XXK+IL0rwZz/v7f1\nogCgRt4OQaEYSxeiv/4c0k5je3AyqlHjqmdUCnXTnXDyBOz90cx1/DD6XwuhZ3/UyDFVPqcQQlzO\nVVsUAPOxUV4OHD5Q4S29dR0EN3dYUcwK1bgJ6s4H4XgS+vv/oAaPrNFCMqr/UAgIwlgehy4qwHj/\nDfANwDbhKXl0I4SodVd1UVDd+4KHpzmNxUX0kQOwfzfqhlur9YtX9R8GHTqDrz+qhiuzKc9G5t3H\nvl0Y7/wZ0s5ge/gZVLNLzxMlhBA1cXUXhabe0LUHeucWh2f2xndLwccXFX1z9c5rs2H7wyvYXnqn\nVn55q2E3myOPDyWixtyD6hJZ43MKIcSlXNVFAcxeSKSeNFcCA3TKUfvKalZmUK30vE29UbXUXVN5\n+6B+9VvU4Bj7yGMhhHAGKQrnxiCcf4Skv/sXeDVFjbjtcofVOdsNt5rtCDL5nBDCiaQoBAZD+07m\nI6TTKehtG1DDb73stBZCCNFQXfVFAc49QjpyAGPJR+DZCHWjdPUUQlydpCjAhQFqP203Zxz1k6kb\nhBBXJykKYE7qFtoSPDzN2UuFEOIqZWnuo4ZOKYXt1w+h83NRQdbmORJCiIZIisI5qvfAK6/CJoQQ\nDZw8PhJCCGEnRUEIIYSdFAUhhBB2ddKmMH/+fH788Uf8/f2ZNctc2zc/P5/Zs2eTlpZGaGgoU6dO\npVkzGTAmhBCuVCd3CsOHD+eFF15w2BYXF0ePHj1455136NGjB3FxcXURRQghxGXUSVHo1q1bhbuA\nhIQEoqOjAXOJz4SEhLqIIoQQ4jJc1iU1JyeHwEBz5HBAQAA5OTmV7hsfH098fDwAsbGxhISEVOua\nnp6e1T62Lki+mpF8NSP5asbd81nlFuMUlFKXXcwmJiaGmJgY+9fp6enVuk5ISEi1j60Lkq9mJF/N\nSL6acfd8YWFhlvZzWVHw9/cnKyuLwMBAsrKy8POzvhiN1Q9X28fWBclXM5KvZiRfzbh7Pitc1iW1\nX79+rF27FoC1a9cSFRXl9Gs+//zzTr9GTUi+mpF8NSP5asbd81lVJ3cKc+bMITExkby8PB577DHG\njRvH2LFjmT17NqtWrbJ3SRVCCOFadVIUfv/7319y+/Tp0+vi8kIIISzyePnll192dYi6FBER4eoI\nlyX5akby1Yzkqxl3z2eF0lprV4cQQgjhHmTuIyGEEHZuMU6hLuzcuZOFCxdiGAYjR45k7NixLs3j\n7vNBpaenM2/ePLKzs1FKERMTw6233uo2GUtKSnjppZcoKyujvLycgQMHMm7cOFJTU5kzZw55eXlE\nREQwZcoUPD1d85+5YRg8//zzBAUF8fzzz7tVNoAnnngCLy8vbDYbHh4exMbGus3PF+Ds2bMsWLCA\n5ORklFI8/vjjhIWFuUW+kydPMnv2bPvXqampjBs3jujoaLfIVyP6KlBeXq6ffPJJffr0aV1aWqqf\nffZZnZyc7NJMe/fu1YcPH9Z/+MMf7Ns+/fRT/eWXX2qttf7yyy/1p59+6qp4OjMzUx8+fFhrrXVB\nQYF+6qmndHJysttkNAxDFxYWaq21Li0t1X/84x/1gQMH9KxZs/SGDRu01lr/7W9/099//71L8mmt\n9ddff63nzJmjX3/9da21dqtsWms9efJknZOT47DNXX6+Wms9d+5cHR8fr7U2f8b5+flule+88vJy\n/fDDD+vU1FS3zFdVV8Xjo6SkJFq2bEmLFi3w9PTk+uuvd/lcS+4+H1RgYKC90axp06a0bt2azMxM\nt8molMLLywuA8vJyysvLUUqxd+9eBg4cCJgTMboqX0ZGBj/++CMjR44EQGvtNtkux11+vgUFBezb\nt48RI0YA5hQSPj4+bnyjo4IAAAeESURBVJPvYnv27KFly5aEhoa6Zb6quioeH2VmZhIcHGz/Ojg4\nmEOHDrkw0aVVZT6oupSamsrRo0fp1KmTW2U0DIPnnnuO06dPM2rUKFq0aIG3tzceHh4ABAUFkZmZ\n6ZJsixYt4oEHHqCwsBCAvLw8t8l2sddeew2AG2+8kZiYGLf5+aampuLn58f8+fM5fvw4ERERTJgw\nwW3yXWzjxo0MHjwYcN//h6viqigK9dGV5oOqK0VFRcyaNYsJEybg7e3t8J6rM9psNt58803Onj3L\nW2+9xcmTJ12W5WLbt2/H39+fiIgI9u7d6+o4lXrllVcICgoiJyeHV199tcIUDa78+ZaXl3P06FEe\neughOnfuzMKFCytMr+/q//4AysrK2L59O/fdd1+F99whX3VcFUUhKCiIjIwM+9cZGRkEBQW5MNGl\n1WQ+KGcoKytj1qxZDB06lAEDBrhlRgAfHx8iIyM5ePAgBQUFlJeX4+HhQWZmpkt+zgcOHGDbtm3s\n2LGDkpISCgsLWbRokVtku9j56/v7+xMVFUVSUpLb/HyDg4MJDg6mc+fOAAwcOJC4uDi3yXfejh07\nCA8PJyAgAHDP/z+q6qpoU+jYsSOnTp0iNTWVsrIyNm3aRL9+/VwdqwJXzAdVGa01CxYsoHXr1tx2\n22327e6SMTc3l7NnzwJmT6Tdu3fTunVrIiMj2bx5MwBr1qxxyc/5vvvuY8GCBcybN4/f//73dO/e\nnaeeesotsp1XVFRkf7RVVFTE7t27adeundv8fAMCAggODrbf/e3Zs4c2bdq4Tb7zLn50BP+/vXsJ\nbSoNwzj+b0wOVYMxNkg2ilJEBW1AUIhEsXgB6UJb2oKIGo1aSBqFutCVG5EKtt4L1mKxQq1YBLEL\ncSGKiIsu7MZLQMQGQugltEVLUk2TzEI8TMeZseOoreb5rXI7OR8nJA/fm3Peb/p8P/6PvLl47dmz\nZ7S1tZHNZiktLaWiomJKx/PnflAOh4Pq6mpWr17N2bNnSSQSU346WyQS4fjx4yxcuNCcAu/YsYMl\nS5ZMizFGo1GamprIZrPkcjm8Xi+VlZX09/dz7tw5RkdHWbx4MeFwGJvN9tPH99mLFy/o6uri2LFj\n02ps/f39NDQ0AJ9KNT6fj4qKCt6/fz8tPl+A3t5eLl++zPj4OPPnzycYDJLL5abN+MbGxggGg1y6\ndMksrU6n4/et8iYURETk6/KifCQiIpOjUBAREZNCQURETAoFERExKRRERMSkUJDfWl1d3ZRdVZxI\nJNi1axfZbHZK9i/yLXRKquSFW7du0dfXx6FDh37YPkKhEDU1NZSUlPywfYj8aJopiExCJpOZ6iGI\n/BSaKchvLRQKsW/fPvPqXavVitvt5vTp0ySTSdra2ujp6aGgoIDS0lKqq6uxWCw8evSIBw8eUFxc\nzOPHj9myZQsbNmygubmZaDRKQUEBHo+HQCDA7NmzuXjxIk+ePMFqtWKxWKisrMTr9VJbW0tHR4fZ\n76ilpYVIJILdbmfbtm1s2rQJ+DSTicViGIZBd3c3LpeLUChEcXExAHfu3OHevXukUimcTif79+9n\n5cqVU3Zc5feVFw3xJL/ZbDbKy8u/KB81NTXhcDi4cOECHz584NSpUxQVFbF582YAXr9+zdq1a2lp\naSGTyTA0NER5eTnLly8nlUrR2NhIZ2cnfr+fcDhMJBKZUD4aGBiYMI7z58+zYMECmpubicfjnDhx\nArfbzYoVK4BP3VWPHDlCMBjk5s2btLa2cvLkSeLxOPfv36e+vp558+YxMDCg/ynkh1H5SPLSyMgI\nPT09+P1+CgsLcTgclJWV8fTpU/M1TqeTrVu3MmPGDAzDwO12U1JSgs1mY86cOZSVlfHy5ctJ7S+R\nSBCJRNi5cyeGYbBo0SI2btxoNk8DWLZsGatWrcJisbB+/Xp6e3uBTy3C0+k0sVjM7APkdru/6/EQ\n+UwzBclLiUSCTCbDwYMHzcdyudyExZhcLteEbUZGRrh27RqvXr1ibGyMbDY76WZnw8PD2O12Zs6c\nOeH937x5Y953OBzmbcMwSKfTZDIZ3G43fr+fzs5OYrEYHo+H3bt3T3nrbfk9KRQkL/x1sZOioiKs\nVitXr141V0P7mo6ODgAaGxux2+10d3fT2to6qW2dTiejo6OkUikzGBKJxKR/2H0+Hz6fj2QyyZUr\nV2hvbyccDk9qW5H/QuUjyQsOh4PBwUGzFu90OvF4PFy/fp1kMkk2m6Wvr+9fy0GpVIrCwkJmzZrF\n0NAQXV1dE56fO3fuF/8jfOZyuVi6dCk3btzg48ePRKNRHj58yLp167469ng8zvPnz0mn0xiGgWEY\nv+SKXvJrUChIXvB6vQAEAgGOHj0KQG1tLePj49TV1bF3717OnDnD8PDwP75HVVUVb9++Zc+ePdTX\n17NmzZoJz2/fvp3bt2/j9/u5e/fuF9sfPnyYwcFBampqaGhooKqqalLXNKTTadrb2wkEAhw4cIB3\n79797fKPIt+DTkkVERGTZgoiImJSKIiIiEmhICIiJoWCiIiYFAoiImJSKIiIiEmhICIiJoWCiIiY\nFAoiImL6AwJDfc3HpVBYAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -684,15 +1245,14 @@ ], "source": [ "util.plot_curve(loss_list, \"loss\")\n", - "util.plot_curve(avg_return_list, \"average return\")" + "util.plot_curve(avg_return_list, \"average return\")\n", + "util.plot_curve(avg_advantage_variance_list, \"average advantage variance\")" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } diff --git a/report.md b/report.md index 1e5017e..63f16e3 100644 --- a/report.md +++ b/report.md @@ -1,3 +1,52 @@ -# Homework3-Policy-Gradient report +# CEDL2017 HW3 Report -TA: try to elaborate the algorithms that you implemented and any details worth mentioned. +## Problem 1 +In problem 1, I use `tf.contrib.layers` to construct my 2-layer neural network, nothing special here. +```python +h1 = tf.contrib.layers.fully_connected(self._observations, num_outputs=hidden_dim, activation_fn=tf.tanh) +h2 = tf.contrib.layers.fully_connected(h1, num_outputs=out_dim, activation_fn=None) +probs = tf.nn.softmax(h2) +``` + +## Problem 2 +Here we calculate the surrogate loss: +```python +# 1. self._advantages is a vector containing Ri for all timestep. +# 2. log_prob is a vector containing log(pi(a|s)) for all timestep. +# 3. Element-wise product of Ri and log_prob. +# 4. Sum over time, divide by T to get surrogate loss. +neg_log_prob = -log_prob # Minimizing negative log-likelihood is same as maximizing log-likelihood. +surr_loss = tf.reduce_mean(neg_log_prob*self._advantages) +``` +Note that the optimizer in TensorFlow minimizes loss, thus we simply maximizes the log-likelihood by adding negative sign, which is equivalent. + +## Problem 3 +In problem 3, we need to modify the reward to **advantage**, which is just reward subtracted by baseline: +```python +a = r - b +``` + +| Loss | Average Return | Average Advantage Variance | +| ---- | ------ | -------- | +|![](https://i.imgur.com/CI5SzP1.png) | ![](https://i.imgur.com/ecYw6FZ.png) | ![](https://i.imgur.com/3K5Hlp8.png) + +## Problem 4 +We found that after removing the baseline, the average advantage variance explodes, but the average return still can exceed 195 within about 80 iterations. The reason why the baseline won't introduce the bias can be proved as follows: + +| Loss | Average Return | Average Advantage Variance | +| ---- | ------ | -------- | +| ![](https://i.imgur.com/oRClDgo.png) |![](https://i.imgur.com/TVwJWpp.png) |![](https://i.imgur.com/ZVIds7Y.png) + +## Problem 5 +In problem 5, we modify the advantage from the original version to actor-critic algorithm whose advantage function is one-step bootstrap. But the return cannot achieve to 195 within 200 iterations, may need more iterations to learn. Moreover, as shown in the following figure, the loss is very unstable. + +| Loss | Average Return | Average Advantage Variance | +| ---- | ------ | -------- | +| ![](https://i.imgur.com/BYYoKv9.png) | ![](https://i.imgur.com/oZ2AaGT.png) | ![](https://i.imgur.com/yRGRWIY.png) + +## Problem 6 +In problem 6, we further modify the one-step bootstrap to the form of Generative Advantage Estimation (GAE). After this modification, the agent can achieve to 195 within about 80 iterations, but the average advantage variance is higher than the one in problem 3. + +| Loss | Average Return | Average Advantage Variance | +| ---- | ------ | -------- | +| ![](https://i.imgur.com/rFjgB4E.png) | ![](https://i.imgur.com/O0FqYC9.png) | ![](https://i.imgur.com/uFMMSvU.png)